Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T09:23:21.791Z Has data issue: false hasContentIssue false

10 - Balance Theory and Blockmodeling Signed Networks

Published online by Cambridge University Press:  13 January 2010

Patrick Doreian
Affiliation:
University of Pittsburgh
Vladimir Batagelj
Affiliation:
University of Ljubljana
Anuska Ferligoj
Affiliation:
University of Ljubljana
Get access

Summary

In our discussion of blockmodeling in Chapter 6, we presented definitions of equivalences used within conventional blockmodeling. We identified the permitted ideal block types for structural and regular equivalence and outlined an optimizational approach to establish blockmodels according to specified equivalences. Each criterion function measures the inconsistency between the set of empirical blocks and a set of ideal blocks, and we sought partitions by using direct local optimization procedures. In Chapter 7, we suggested starting with patterns of ideal blocks defined for the image matrix with an expanded set of block types. In this chapter, we continue in this spirit by defining some new block types after considering essential elements of structural balance theory.

Our focus shifts to signed networks, a network data type introduced in Chapter 1, with the intent of bringing them inside the generalized blockmodeling framework. It is important to note that this is not an attempt to apply structural equivalence ideas to signed data. In fact, structural equivalence is singularly inappropriate for analyzing signed networks. In certain signed networks (graphs), there are partitioned structures with a distinctive balanced pattern. We construct a criterion function that measures inconsistencies between empirical structures and balanced structures and use the relocation clustering procedure with a criterion function defined for structural balance to partition signed networks.

Section 10.1 outlines the key idea of structural balance theory as proposed by Heider (1946), and Section 10.2 provides a specification of signed networks. The idea of exact k-balanced networks is defined and conditions for exact k-balance are provided. Section 10.3 draws on materials on semirings from Chapter 9 and provides conditions for determining whether or not a signed network is balanced.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×