from Part 3 - Case Studies and Specific Technologies: Pollutant Trends and Key Drivers
Published online by Cambridge University Press: 05 June 2013
Introduction
Premixed combustors for aero engines have been under development for nearly forty years, yet, at the time of writing, the first airplane with premixed combustion still awaits its entry into service. On the other hand, industrial gas turbines have made the transition to premixed combustion within ten years and the level of emissions of nitrogen oxides has decreased tenfold. The differences are due to the peculiarities of gas turbines in flight and a large part of the chapter will be devoted to the understanding of the consequences of those differences for premixed or partially premixed combustion. An obvious difference between both applications lies in the fuels, which are predominantly gaseous for industrial gas turbines and exclusively liquid for aero engines and will continue to be for the foreseeable future. Therefore, premixing in aero combustors always needs to be discussed together with prevaporization, and the differences imposed on the liquid fuel preparation by full or partial prevaporization and premixing are responsible for a large part of the overall development effort. The other determining differences result from the thermodynamic cycles specific to high bypass ratio engines and the impact of the flight profile on the implementation of part load operation. The latter has already been described in Chapter 1.5 and the concept of staging in lean aero engines has been presented in Section 1.5.3 such that this chapter will concentrate more on the implementation of staging and its consequences on the design of the combustor components.
The chapter consists of three parts that partly also follow a historical order: Some results of research are presented that are relevant for lean premixed, prevaporized (LPP) combustion, which for a large part were concurrently achieved with development efforts on LPP combustors. Understanding the limitations and difficulties in the way of fully prevaporized premixed combustion, the concept with the highest emissions reduction potential, will then supply the base for the discussion of partially premixing combustors and their operability aspects.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.