Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T00:16:01.073Z Has data issue: false hasContentIssue false

11 - Functional genomics of plant infection by the rice blast fungus Magnaporthe grisea

from IV - Pathogenic interactions in the environment

Published online by Cambridge University Press:  03 November 2009

Joanna M. Jenkinson
Affiliation:
School of Biosciences, University of Exeter
Richard A. Wilson
Affiliation:
School of Biosciences, University of Exeter
Zachary Cartwright
Affiliation:
School of Biosciences, University of Exeter
Darren M. Soanes
Affiliation:
School of Biosciences, University of Exeter
Michael J. Kershaw
Affiliation:
School of Biosciences, University of Exeter
Nicholas J. Talbot
Affiliation:
School of Biosciences, University of Exeter
Geoffrey Gadd
Affiliation:
University of Dundee
Sarah C. Watkinson
Affiliation:
University of Oxford
Paul S. Dyer
Affiliation:
University of Nottingham
Get access

Summary

An introduction to the phytopathogenic fungus Magnaporthe grisea

Magnaporthe grisea is a heterothallic, phytopathogenic ascomycete capable of infecting over 50 species of grass (Ou, 1985). The most economically important of the species infected by M. grisea is rice (Ou, 1985; Rossman et al., 1990), which is the staple diet of almost half the global human population. Rice blast disease, caused by M. grisea, is an extremely serious disease; despite modern advances, such as the development of fungicides and breeding of resistant rice cultivars, every year between 11% and 30% of the rice harvest is destroyed by this disease. A serious blast epidemic occurred in Bhutan in 1995 in which 1090 tonnes of rice was lost, with up to 100% crop losses for some farmers (Thinlay et al., 2000). The American Centre for Disease Control and Prevention has also classified rice blast disease as a significant biological weapon that could be deployed in acts of agricultural bioterrorism (Schaad et al., 2003).

Rice blast disease manifests itself as a number of different pathologies affecting stems, leaves and panicles of the rice plant (Talbot, 2003). Blast infections of stem nodes, for example, can cause the rice stem to rot before maturation of the seed and can result in complete loss of the rice crop (Ou, 1985). If leaves of rice seedlings are infected, a reduction in photosynthetic capacity can occur; growth is therefore impeded and seedlings often die.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aderem, A. (2005) Systems biology: its practice and challenges. Cell 121, 511–13.CrossRefGoogle ScholarPubMed
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M. & Sherlock, G. (2000). Gene ontology: tool for the unification of biology. Nature Genetics 25, 25–9.CrossRefGoogle ScholarPubMed
Asiegbu, F. O., Choi, W., Jeong, J. S. & Dean, R. A. (2004). Cloning, sequencing and functional analysis of Magnaporthe grisea MVP1 gene a hex-1 homolog encoding a putative ‘woronin body’ protein. FEMS Microbiology Letters 230, 85–90.CrossRefGoogle ScholarPubMed
Audic, S. & Claverie, J. M. (1997). The significance of digital gene expression profiles. Genome Research 7, 986–95.CrossRefGoogle ScholarPubMed
Baetz, K., Jason, M., Haynes, J., Chang, M. & Andrews, B. (2001). Transcriptional coregulation by the cell integrity mitogen-activated protein kinase Slt2 and the cell cycle regulator Swi4. Molecular and Cellular Biology 21, 6515–28.CrossRefGoogle ScholarPubMed
Bardwell, L. (2004). A walk-through of the yeast mating pheromone response pathway. Peptides 25, 1465–76.CrossRefGoogle ScholarPubMed
Beever, R. E. & Dempsey, G. P. (1978). Function of rodlets on the surface of fungal spores. Nature 272, 608–10.CrossRefGoogle ScholarPubMed
Bell-Pederson, D., Dunlap, J. C. & Loros, J. J. (1992). The Neurospora circadian clock-controlled gene, ccg-2, is allelic to eas and encodes a fungal hydrophobin required for formation of the conidial rodlet layer. Genes and Development 6, 2382–94.CrossRefGoogle Scholar
Bourett, T. M. & Howard, R. J. (1990). In vitro development of penetration structures in the rice blast fungus Magnaporthe grisea. Canadian Journal of Botany 68, 329–42.CrossRefGoogle Scholar
Brewster, J. L. & Gustin, M. C. (1994). Positioning of cell growth and division after osmotic stress requires a MAP kinase pathway. Yeast 10, 425–39.CrossRefGoogle ScholarPubMed
Bruno, K. S., Tenjo, F., Li, L., Hamer, J. E. & Xu, J. R. (2004). Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryotic Cell 3, 1525–32.CrossRefGoogle ScholarPubMed
Catlett, N. L., Lee, B. N., Yoder, O. C. & Turgeon, B. G. (2003) Split-marker recombination for efficient target deletion of fungal genes. Fungal Genetics Newsletter 50, 9–11.CrossRefGoogle Scholar
Choi, W. & Dean, R. A. (1997). The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9, 1973–83.CrossRefGoogle ScholarPubMed
Jong, J., McCormack, B. J., Smirnoff, N. & Talbot, N. J. (1997). Glycerol generates turgor in rice blast. Nature 389, 244–5.CrossRefGoogle Scholar
Zwaan, T. M., Carrol, A. M., Valent, B. & Sweigard, J. A. (1999). Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11, 2013–30.Google Scholar
Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., Thon, M., Kulkarni, R., Xu, J.-R., Pan, H., Read, N. D., Lee, Y.-H., Carbone, I., Brown, D., Oh, Y. Y., Donofrio, N., Jeong, J. S., Soanes, D. M., Djonovic, S., Kolomiets, E., Rehmeyer, C., Li, W., Harding, M., Kim, S., Lebrun, M.-H., Bohnert, H., Coughlan, S., Butler, J., Calvo, S., Ma, L.-J., Nicol, R., Purcell, S., Nusbaum, C., Galagan, J. E. & Birren, B. W. (2005). The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980–6.CrossRefGoogle ScholarPubMed
Dixon, K. P., Xu, J. R., Smirnoff, N. & Talbot, N. J. (1999). Independent signalling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11, 2045–58.CrossRefGoogle Scholar
Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I., Montigny, J., Marck, C., Neuveglise, C., Talla, E., Goffard, N., Frangeul, L., Aigle, M., Anthouard, V., Babour, A., Barbe, V., Barnay, S., Blanchin, S., Beckerich, J. M., Beyne, E., Bleykasten, C., Boisrame, A., Boyer, J., Cattolico, L., Confanioleri, F., Daruvar, A., Despons, L., Fabre, E., Fairhead, C., Ferry-Dumazet, H., Groppi, A., Hantraye, F., Hennequin, C., Jauniaux, N., Joyet, P., Kachouri, R., Kerrest, A., Koszul, R., Lemaire, M., Lesur, I., Ma, L., Muller, H., Nicaud, J. M., Nikoloski, M., Oztas, S., Ozier-Kalogeropoulos, O., Pellenz, S., Potier, S., Richard, G. F., Straub, M. L., Suleau, A., Swennen, D., Tekaia, F., Wesolowski-Louvel, M., Westhof, E., Wirth, B., Zeniou-Meyer, M., Zivanovic, I., Bolotin-Fukuhara, M., Thierry, A., Bouchier, C., Caudron, B., Scarpelli, C., Gaillardin, C., Weissenbach, J., Wincker, P. & Souciet, J. L. (2004). Genome evolution in yeasts. Nature 430, 35–44.CrossRefGoogle ScholarPubMed
Ebbole, D. J., Jin, Y., Thon, M.et al. (2004). Gene discovery and gene expression in the rice blast fungus, Magnaporthe grisea: analysis of expressed sequence tags. Molecular Plant-Microbe Interactions 17, 1337–47.CrossRefGoogle ScholarPubMed
Eberle, J. & Russo, V. E. (1994). Neurospora crassa blue light-inducible gene bli-3. Biochemistry and Molecular Biology International 34, 737–44.Google ScholarPubMed
Elliot, M. A. & Talbot, N. J. (2004). Building filaments in the air: aerial morphogenesis in bacteria and fungi. Current Opinions in Biology 7, 594–601.Google ScholarPubMed
Galagan, J. E., Calvo, S. E., Borkovich, K. A., Selker, E. U., Read, N. D., Jaffe, D., FitzHugh, W., Ma, L. J., Smirnov, S., Purcell, S., Rehman, B., Elkins, T., Engels, R., Wang, S. G., Nielsen, C. B., Butler, J., Endrizzi, M., Qui, D. Y., Ianakiev, P., Pedersen, D. B., Nelson, M. A., Werner-Washburne, M., Selitrennikoff, C. P., Kinsey, J. A., Braun, E. L., Zelter, A., Schulte, U., Kothe, G. O., Jedd, G., Mewes, W., Staben, C., Marcotte, E., Greenberg, D., Roy, A., Foley, K., Naylor, J., Stabge-Thomann, N., Barrett, R., Gnerre, S., Kamal, M., Kamvysselis, M., Mauceli, E., Bielke, C., Rudd, S., Frishman, D., Krystofova, S., Rasmussen, C., Metzenberg, R. L., Perkins, D. D., Kroken, S., Cogoni, C., Macino, G., Catcheside, D., Li, W. X., Pratt, R. J., Osmani, S. A., DeSouza, C. P. C., Glass, L., Orbach, M. J., Berglund, J. A., Voelker, R., Yarden, O., Plamann, M., Seller, S., Dunlap, J., Radford, A., Aramayo, R., Natvig, D. O., Alex, L. A., Mannhaupt, G., Ebbole, D. J., Freitag, M., Paulsen, I., Sachs, M. S., Lander, E. S., Nusbaum, C. & Birren, B. (2003). The genome sequence of the filamentous fungus Neurospora crassa. Nature 422, 859–68.CrossRefGoogle ScholarPubMed
Gilbert, R. D., Johnson, A. M. & Dean, R. A. (1996). Chemical signals responsible for appressorium formation in the rice blast fungus Magnaporthe grisea. Physiological and Molecular Plant Pathology 48, 335–46.CrossRefGoogle Scholar
Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W., Murakami, Y., Philippsen, P., Tettelin, H. & Oliver, S. G. (1996). Life with 6000 genes. Science 274, 563–7.CrossRefGoogle ScholarPubMed
Gold, S. E., Garcia-Pedrajas, M. D. & Marinez-Espinoza, A. D. (2001). New and used approaches to the study of fungal pathogenicity. Annual Review of Phytopathology 39, 337–65.CrossRefGoogle Scholar
Gowda, M., Jantasuriyarat, C., Dean, R. A. & Wang, G. L. (2004). Robust-LongSAGE (RL-SAGE): a substantially improved LongSAGE method for gene discovery and transcriptome analysis. Plant Physiology 134, 890–7.CrossRefGoogle ScholarPubMed
Gustin, M. C., Albertyn, J., Alexander, M. & Davenport, K. (1998). MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews 62, 1264–300.Google ScholarPubMed
Hall, J. P., Cherkasova, V., Elion, E., Gustin, M. C. & Winter, E. (1996). The osmoregulatory pathway represses mating pathway activity in Saccharomyces cerevisiae: isolation of a FUS3 mutant that is insensitive to the repression mechanism. Molecular and Cellular Biology 16, 6715–23.CrossRefGoogle ScholarPubMed
Hamer, J. E., Howard, R. J., Chumley, F. G. & Valent, B. (1988). A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239, 288–90.CrossRefGoogle ScholarPubMed
Hammond-Kosack, K. E. & Parker, J. E. (2003). Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology 14, 177–93.CrossRefGoogle ScholarPubMed
Harrison, P. M. & Gerstein, M. (2002) Studying genomes through the aeons: protein families, pseudogenes and proteome evolution. Journal of Molecular Biology 318, 1155–74.CrossRefGoogle ScholarPubMed
Heath, M. C., Valent, B., Howard, R. J. & Chumley, F. G. (1990). Interactions of two strains of Magnaporthe grisea with rice, goosegrass and weeping lovegrass. Canadian Journal of Botany 68, 1627–37.CrossRefGoogle Scholar
Howard, R. J., Ferrari, M. A., Roach, D. H. & Money, N. P. (1991). Penetration of hard substrates by a fungus employing enormous turgor pressures. Proceedings of the National Acadamy of Sciences of the USA 88, 11,281–4.CrossRefGoogle ScholarPubMed
Irie, T., Matsumura, H., Terauchi, R. & Saitoh, H. (2003). Serial analysis of gene expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation. Molecular Genetics and Genomics 270, 181–9.CrossRefGoogle ScholarPubMed
Iyer, V. R., Horak, C. E., Scafe, C. S., Botstein, D., Snyder, M. & Brown, P. O. (2001). Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature, 409, 533–8.CrossRefGoogle ScholarPubMed
Kamakura, T., Xiao, J.-Z., Choi, W.-B., Kochi, T., Yamaguchi, S., Teraoka, T. & Yamaguchi, I. (1999). cDNA subtractive cloning of genes expressed during early stage of appressorium formation by Magnaporthe grisea. Bioscience Biotechnology and Biochemistry 63, 1407–13.CrossRefGoogle ScholarPubMed
Kershaw, M. J. & Talbot, N. J. (1998). Hydrophobins and repellents: Proteins with fundamental roles in fungal morphogenesis. Fungal Genetics and Biology 23, 18–33.CrossRefGoogle ScholarPubMed
Kershaw, M. J., Wakley, G. E. & Talbot, N. J. (1998). Complementation of the Mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. EMBO Journal 17, 3838–49.CrossRefGoogle ScholarPubMed
Kershaw, M. J., Thornton, C. R., Wakley, G. E. & Talbot, N. J. (2005). Four conserved intramolecular disulphide linkages are required for secretion and cell wall localisation of a hydrophobin during fungal morphogenesis. Molecular Microbiology 56, 117–25.CrossRefGoogle Scholar
Kihara, J., Sato, A., Okajima, S. & Kumagai, T. (2001). Molecular cloning, sequence analysis and expression of a novel gene induced by near-UV light in Bipolaris oryzae. Molecular Genetics and Genomics 266, 64–71.CrossRefGoogle ScholarPubMed
Kim, S., Ahn, I. P. & Lee, Y. H. (2001). Analysis of genes expressed during rice-Magnaporthe grisea interactions. Molecular Plant-Microbe Interactions 14, 1340–6.CrossRefGoogle ScholarPubMed
Kim, S. T., Yu, S., Kim, S. G., Kim, H. J., Kang, S. Y., Hwang, D. H., Jang, Y. S. & Kang, K. Y. (2004). Proteome analysis of rice blast fungus (Magnaporthe grisea) proteome during appressorium formation. Proteomics 4, 3579–87.CrossRefGoogle ScholarPubMed
Kulkarni, R. D. & Dean, R. A. (2004). Identification of proteins that interact with two regulators of appressorium development, adenylate cyclase and cAMP-dependent protein kinase A, in the rice blast fungus Magnaporthe grisea. Molecular Genetics and Genomics 270, 497–508.CrossRefGoogle ScholarPubMed
Lau, G. W. & Hamer, J. E. (1998). Acropetal: a genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus. Fungal Genetics and Biology 24, 228–39.CrossRefGoogle ScholarPubMed
Lee, K. S., Irie, K., Gotoh, Y., Watanabe, Y., Araki, H., Nishida, E., Matsumoto, K. & Levin, D. E. (1993). A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Molecular and Cellular Biology 13, 3067–75.CrossRefGoogle ScholarPubMed
Li, L., Xue, C. Y., Bruno, K., Nishimura, M. & Xu, J. R. (2004). Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea. Molecular Plant-Microbe Interactions 17, 547–56.CrossRefGoogle ScholarPubMed
Liu, S. & Dean, R. A. (1997). G protein α subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Molecular Plant-Microbe Interactions 10, 1075–86.CrossRefGoogle ScholarPubMed
Lu, J.-P., Liu, T.-B. & Lin, F.-C. (2005). Identification of mature appressorium-enriched transcripts in Magnaporthe grisea, the rice blast fungus, using suppression subtractive hybridisation. FEMS Microbiology Letters 245, 131–7.CrossRefGoogle Scholar
Lugones, L. G., Bosscher, J. S., Scholtmeyer, K., Vries, O. M. H. & Wessels, J. G. H. (1996). An abundant hydrophobin (ABH1) forms hydrophobic rodlet layers in Agaricus bisporus fruiting bodies. Microbiology 142, 1321–9.CrossRefGoogle ScholarPubMed
McNally, M. T. & Free, S. J. (1988). Isolation and characterization of a Neurospora glucose repressible gene. Current Genetics 14, 545–51.CrossRefGoogle ScholarPubMed
Madden, K., Sheu, Y. J., Baetz, K., Andrews, B. & Snyder, M. (1997). SBF cell cycle regulator as a target of the yeast PKC-MAP kinase pathway. Science 275, 1781–4.CrossRefGoogle ScholarPubMed
Matsumura, H., Reich, S., Ito, A., Saitoh, H., Kamoun, S., Winter, P., Kahl, G., Reuter, M., Kruger, D. H. & Terauchi, R. (2003). Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proceedings of the National Academy of Sciences of the USA 100, 15,718–23.CrossRefGoogle ScholarPubMed
Matsumura, H., Ito, A., Saitoh, H., Winter, P., Kahl, G., Reuter, M., Kruger, D. H. & Terauchi, R. (2005). SuperSAGE. Cellular Microbiology 7, 11–18.CrossRefGoogle ScholarPubMed
Mendgen, K. & Hahn, M. (2002). Plant infection and the establishment of fungal biotrophy. Trends in Plant Sciences 7, 352–6.CrossRefGoogle ScholarPubMed
Mitchell, T. K. & Dean, R. A. (1995). The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast fungus Magnaporthe grisea. Plant Cell 7, 1869–78.CrossRefGoogle Scholar
Nasmyth, K. & Dirick, L. (1991). The role of Swi4 and Swi6 in the activity of G1 cyclins in yeast. Cell 66, 995–1013.CrossRefGoogle Scholar
Nevoigt, E. & Stahl, U. (1997). Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews 21, 231–41.CrossRefGoogle ScholarPubMed
Ohno, S. (1970). Evolution by Gene Duplication. New York: Springer.CrossRefGoogle Scholar
Oliver, R. P. & Ipcho, S. V. S. (2004). Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens. Molecular Plant Pathology 4, 347–52.CrossRefGoogle Scholar
O'Rourke, S. M. & Herskowitz, I. (1998). The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes and Development 12, 2874–86.CrossRefGoogle ScholarPubMed
O'Rourke, S. M., Herskowitz, I. & O'Shea, E. K., (2002). Yeast go the whole HOG for the hyperosmotic response. Trends in Genetics 18, 405–12.CrossRefGoogle ScholarPubMed
Ou, S. H. (1985). Rice Diseases. Kew, UK: Commonwealth Mycological Institute, Commonwealth Agricultural Bureau.Google Scholar
Park, S., Zarrinpar, A. & Lim, A. W. (2003). Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science 299, 1061–4.CrossRefGoogle ScholarPubMed
Rathour, R., Singh, B. M., Sharma, T. R. & Chauhan, R. S. (2004). Population structure of Magnaporthe grisea from North-western Himalayas and its implications for blast resistance breeding of rice. Journal of Phytopathology 152, 304–12.CrossRefGoogle Scholar
Rauyaree, P., Choi, W., Fang, E., Blackmon, B. & Dean, R. A. (2001). Genes expressed during early stages of rice infection with the rice blast fungus Magnaporthe grisea. Molecular Plant Pathology 2, 347–54.CrossRefGoogle ScholarPubMed
Reuber, T. L., Plotnikova, J. M., Dewdney, J., Rogers, E. E., Wood, W. & Ausubel, F. M. (1998). Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants. Plant Journal 16, 473–85.CrossRefGoogle ScholarPubMed
Rosewich, U. L. & Kistler, H. C. (2000). Role of horizontal gene transfer in the evolution of fungi. Annual Review of Phytopathology 38, 325–63.CrossRefGoogle ScholarPubMed
Rossman, A. Y., Howard, R. J. & Valent, B. (1990). Pyricularia grisea, the correct name for the rice blast fungus. Mycologia 82, 509–12.CrossRefGoogle Scholar
Schaad, N. W., Frederick, R. D., Shaw, J., Schneider, W. L., Hickson, R., Petrillo, M. D. & Luster, D. G. (2003). Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annual Review of Phytopathology 41, 305–24.CrossRefGoogle ScholarPubMed
Schenk, P. M., Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somervilee, S. C. & Manners, J. M. (2000). Coordinated plant defence responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences of the USA 97, 11,655–60.CrossRefGoogle Scholar
Sesma, A. & Osbourn, A. (2004). The leaf rice blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431, 582–6.CrossRefGoogle ScholarPubMed
Skinner, W., Keon, J. & Hargreaves, J. (2001). Gene information for fungal plant pathogens from expressed sequences. Current Opinion in Microbiology 4, 381–6.CrossRefGoogle ScholarPubMed
Soanes, D. M., Kershaw, M. J., Cooley, R. N. & Talbot, N. J. (2002a). Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions 12, 1253–67.CrossRefGoogle Scholar
Soanes, D. M., Skinner, W., Keon, J., Hargreaves, J. & Talbot, N. J. (2002b). Genomics of phytopathogenic fungi and the development of bioinformatic resources. Molecular Plant-Microbe Interactions 15, 421–7.CrossRefGoogle Scholar
Stringer, M. A., Dean, R. A., Sewell, T. C. & Timberlake, W. E. (1991). Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes Development 5, 1161–71.CrossRefGoogle ScholarPubMed
Sweigard, J. A., Chumley, F. G. & Valent, B. (1992). Disruption of a Magnaporthe grisea cutinase gene. Molecular and General Genetics 232, 183–90.Google ScholarPubMed
Talbot, N. J. (1995). Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends in Microbiology 3, 9–16.CrossRefGoogle ScholarPubMed
Talbot, N. J. (1997). Fungal biology: growing into the air. Current Biology 7, R78–R82.CrossRefGoogle Scholar
Talbot, N. J. (2003). On the trail of a cereal killer: Exploring the pathology of Magnaporthe grisea. Annual Review of Microbiology 57, 177–202.CrossRefGoogle Scholar
Talbot, N. J., Ebbole, D. J. & Hamer, J. E. (1993). Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5, 1575–90.CrossRefGoogle ScholarPubMed
Talbot, N. J., Kershaw, M. J., Wakley, G. E., Vries, O., Wessels, J. G. H. & Hamer, J. E. (1996). MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 6, 985–99.CrossRefGoogle Scholar
Thines, E., Weber, R. W. S. & Talbot, N. J. (2000). MAP Kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12, 1703–18.Google ScholarPubMed
Thinlay, X., Finckh, M. R., Bordeos, A. C. & Ziegler, R. S. (2000). Effects and possible causes of an unprecedented rice blast epidemic on the traditional farming system of Bhutan. Agriculture, Ecosystems and Environment 78, 237–48.CrossRefGoogle Scholar
Thomma, B. P. H. J., Pennickx, I. A. M. A., Broekaert, W. F. & Cammue, B. P. A. (2001). The complexity of disease signaling in Arabidopsis. Current Opinion in Immunology 13, 63–8.CrossRefGoogle ScholarPubMed
Tunlid, A. & Talbot, N. J. (2002). Genomics of parasitic and symbiotic fungi. Current Opinion in Microbiology 5, 513–19.CrossRefGoogle ScholarPubMed
Brink, H. M., Gorcom, R. F., Hondel, C. A. & Punt, P. J. (1998). Cytochrome P450 enzyme systems in fungi. Fungal Genetics and Biology 23, 1–17.CrossRefGoogle ScholarPubMed
Valent, B. & Chumley, F. G. (1991). Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annual Review of Phytopathology 29, 443–67.CrossRefGoogle ScholarPubMed
Velculescu, V. E., Zhang, L., Vogelstein, B. & Kinzler, K. W. (1995). Serial analysis of gene expression. Science 270, 484–7.CrossRefGoogle ScholarPubMed
Veneault-Fourrey, C. & Talbot, N. J. (2005). Moving toward a systems biology approach to the study of fungal pathogenesis in the rice blast fungus Magnaporthe grisea. Advances in Applied Microbiology 57, 177–215.CrossRefGoogle Scholar
Voegele, R. T. & Mendgen, K. (2003). Rust haustoria: nutrient uptake and beyond. New Phytologist 159, 93–100.CrossRefGoogle Scholar
Wessels, J. G. H. (1994). Developmental regulation of fungal cell wall formation. Annual Review of Phytopathology 32, 413–37.CrossRefGoogle Scholar
Wessels, J. G. H. (1997). Hydrophobins: proteins that change the nature of the fungal surface. Advances in Microbial Physiology 38, 1–45.Google ScholarPubMed
Wood, V., Gwilliam, R., Rajandream, M. A., Lyne, M., Lyne, R., Stewart, A., Sgouros, J., Peat, N., Hayles, J., Baker, S., Basham, D., Bowman, S., Brooks, K., Brown, D., Brown, S., Chillingworth, T., Churcher, C., Collins, M., Connor, R., Cronin, A., Davis, P., Feltwell, T., Fraser, A., Gentles, S., Goble, A., Hamlin, N., Harris, D., Hidalgo, J., Hodgson, G., Holroyd, S., Hornsby, T., Howarth, S., Huckle, E. J., Hunt, S., Jagels, K., James, K., Jones, L., Jones, M., Leather, S., McDonald, S., McLean, J., Mooney, P., Moule, S., Mungall, K., Murphy, L., Niblett, D., Odell, C., Oliver, K., O'Neil, S., Pearson, D., Quail, M. A., Rabbinowitsch, E., Rutherford, K., Rutter, S., Saunders, D., Seeger, K., Sharp, S., Skelton, J., Simmonds, M., Squares, R., Squares, S., Stevens, K., Taylor, K., Taylor, R. G., Tivey, A., Walsh, S., Warren, T., Whitehead, S., Woodward, J., Volckaert, G., Aert, R., Robben, J., Grymonprez, B., Weltjens, I., Vanstreels, E., Rieger, M., Schafer, M., Muller-Auer, S., Gabel, C., Fuchs, M., Fritzc, C., Holzer, E., Moestl, D., Hilbert, H., Borzym, K., Langer, I., Beck, A., Lehrach, H., Reinhardt, R., Pohl, T. M., Eger, P., Zimmermann, W., Wedler, H., Wambutt, R., Purnelle, B., Goffeau, A., Cadieu, E., Dreano, S., Gloux, S., Lelaure, V., Mottier, S., Galibert, F., Aves, S. J., Xiang, Z., Hunt, C., Moore, K., Hurst, S. M., Lucas, M., Rochet, M., Gaillardin, C., Tallada, V. A., Garzon, A., Thode, G., Daga, R. R., Cruzado, L., Jimenez, J., Sanchez, M., del Rey, F., Benito, J., Dominguez, A., Revuelta, J. L., Moreno, S., Armstrong, J., Forsburg, S. L., Cerrutti, L., Lowe, T., McCombie, W. R., Paulsen, I., Potashkin, J., Shpakovski, G. V., Ussery, D., Barrell, B. G. & Nurse, P. (2002). The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–80.CrossRefGoogle ScholarPubMed
Wösten, H. A. (2001). Hydrophobins: multipurpose proteins. Annual Review of Microbiology 55, 625–46.CrossRefGoogle ScholarPubMed
Wösten, H. A. B., Vries, O. M. H. & Wessels, J. G. H. (1993). Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rodlet layer. Plant Cell 5, 1567–74.CrossRefGoogle ScholarPubMed
Wösten, H. A. B., Schuren, F. H. J. & Wessels, J. G. H. (1994). Interfacial self-assembly of a hydrophobin into an amphipathic membrane mediates fungal attachment to hydrophobic surfaces. EMBO Journal 13, 5,848–54.Google ScholarPubMed
Xu, J. (2000). MAP kinases in fungal pathogens. Fungal Genetics and Biology 31, 137–52.CrossRefGoogle ScholarPubMed
Xu, J. R. & Hamer, J. E. (1996). MAPK and Cyclic AMP signalling regulate infection structure formation and pathogenic growth in the rice blast fungus, Magnaporthe grisea. Genes and Development 10, 2696–706.CrossRefGoogle Scholar
Xu, J., Staiger, C. J. & Hamer, J. E. (1998). Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defence responses. Proceedings of the National Academy of Sciences of the USA 95, 12,713–18.CrossRefGoogle Scholar
Xue, C., Park, G., Choi, W., Zheng, L., Dean, R. A. & Xu, J.-R. (2002). Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. Plant Cell 14, 2107–19.CrossRefGoogle ScholarPubMed
Zarzov, P., Mazzoni, C. & Mann, C. (1996). The SLT2(MPK1) MAP kinase is activated during periods of polarized cell growth in yeast. EMBO Journal 15, 83–91.Google Scholar
Zeigler, R. S. (1998). Recombination in Magnaporthe grisea. Annual Review of Phytopathology 36, 249–75.CrossRefGoogle ScholarPubMed
Zhao, X., Kim, Y., Park, G. & Xu, J.-R. (2005). A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell 17, 1317–29.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×