Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Degradation of plant cell wall polymers
- 2 The biochemistry of ligninolytic fungi
- 3 Bioremediation potential of white rot fungi
- 4 Fungal remediation of soils contaminated with persistent organic pollutants
- 5 Formulation of fungi for in situ bioremediation
- 6 Fungal biodegradation of chlorinated monoaromatics and BTEX compounds
- 7 Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi
- 8 Pesticide degradation
- 9 Degradation of energetic compounds by fungi
- 10 Use of wood-rotting fungi for the decolorization of dyes and industrial effluents
- 11 The roles of fungi in agricultural waste conversion
- 12 Cyanide biodegradation by fungi
- 13 Metal transformations
- 14 Heterotrophic leaching
- 15 Fungal metal biosorption
- 16 The potential for utilizing mycorrhizal associations in soil bioremediation
- 17 Mycorrhizas and hydrocarbons
- Index
6 - Fungal biodegradation of chlorinated monoaromatics and BTEX compounds
Published online by Cambridge University Press: 08 October 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Degradation of plant cell wall polymers
- 2 The biochemistry of ligninolytic fungi
- 3 Bioremediation potential of white rot fungi
- 4 Fungal remediation of soils contaminated with persistent organic pollutants
- 5 Formulation of fungi for in situ bioremediation
- 6 Fungal biodegradation of chlorinated monoaromatics and BTEX compounds
- 7 Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi
- 8 Pesticide degradation
- 9 Degradation of energetic compounds by fungi
- 10 Use of wood-rotting fungi for the decolorization of dyes and industrial effluents
- 11 The roles of fungi in agricultural waste conversion
- 12 Cyanide biodegradation by fungi
- 13 Metal transformations
- 14 Heterotrophic leaching
- 15 Fungal metal biosorption
- 16 The potential for utilizing mycorrhizal associations in soil bioremediation
- 17 Mycorrhizas and hydrocarbons
- Index
Summary
Introduction
Fungal degradation of monoaromatic compounds has clear implications for bioremediation, and the role of fungi in the removal of these contaminants from the environment has been the subject of extensive study. An understanding of the mechanisms involved in the degradation of benzenoid compounds and elucidation of the catabolic pathways is also important for predicting the recalcitrance of new products in the environment. Furthermore, enzymes catalysing key steps in a catabolic pathway could be used in the design and operation of biosensors for detecting environmental pollutants.
In view of the manifold types of monoaromatic compounds that enter the environment from various sources, this chapter has been confined to coverage of chlorinated monoaromatics and the BTEX group of compounds (benzene, toluene, ethylbenzene and m-, o and p-xylenes). Moreover, since there are already many excellent reviews available, emphasis has been given to the results of research conducted since the early 1990s. The contents cover the sources and distribution of BTEX and chlorinated monoaromatic environmental contaminants, fungal transformation studies including degradation pathways and associated enzymology, and various fungal-based bioremediation strategies employed for contaminant removal.
Sources and distribution of chlorinated monoaromatic and BTEX contaminants in the environment
Monomeric aromatic compounds are widely distributed in the environment as a result of natural synthetic and degradative processes.
- Type
- Chapter
- Information
- Fungi in Bioremediation , pp. 113 - 135Publisher: Cambridge University PressPrint publication year: 2001
- 8
- Cited by