Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T10:39:02.828Z Has data issue: false hasContentIssue false

15 - Lichen biogeochemistry

Published online by Cambridge University Press:  10 December 2009

Johnson R. Haas
Affiliation:
Western Michigan University, Kalamazoo, USA
O. William Purvis
Affiliation:
The Natural History Museum, Cromwell Road, London, UK
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

This volume focuses primarily on the influence of free-living fungi in biogeochemistry. Lichens, fungi that exist in facultative or obligate symbiosis with one or more photosynthesizing partners, also play an important role in many biogeochemical processes. Pioneer colonizers of fresh rock outcrops, lichens were possibly one of the first life forms to occupy Earth's land surfaces. The unique lichen symbiosis formed between the fungal partner (mycobiont) and the photosynthesizing partner, an alga or cyanobacterium (photobiont), enables lichens to grow in all surface terrestrial environments. These include extreme environments where no other multicellular vegetation can survive, such as the dry Antarctic valleys (Nash, 1996). An estimated 6% of the Earth's land surface is covered by lichen-dominated vegetation.

Globally, lichens play an important biogeochemical role in the retention and distribution of nutrient (e.g. C, N) and trace elements (e.g. Knops et al., 1991; Garty et al., 1995), in soil formation processes (Ascaso et al., 1976; Jones, 1988) and in rock weathering (Hallbauer & Jahns, 1977; Wilson et al., 1981; Wessels & Schoeman, 1988; McCarroll & Viles, 1995; Barker et al., 1997; Lee & Parsons, 1999). Lichens tend to accumulate trace elements such as lead, copper and other heavy metals of environmental concern (see below), including radionuclides (Yliruokanen, 1975; Nieboer & Richardson, 1981; Beckett et al., 1982; Boileau et al., 1982, 1985a, b; Richardson et al., 1985; Fahselt et al., 1995; Haas et al., 1998; McLean et al., 1998; Jacquiot & Daillant, 1999; Purvis et al., 2004).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamo, P. & Violante, P. (2000). Weathering of rocks and neogenesis of minerals associated with lichen activity. Applied Clay Science, 16, 229–56.CrossRefGoogle Scholar
Adamo, P., Colombo, C. & Violante, P. (1997). Iron oxides and hydroxides in the weathering interface between Stereocaulon vesuvianum and volcanic rock. Clay Minerals, 32, 453–61.CrossRefGoogle Scholar
Andres, Y., MacCordick, J. J. & Hubert, J. C. (1993). Adsorption of several actinide (Th, U) and lanthanide (La, Eu, Yb) ions by Mycobacterium smegmatis. Applied Microbiology and Biotechnology, 39, 413–17.CrossRefGoogle Scholar
Antonelli, M. L., Ercole, P. & Campanella, L. (1998). Studies about the adsorption on lichen Evernia prunastri by enthalpimetric measurements. Talanta, 45, 1039–47.CrossRefGoogle ScholarPubMed
Ascaso, C. & Wierzchos, J. (1995). Study of the biodeterioration zone between the lichen thallus and the substrate. Cryptogamic Botany, 5, 270–81.Google Scholar
Ascaso, C., Galvan, J. & Ortega, C. (1976). The pedogenic action of Parmelia conspersa, Rhizocarpon geographicum and Umbilicaria pustulata. Lichenologist, 8, 151–71.CrossRefGoogle Scholar
Asta, J., Orry, F., Toutain, F., Souchier, B. & Villemin, G. (2001). Micromorphological and ultrastructural investigations of the lichen-soil interface. Soil Biology and Biochemistry, 33, 323–37.CrossRefGoogle Scholar
Bargagli, R. & Mikhailova, I. (2002). Accumulation of inorganic contaminants. In Monitoring with Lichens-Monitoring Lichens Vol. 7, ed. Nimis, P. L., Scheidegger, C. & Wolseley, P. A.. Dordrecht: Kluwer Academic Publishers, pp. 65–84.CrossRefGoogle Scholar
Barker, W. W. & Banfield, J. F. (1996). Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiontic communities. Chemical Geology, 132, 55–69.CrossRefGoogle Scholar
Barker, W. W., Welch, S. A. & Banfield, J. F. (1997). Biogeochemical weathering of silicate minerals. In Geomicrobiology: Interactions between Microbes and Minerals, Reviews in Mineralogy, Vol. 35, ed. Banfield, J. F. & Nealson, K. H.. Chelsea, Michigan: Mineralogical Society of America, pp. 391–428.Google Scholar
Beckett, P. J., Boileau, L. J. R., Padovan, D. & Richardson, D. H. S. (1982). Lichens and mosses as monitors of industrial activity associated with uranium mining in northern Ontario, Canada – Part 2: Distance dependent uranium and lead accumulation patterns. Environmental Pollution (Series B), 4, 91–107.CrossRefGoogle Scholar
Bengtsson, L., Johansson, B., Hackett, T. J., McHale, L. & McHale, A. P. (1995). Studies on the biosorption of uranium by Talaromyces emersonii CBS 814.70 biomass. Applications in Microbiology and Biotechnology, 42, 807–11.CrossRefGoogle ScholarPubMed
Bennett, P. C., Melcer, M. E., Siegel, D. I. & Hassett, J. P. (1988). The dissolution of quartz in dilute aqueous solutions of organic acids at 25 °C. Geochimica et Cosmochimica Acta, 52, 1521–30.CrossRefGoogle Scholar
Berner, R. A. & Cochran, M. F. (1998). Plant-induced weathering of Hawaiian basalts. Journal of Sedimentary Research, 68, 723–6.CrossRefGoogle Scholar
Boileau, L. J. R., Beckett, P. J., Lavoie, P. & Richardson, D. H. S. (1982). Lichens and mosses as monitors of industrial activity associated with uranium mining in northern Ontario, Canada – Part 1: Field procedures, chemical analysis and interspecies comparisons. Environmental Pollution (Series B), 4, 69–84.CrossRefGoogle Scholar
Boileau, L. J. R., Nieboer, E. & Richardson, D. H. S. (1985a). Uranium accumulation in the lichen Cladonia rangiferina (L.) Wigg. Part I. Uptake of cationic, neutral, and anionic forms of the uranyl ion. Canadian Journal of Botany, 63, 384–9.CrossRefGoogle Scholar
Boileau, L. J. R., Nieboer, E. & Richardson, D. H. S. (1985b). Uranium accumulation in the lichen Cladonia rangiferina (L.) Wigg. Part II. Toxic effects of cationic, neutral and anionic forms of the uranyl ion. Canadian Journal of Botany, 63, 390–7.CrossRefGoogle Scholar
Brady, D., Stoll, A. & Duncan, J. R. (1994). Biosorption of heavy metal cations by non-viable yeast biomass. Environmental Technology, 15, 429–38.CrossRefGoogle Scholar
Branquinho, C. (2001). Lichens. In Metals in the Environment: Analysis by Biodiversity, ed. Prasad, M. N. V.. New York: Marcel Dekker, pp. 117–57.Google Scholar
Brightman, F. H. & Seaward, M. R. D. (1977). Lichens of man-made substrates. In Lichen Ecology, ed. Seaward, M. R. D.. London: Academic Press, pp. 253–93.Google Scholar
Brown, D. H. (1991). Lichen mineral studies – Currently clarified or confused?Symbiosis, 11, 207–23.Google Scholar
Brown, G. E., Jr, Parks, G. A. & O'Day, P. A. (1995). Sorption at mineral-water interfaces: macroscopic and microscopic perspectives. In Mineral Surfaces, The Mineralogical Society Series, Vol. 5, ed. Vaughan, D. J. & Pattrick, R. A. D.. Cambridge, UK: Chapman & Hall, pp. 129–84.Google Scholar
Casey, W. H. & Ludwig, C. (1995). Silicate mineral dissolution as a ligand-exchange reaction. In Chemical Weathering Rates of Silicate Minerals, Reviews in Mineralogy, Vol. 31, ed. White, A. E. & Brantley, S. L.. Chelsea, Michigan: Mineralogical Society of America, pp. 87–118.Google Scholar
Chen, J., Blume, H. P. & Beyer, L. (2000). Weathering of rocks induced by lichen colonization – a review. Catena, 39, 121–46.CrossRefGoogle Scholar
Chisholm, J. E., Jones, G. C. & Purvis, O. W. (1987). Hydrated copper oxalate, moolooite, in lichens. Mineralogical Magazine, 51, 715–18.CrossRefGoogle Scholar
Cicek, A. & Koparal, A. S. (2003). The assessment of air quality and identification of pollutant sources in the Eskisehir region Turkey using Xanthoria parietina (L.) Th.Fr. (1860). Fresenius Environmental Bulletin, 12, 24–8.Google Scholar
Cox, J. S., Smith, D. S., Warren, L. A. & Ferris, F. G. (1999). Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding. Environmental Science and Technology, 33, 4514–21.CrossRefGoogle Scholar
Czehura, S. J. (1977). A lichen indicator of copper mineralization, Lights Creek District, Plumas County, California. Economic Geology, 72, 796–803.CrossRefGoogle Scholar
Daughney, C. J., Fein, J. B. & Yee, N. (1998). A comparison of the thermodynamics of metal adsorption onto two common bacteria. Chemical Geology, 144, 161–76.CrossRefGoogle Scholar
Davis, J. A. & Kent, D. B. (1990). Surface complexation modelling in aqueous geochemistry. In Mineral-Water Interface Geochemistry, Reviews in Mineralogy, Vol. 23, ed. Hochella, J. M. F. & White, A. F.. Chelsea, Michigan: Mineralogical Society of America, pp. 177–260.Google Scholar
Dawson, H. J., Hrutfiord, B. F. & Ugolini, F. C. (1984). Mobility of lichen compounds from Cladonia mitis in arctic soils. Soil Science, 138, 40–5.CrossRefGoogle Scholar
Dzombak, D. A. & Morel, F. M. M. (1990). Surface Complexation Modelling: Hydrous Ferric Oxide. Place: Wiley Interscience.Google Scholar
Easton, E. M. (1994). Lichens and rocks – a review. Geoscience Canada, 21, 59–76.Google Scholar
Edwards, H. G. H., Farwell, D. W. & Lewis, I. R. (1993). FT Raman microscopy and lichen biodeterioration. Bruker Report, 139, 8–11.Google Scholar
Fahselt, D., Wu, T. W. & Mott, B. (1995). Trace element patterns in lichens following uranium mine closures. The Bryologist, 98, 228–34.CrossRefGoogle Scholar
Fein, J. B. (2000). Quantifying the effects of bacteria on adsorption reactions in water-rock systems. Chemical Geology, 169, 265–80.CrossRefGoogle Scholar
Fein, J. B., Daughney, C. J., Yee, N. & Davis, T. A. (1997). A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochimica et Cosmochimica Acta, 61, 3319–28.CrossRefGoogle Scholar
Fein, J. B., Boily, J. F., Guclu, K. & Kaulbach, E. (1999). Experimental study of humic acid adsorption onto bacteria and Al-oxide mineral surfaces. Chemical Geology, 162, 33–45.CrossRefGoogle Scholar
Fortin, D., Ferris, F. G. & Beveridge, T. J. (1997). Surface-mediated mineral development by bacteria. In Geomicrobiology: Interactions between Microbes and Minerals, Reviews in Mineralogy, Vol. 35, ed. Banfield, J. F. & Nealson, K. H.. Chelsea, Michigan: Mineralogical Society of America, pp. 161–80.Google Scholar
Fowle, D. A. & Fein, J. B. (1999). Competitive adsorption of metals onto bacterial surfaces. Geochimica et Cosmochimica Acta, 63, 3059–67.CrossRefGoogle Scholar
Fowle, D. A. & Fein, J. B. (2000). Experimental measurements of the reversibility of metal-bacteria adsorption reactions. Chemical Geology, 168, 27–36.CrossRefGoogle Scholar
Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytologist, 124, 25–60.CrossRefGoogle Scholar
Galun, M., Keller, P., Malki, D.et al. (1983). Removal of uranium (VI) from solution by fungal biomass and fungal wall-related biopolymers. Science, 219, 285–6.CrossRefGoogle ScholarPubMed
Galun, M., Galun, E., Siegel, B. Z.et al. (1987). Removal of metal ions from aqueous solutions by Penicillium biomass: kinetic and uptake parameters. Water, Air, and Soil Pollution, 33, 359–71.CrossRefGoogle Scholar
Garty, J. (2001). Biomonitoring atmospheric heavy metals with lichens: theory and application. Critical Reviews in Plant Sciences, 20, 309–71.CrossRefGoogle Scholar
Garty, J. & Delarea, J. (1991). Localization of iron and other elements in the lichen Nephroma arcticum (L.) Torss. Environmental and Experimental Botany, 31, 367–75.CrossRefGoogle Scholar
Garty, J. & Galun, M. (1979). Localization of heavy metals and other elements accumulated in the lichen thallus. New Phytologist, 82, 159–68.CrossRefGoogle Scholar
Garty, J. & Theiss, H. B. (1990). The localization of lead in the lichen Ramalina duriaei (De Not.)Bagl. Botanica Acta, 103, 311–14.CrossRefGoogle Scholar
Garty, J., Harel, Y. & Steinberger, Y. (1995). The role of lichens in the cycling of metals in the Negev desert. Archives of Environmental Contamination and Toxicology, 29, 247–53.CrossRefGoogle Scholar
Gilbert, O. L. (1990). The lichen flora of urban wasteland. Lichenologist, 22, 87–101.CrossRefGoogle Scholar
Goyal, R. & Seaward, M. R. D. (1981). Metal uptake in terricolous lichens I. Metal localization within the thallus. New Phytologist, 89, 631–45.CrossRefGoogle Scholar
Goyal, R. & Seaward, M. R. D. (1982). Metal uptake in terricolous lichens III. Translocation in the thallus of Peltigera canina. New Phytologist, 90, 85–90.CrossRefGoogle Scholar
Grandstaff, D. E. (1986). The dissolution rate of forsteritic olivine from Hawaiian beach sand. In Rates of Chemical Weathering of Rocks and Minerals, ed. Colman, S. M. & Dethier, D. P.. Orlando, Florida: Academic Press, pp. 41–59.Google Scholar
Guibal, E., Milot, C. & Tobin, J. M. (1998). Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Industrial Engineering and Chemical Research, 37, 1454–63.CrossRefGoogle Scholar
Haas, J. R., Shock, E. L. & Sassani, D. C. (1995). Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochimica et Cosmochimica Acta, 59, 4329–50.CrossRefGoogle Scholar
Haas, J. R., Bailey, E. H. & Purvis, O. W. (1998). Bioaccumulation of metals by lichens: Uptake of aqueous uranium by Peltigera membranacea as a function of time and pH. American Mineralogist, 83, 1494–502.CrossRefGoogle Scholar
Haas, J. R., DiChristina, T. J. & Wade, R. Jr. (2001). Thermodynamics of U(VI) sorption onto Shewanella putrefaciens. Chemical Geology, 180, 33–54.CrossRefGoogle Scholar
Hallbauer, D. K. & Jahns, H. M. (1977). Attack of lichens on quartzitic rock surfaces. Lichenologist, 9, 119–22.CrossRefGoogle Scholar
Helgeson, H. C. (1985). Some thermodynamic aspects of geochemistry. Pure and Applied Chemistry, 57, 31–44.CrossRefGoogle Scholar
Hickmott, M. (1980). Lichens on lead. Lichenologist, 12, 404–6.CrossRefGoogle Scholar
Honegger, R. (1997). Metabolic interactions at the mycobiont-photobiont interface in lichens. In The Mycota, Vol. 5A, Plant Relationships. Part A. ed. Carroll, G. C. & Tudzynski, P.. New York: Springer-Verlag, pp. 209–21.Google Scholar
Iskandar, I. K. & Syers, J. K. (1972). Metal-complex formation by lichen compounds. Journal of Soil Science, 23, 255–65.CrossRefGoogle Scholar
Jacquiot, L. & Daillant, O. (1997). Bio-accumulation des métaux lourds et d'autres eléments traces par les lichens. Revue bibliographique. Bulletin de l'Observatoire Mycologique, 12, 2–31.Google Scholar
Jacquiot, L. & Daillant, O. (1999). Bio-accumulation des radioéléments par les lichens. Revue bibliographique. Bulletin de l'Observatoire Mycologique, 16, 2–23.Google Scholar
Johnston, C. G. & Vestal, J. R. (1993). Biogeochemistry of oxalate in the Antarctic cryptoendolithic lichen-dominated community. Microbial Ecology, 25, 305–19.CrossRefGoogle ScholarPubMed
Jones, D. (1988). Lichens and pedogenesis. In CRC Handbook of Lichenology, vol. III, ed. Galun, M.: Boca Raton: CRC Press, pp. 109–24.Google Scholar
Jones, D., Wilson, M. J. & Laundon, J. R. (1982). Observations on the location and form of lead in Stereocaulon vesuvianum. Lichenologist, 14, 281–6.CrossRefGoogle Scholar
Kasama, T., Murakami, T., Ohnuki, T. & Purvis, O. W. (2001). Effects of lichens on uranium migration. In Scientific Basis for Nuclear Waste Management XXIV, ed. Hart, K. P. & Lumpkin, G. R.. Pittsburgh, PA: Materials Research Society, pp. 683–90.Google Scholar
Kelly, S. D., Boyanov, M. I., Bunker, B. A.et al. (2001). XAFS determination of the bacterial cell wall functional groups responsible for complexation of Cd and U as a function of pH. Journal of Synchrotron Radiation, 8, 946–8.CrossRefGoogle Scholar
Knops, J. M. H., III, Nash, T. H. N., Boucher, V. L. & Schlesinger, W. H. (1991). Mineral cycling and epiphytic lichens: implications at the ecosystem level. Lichenologist, 23, 309–21.CrossRefGoogle Scholar
Koretsky, C. (2000). The significance of surface complexation reactions in hydrologic systems: a geochemist's perspective. Journal of Hydrology, 230, 127–71.CrossRefGoogle Scholar
Lee, M. R. & Parsons, I. (1999). Biomechanical and biochemical weathering of lichen-encrusted granite: textural controls on organic-mineral interactions and deposition of silica-rich layers. Chemical Geology, 161, 385–97.CrossRefGoogle Scholar
Loppi, S. & Corsini, A. (2003). Diversity of epiphytic lichens and metal contents of Parmelia caperata thalli as monitors of air pollution in the town of Pistoia, Italy. Environmental Monitoring and Assessment, 86, 289–301.CrossRefGoogle ScholarPubMed
Loppi, S. & Pirintsos, S. A. (2003). Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy). Environmental Pollution, 121, 327–32.CrossRefGoogle Scholar
Loppi, S., Frati, L., Paoli, L.et al. (2004). Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy). Science of the Total Environment, 326, 113–22.CrossRefGoogle Scholar
Ludwig, C., Casey, W. H. & Rock, P. A. (1995). Prediction of ligand-promoted dissolution rates from the reactivities of aqueous complexes. Nature, 375, 44–7.CrossRefGoogle Scholar
McCarroll, D. & Viles, H. (1995). Rock-weathering by the lichen Lecidea auriculata in an Arctic alpine environment. Earth Surface Processes and Landforms, 20, 199–206.CrossRefGoogle Scholar
McLean, J., Purvis, O. W., Williamson, B. J. & Bailey, E. H. (1998). Role for lichen melanins in uranium remediation. Nature, 391, 649–50.CrossRefGoogle Scholar
Modenesi, P., Piana, M. & Pinna, D. (1998). Surface features in Parmelia sulcata (Lichenes) thalli growing in shaded or exposed habitats. Nova Hedwigia, 66, 535–47.Google Scholar
Muraleedharan, T. R. & Venkobachar, L. I. (1994). Further insight into the mechanism of biosorption of heavy metals by Ganoderma lucidum. Environmental Technology, 15, 1015–27.CrossRefGoogle Scholar
Nash, T. H. (1996). Nutrients, elemental accumulation and mineral cycling. In Lichen Biology, ed. Nash, T. H.. Cambridge, UK: Cambridge University Press, pp. 136–53.Google Scholar
Nash, T. H., Gries, C., Zschau, T.et al. (2003). Historical patterns of metal atmospheric deposition to the epilithic lichen Xanthoparmelia in Maricopa County, Arizona, USA. Journal de Physique IV, 107, 921–4.CrossRefGoogle Scholar
Nieboer, E. & Richardson, D. H. S. (1981). Lichens as monitors of atmospheric deposition. In Atmospheric Pollutants in Natural Waters, ed. Eisenreich, S. J.. Ann Arbor: Ann Arbor Science, pp. 339–88.Google Scholar
Nieboer, E., Richardson, D. H. S. & Tomassini, F. D. (1978). Mineral uptake and release by lichens: an overview. The Bryologist, 81, 226–46.CrossRefGoogle Scholar
Nimis, P. L. & Purvis, O. W. (2002). Monitoring lichens as indicators of pollution. An introduction. In Monitoring with Lichens – Monitoring Lichens, ed. Nimis, P. L., Scheidegger, C. & Wolseley, P. A.. Dordrecht: Kluwer Academic Publishers, pp. 1–4.
Olafsdottir, E. S. & Ingolfsdottir, K. (2001). Polysaccharides from lichens: structural characteristics and biological activity. Planta Medica, 67, 199–208.CrossRefGoogle ScholarPubMed
Paul, A., Hauck, M. & Fritz, E. (2003). Effects of manganese on element distribution and structure in thalli of the epiphytic lichens Hypogymnia physodes and Lecanora conizaeoides. Environmental and Experimental Botany, 50, 113–24.CrossRefGoogle Scholar
Pawlik-Skowronska, B., di Toppi, L. S., Favali, M. A.et al. (2002). Lichens respond to heavy metals by phytochelatin synthesis. New Phytologist, 156, 95–102.CrossRefGoogle Scholar
Peberdy, J. F. (1990). Fungal cell walls – a review. In Biochemistry of Cell Walls and Membranes in Fungi, ed. Kuhn, P. J., Trinci, A. P. J., Jung, M. J., Goosey, M. W. & Copping, L. E.. Berlin; New York: Springer-Verlag, pp. 5–30.CrossRefGoogle Scholar
Poelt, J. & Huneck, S. (1968). Lecanora vinetorum nova spec., ihre Vergesellschaftung, ihre Ökologie und ihre Chemie. Österreichische botanische Zeitschrift, 115, 411–22.CrossRefGoogle Scholar
Prapaipong, P. & Shock, E. L. (2001). Estimation of standard-state entropies of association for aqueous metal-organic complexes and chelates at 25 °C and 1 bar. Geochimica et Cosmochimica Acta, 62, 3931–53.CrossRefGoogle Scholar
Prapaipong, P., Shock, E. L. & Koretsky, C. M. (1999). Metal-organic complexes in geochemical processes: temperature dependence of the standard thermodynamic properties of aqueous complexes between metal cations and dicarboxylate ligands. Geochimica et Cosmochimica Acta, 63, 2547–77.CrossRefGoogle Scholar
Puckett, K. J., Nieboer, E., Gorzynski, M. J. & Richardson, D. H. S. (1973). The uptake of metal ions by lichens: a modified ion-exchange process. New Phytologist, 72, 329–42.CrossRefGoogle Scholar
Purvis, O. W. (1984). The occurrence of copper oxalate in lichens growing on copper sulphide-bearing rocks in Scandinavia. Lichenologist, 16, 197–204.CrossRefGoogle Scholar
Purvis, O. W. (1996). Interactions of lichens with metals. Science Progress, 79, 283–309.Google Scholar
Purvis, O. W. (2000). Lichens. The Natural History Museum.Google Scholar
Purvis, O. W. & Halls, C. (1996). A review of lichens in metal-enriched environments. Lichenologist, 28, 571–601.CrossRefGoogle Scholar
Purvis, O. W. & James, P. W. (1985). Lichens of the Coniston copper mines. Lichenologist, 17, 221–37.CrossRefGoogle Scholar
Purvis, O. W., Gilbert, O. L. & James, P. W. (1985). The influence of copper mineralization on Acarospora smaragdula. Lichenologist, 17, 111–14.CrossRefGoogle Scholar
Purvis, O. W., Elix, J. A., Broomhead, J. A. & Jones, G. C. (1987). The occurrence of copper-norstictic acid in lichens from cupriferous substrata. Lichenologist, 19, 193–203.CrossRefGoogle Scholar
Purvis, O. W., Elix, J. A. & Gaul, K. L. (1990). The occurrence of copper-psoromic acid from cupriferous substrata. Lichenologist, 22, 345–54.CrossRefGoogle Scholar
Purvis, O. W., Williamson, B., Bartok, K. & Zoltani, N. (2000). Bioaccumulation of lead by the lichen Acarospora smaragdula from smelter emissions. New Phytologist, 147, 591–9.CrossRefGoogle Scholar
Purvis, O. W., Bailey, E. H., McLean, J., Kasama, T. & Williamson, B. J. (2004). Uranium biosorption by the lichen Trapelia involuta at a uranium mine. Geomicrobiology Journal, 21, 159–67.CrossRefGoogle Scholar
Richardson, D. H. S. (1995). Metal uptake in lichens. Symbiosis, 18, 119–27.Google Scholar
Richardson, D. H. S. & Nieboer, E. (1981). Lichens and pollution monitoring. Endeavour, 5, 127–33.CrossRefGoogle Scholar
Richardson, D. H. S. & Nieboer, E. (1983). The uptake of nickel ions by lichen thalli of the genera Umbilicaria and Peltigera. Lichenologist, 15, 81–8.CrossRefGoogle Scholar
Richardson, D. H. S., Kiang, S., Ahmadjian, V. & Nieboer, E. (1985). Lead and uranium uptake in lichens. In Lichen Physiology and Cell Biology, ed. Brown, D. H.. New York: Plenum Press, pp. 227–46.CrossRefGoogle Scholar
Saeki, M., Kunii, K., Seki, T.et al. (1977). Metal burdens in urban lichens. Environmental Research, 13, 256–66.CrossRefGoogle Scholar
Sandau, E., Sandau, P., Pulz, O. & Zimmermann, M. (1996). Heavy metal sorption by marine algae and algal by-products. Acta Biotechnology, 16, 103–19.CrossRefGoogle Scholar
Sarret, G., Manceau, A., Cuny, D.et al. (1998). Mechanisms of lichen resistance to metallic pollution. Environmental Science and Technology, 32, 3325–30.CrossRefGoogle Scholar
Schatz, A. (1963). Soil microorganisms and soil chelation. The pedogenic action of lichens and lichen acids. Agricultural and Food Chemistry, 11, pp. 112–18.CrossRefGoogle Scholar
Schlekat, C. E., Decho, A. W. & Chandler, G. T. (1998). Sorption of cadmium to bacterial extracellular polymeric sediment coatings under estuarine conditions. Environmental Toxicology and Chemistry, 17, 1867–74.CrossRefGoogle Scholar
Sensen, M. & Richardson, D. H. S. (2002). Mercury levels in lichens from different host trees around a chlor-alkali plant in New Brunswick, Canada. Science of the Total Environment, 293, 31–45.CrossRefGoogle ScholarPubMed
Shock, E. L. & Koretsky, C. M. (1993). Metal-organic complexes in geochemical processes: calculation of standard partial molal thermodynamic properties of aqueous acetate complexes at high pressures and temperatures. Geochimica et Cosmochimica Acta, 57, 4899–922.CrossRefGoogle Scholar
Shock, E. L. & Koretsky, C. M. (1995). Metal-organic complexes in geochemical processes: estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high temperatures and pressures. Geochimica et Cosmochimica Acta, 59, 1497–532.CrossRefGoogle Scholar
Shock, E. L., Oelkers, E. H., Johnson, J. W., Sverjensky, D. A. & Helgeson, H. C. (1992). Calculation of the thermodynamic behavior of aqueous species at high pressures and temperatures: effective electrostatic radii, dissociation constants, and standard partial molal properties to 1000 °C and 5 kb. Journal of the Chemical Society (London) Faraday Transactions, 88, 803–26.CrossRefGoogle Scholar
Shock, E. L., Sassani, D. C., Willis, M. & Sverjensky, D. A. (1997). Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochimica et Cosmochimica Acta, 61, 907–50.CrossRefGoogle ScholarPubMed
Small, T. D., Warren, L. A., Roden, E. E. & Ferris, F. G. (1999). Sorption of strontium by bacteria, Fe(III) oxide, and bacteria–Fe(III) oxide composites. Environmental Science and Technology, 33, 4465–70.CrossRefGoogle Scholar
Stone, A. T. (1997). Reactions of extracellular organic ligands with dissolved metal ions and mineral surfaces. In Geomicrobiology: Interactions between Microbes and Minerals, Reviews in Mineralogy, Vol. 35, ed. Banfield, J. F. & Nealson, K. H.. Chelsea, Michigan: Mineralogical Society of America, pp. 309–44.Google Scholar
Strandberg, G. W., Shumate, S. E. & Parrott, J. R. (1981). Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Applied and Environmental Microbiology, 41, 237–45.Google ScholarPubMed
Stumm, W. & Morgan, J. J. (1996). Aquatic Chemistry. New York: John Wiley & Sons.Google Scholar
Suzuki, Y. & Banfield, J. F. (1999). Geomicrobiology of uranium. In Uranium: Mineralogy, Geochemistry and the Environment, Reviews in Mineralogy, Vol. 38, ed. Burns, P. C. & Finch, R.. Chelsea, Michigan: Mineralogical Society of America, pp. 393–432.Google Scholar
Syers, J. K. (1969). Chelating ability of fumarprotocetraric acid and Parmelia conspersa. Plant and Soil, 31, 205–8.CrossRefGoogle Scholar
Takani, M., Yajima, T., Masuda, H. & Yamauchi, O. (2002). Spectroscopic and structural characterization of copper(II) and palladium(II) complexes of a lichen substance usnic acid and its derivatives. Possible forms of environmental metals retained in lichens. Journal of Inorganic Biochemistry, 91, 139–50.CrossRefGoogle ScholarPubMed
Texier, A. C., Andres, Y. & Cloirec, P. L. (1997). Selective biosorption of lanthanide (La, Eu) ions by Mycobacterium smegmatis. Environmental Toxicology, 18, 835–41.Google Scholar
Tsezos, M. (1985). The selective extraction of metals from solution by micro-organisms. A brief review. Canadian Metallurgical Quarterly, 24, 141–4.CrossRefGoogle Scholar
Tsezos, M. & Volesky, B. (1982). The mechanism of thorium biosorption by Rhizopus arrhizus. Biotechnology and Bioengineering, 24, 955–69.CrossRefGoogle ScholarPubMed
Tuominen, Y. (1967). Studies of the strontium uptake of the Cladonia alpestris thallus. Annales Botanici Fennici, 4, 1–28.Google Scholar
Tyler, G. (1989). Uptake, retention and toxicity of heavy metals in lichens. Water, Air, and Soil Pollution, 47, 321–33.CrossRefGoogle Scholar
Urrutia, M. M. & Beveridge, T. J. (1994). Formation of fine-grained metal and silicate precipitates on a bacterial surface (Bacillus subtilis). Chemical Geology, 116, 261–80.CrossRefGoogle Scholar
Lee, J. & Windt, L. D. (1999). CHESS Tutorial and Cookbook. Fontainebleau, France: CIG-Ecole des Mines de Paris.Google Scholar
Veith, J. A. & Sposito, G. (1977). On the use of the Langmuir equation in the interpretation of “adsorption” phenomena. Soil Science Society of America Journal, 41, 697–702.CrossRefGoogle Scholar
Wessels, D. C. J. & Schoeman, P. (1988). Mechanism and rate of weathering of Clarens sandstone by an endolithic lichen. South African Journal of Science, 84, 274–7.Google Scholar
Westall, J. C. (1982). FITEQL, A computer program for determination of chemical equilibrium constants from experimental data. Version 2.0. Department of Chemistry, Oregon State University.
Wild, H. (1968). Geobotanical anomalies in Rhodesia. 1. The vegetation of copper-bearing rocks. Kirkia, 7, 1–72.Google Scholar
Williams, M. E. & Rudolf, E. D. (1974). The role of lichens and associated fungi in the chemical weathering of rock. Mycologia, 66, 648–60.CrossRefGoogle Scholar
Wilson, M. J. (1995). Interactions between lichens and rocks: a review. Cryptogamic Botany, 5, 299–305.Google Scholar
Wilson, M. J. & Jones, D. (1984). The occurrence and significance of manganese oxalate in Pertusaria corallina (lichenes). Pedobiologia, 26, 373–9.Google Scholar
Wilson, M. J., Jones, D. & McHardy, W. J. (1981). The weathering of serpentinite by Lecanora atra. Lichenologist, 13, 167–76.CrossRefGoogle Scholar
Yee, N. & Fein, J. B. (2002). Does metal adsorption onto bacterial surfaces inhibit or enhance aqueous metal transport? Column and batch reactor experiments on Cd-Bacillus subtilis-quartz systems. Chemical Geology, 185, 303–19.CrossRefGoogle Scholar
Yee, N., Fein, J. B. & Daughney, C. J. (2000). Experimental study of the pH, ionic strength and reversibility behavior of bacteria-mineral adsorption. Geochimica et Cosmochimica Acta, 64, 609–17.CrossRefGoogle Scholar
Yliruokanen, I. (1975). Uranium, thorium, lead, lanthanoids and yttrium in some plants growing on granitic and radioactive rocks. Bulletin of the Geologic Society of Finland, 47, 71–8.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×