Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T10:39:21.729Z Has data issue: false hasContentIssue false

2 - Integrated nutrient cycles in boreal forest ecosystems – the role of mycorrhizal fungi

Published online by Cambridge University Press:  10 December 2009

Roger D. Finlay
Affiliation:
Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
Anna Rosling
Affiliation:
Department of Earth & Planetary Science, University of California, Berkeley, CA 94720-4767, USA
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

Mycorrhizal fungi play a central role in biogeochemical cycles since they obtain carbon from their photosynthetic plant hosts and allocate this via their mycelia to the soil ecosystem. The mycelia interact with a range of organic and inorganic substrates, as well as with different organisms such as bacteria, fungi, soil micro- and meso-fauna and the roots of secondary hosts or non-host plants. Some of the carbon allocated to the mycelium is used to make compounds such as enzymes, organic acids, siderophores or antibiotics, which influence biotic or abiotic substrates through processes such as decomposition, weathering or antibiosis. Organic and inorganic nutrients mobilized from these substrates can be taken up by the mycorrhizal mycelia and translocated to their plant hosts, influencing plant growth, community structure and vegetation dynamics. Ultimately these changes have further impacts on biogeochemical cycles. Different types of mycorrhizal symbiosis have evolved as adaptations to different suites of edaphic parameters, resulting in the characteristic vegetation types that dominate different terrestrial biomes. Other chapters in this book consider specific contributions of ectomycorrhizal fungi to mineral dissolution (see Wallander, Chapter 14, this volume), carbon and nitrogen cycling (see Hobbie & Wallander, Chapter 5, this volume) and mineral tunnelling (see Smits, Chapter 13, this volume). In this chapter we concentrate on how these activities are integrated and on ways in which ectomycorrhizal hyphae may interact with other microorganisms to influence biogeochemical cycles.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu, A. R., Murphy, R. J. & Dickinson, D. J. (1999). Investigation of the extracellular mucilaginous materials produced by some wood decay fungi. Mycological Research, 103, 1453–61.Google Scholar
Abuzinadah, R. A., Finlay, R. D. & Read, D. J. (1986). The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. II. Utilisation of protein by mycorrhizal plants of Pinus contorta. New Phytologist, 103, 495–506.CrossRefGoogle Scholar
Ahonen-Jonnarth, U., Hees, P. A. W., Lundström, U. & Finlay, R. D. (2000). Production of organic acids by mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings exposed to elevated concentrations of aluminium and heavy metals. New Phytologist, 146, 557–67.CrossRefGoogle Scholar
Ahonen-Jonnarth, U., Göransson, A. & Finlay, R. D. (2003). Growth and nutrient uptake of ectomycorrhizal Pinus sylvestris seedlings treated with elevated Al concentrations. Tree Physiology, 23, 157–67.CrossRefGoogle ScholarPubMed
Arocena, J. M., Glowa, K. R. & Massicotte, H. B. (2001). Calcium-rich hypha encrustations on Piloderma. Mycorrhiza, 10, 209–15.CrossRefGoogle Scholar
Arvieu, J-C., Leprince, F. & Plassard, C. (2003). Release of oxalate and protons by ectomycorrhizal fungi in response to P-deficiency and calcium carbonate in nutrient solution. Annals of Forest Science, 60, 815–21.CrossRefGoogle Scholar
Banfield, J. F., Barker, W. W., Welch, S. A. & Taunton, A. (1999). Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the United States of America, 96, 3404–11.CrossRefGoogle ScholarPubMed
Barker, W. W., Welch, S. A. & Banfield, J. F. (1997). Biogeochemical weathering of silicate minerals. Reviews in Mineralogy, 35, 391–428.Google Scholar
Barker, W. W., Welch, S. A., Chu, S. & Banfield, J. F. (1998). Experimental observations of the effects of bacteria on aluminosilicate weathering. American Mineralogist, 83, 1551–63.CrossRefGoogle Scholar
Bending, G. D. & Read, D. J. (1995a). The structure and function of the vegetative mycelium of ectomycorrhizal plants: V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytologist, 130, 401–9.CrossRefGoogle Scholar
Bending, G. D. & Read, D. J. (1995b). The structure and function of the vegetative mycelium of ectomycorrhizal plants. VI. Activities of nutrient mobilizing enzymes in birch litter colonized by Paxillus involutus (Fr.) Fr. New Phytologist, 130, 411–17.CrossRefGoogle Scholar
Bertaux, J., Schmid, M., Prevost-Boure, Chemidlin N.et al. (2003). In situ identification of intracellular bacteria related to Paenibacillus spp. in the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Applied and Environmental Microbiology, 69, 4243–8.CrossRefGoogle ScholarPubMed
Bianciotto, V., Lumini, E., Lanfranco, L.et al. (2000). Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to Gigasporaceae. Applied and Environmental Microbiology, 66, 4503–9.CrossRefGoogle ScholarPubMed
Blum, J. D., Klaue, A., Nezat, C. A.et al. (2002). Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature, 417, 729–31.CrossRefGoogle ScholarPubMed
Bonkowski, M. (2004). Protozoa and plant growth: the microbial loop revisited. New Phytologist, 162, 617–31.CrossRefGoogle Scholar
Callot, G., Maurette, M., Pottier, L. & Dubois, A. (1987). Biogenic etching of microfeatures in amorphous and crystalline silicates. Nature, 328, 147–9.CrossRefGoogle Scholar
Casarin, V., Plassard, C., Souche, G. & Arvieu, J.-C. (2003). Quantification of oxalate ions and protons released by ectomycorrhizal fungi in rhizosphere soil. Agronomie, 23, 461–9.CrossRefGoogle Scholar
Chaubal, R., Wilmot, V. A. & Wynn, W. K. (1991). Visualization, adhesiveness, and cytochemistry of the extracellular matrix produced by urediniospore germ tubes of Puccinia sorghi. Canadian Journal of Botany, 69, 2044–54.CrossRefGoogle Scholar
Clausen, C. A., Green, F. III, Woodward, B. M., Evans, J. W. & DeGroot, R. C. (2000). Correlation between oxalic acid production and copper tolerance in Wolfiporia cocos. International Biodeterioration and Biodegradation, 46, 69–76.CrossRefGoogle Scholar
Connolly, J. H. & Jellison, J. (1995). Calcium translocation, calcium oxalate accumulation, and hyphal sheath morphology in the white-rot fungus Resinicium bicolor. Canadian Journal of Botany, 73, 927–36.CrossRefGoogle Scholar
Connolly, J. H., Shortle, W. C. & Jellison, J. (1999). Translocation and incorporation of strontium carbonate derived strontium into calcium oxalate crystals by the wood decay fungus Resinicium bicolor. Canadian Journal of Botany, 77, 179–97.CrossRefGoogle Scholar
Cooper, L. L. D., Oliver, J. E., Vilbiss, E. D. & Doss, R. P. (2000). Lipid composition of the extracellular matrix of Botrytis cinerea germlings. Phytochemistry, 53, 293–8.CrossRefGoogle ScholarPubMed
Cromack, K., Sollins, P., Graustein, W.et al. (1979). Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biology and Biochemistry, 11, 463–8.CrossRefGoogle Scholar
Dickie, I. A., Xu, B. & Koide, R. T. (2002). Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytologist, 156, 527–35.CrossRefGoogle Scholar
Drever, J. I. & Stillings, L. L. (1997). The role of organic acids in mineral weathering. Colloids and Surfaces, 120, 167–81.CrossRefGoogle Scholar
Duff, R. B., Webley, D. M. & Scott, R. O. (1963). Solubilization of minerals and related materials by 2-ketoglutonic acid-producing bacteria. Soil Science, 95, 105–14.CrossRefGoogle Scholar
Dutton, M. V. & Evans, C. S. (1996). Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology, 42, 881–95.CrossRefGoogle Scholar
Ehrlich, H. L. (1998). Geomicrobiology: its significance for geology. Earth-Science Reviews, 45, 45–60.CrossRefGoogle Scholar
Entry, J. A., Donnelly, P. K. & Cromack, K. (1991). Influence of ectomycorrhizal mat soils on lignin and cellulose degradation. Biology and Fertility of Soils, 11, 75–8.CrossRefGoogle Scholar
Erland, S. E., Finlay, R. D. & Söderström, B. (1991). The influence of substrate pH on carbon translocation in ectomycorrhizal and non-mycorrhizal pine seedlings. New Phytologist, 119, 235–42.CrossRefGoogle Scholar
Finlay, R. D. (1992). Uptake and mycelial translocation of nutrients by ectomycorrhizal fungi. In Mycorrhiza in Ecosystems, ed. Read, D. J., Lewis, D. H., Fitter, A. H. & Alexander, I. J.. Wallingford, UK: CAB International, pp. 91–97.Google Scholar
Finlay, R. D. (1995). Interactions betweeen soil acidification, plant growth and nutrient uptake in ectomycorrhizal associations of forest trees: problems and progress. In Ecological Bulletin, Vol. 44, Effects of Acid Deposition and Ozone on the Terrestrial Environment in Sweden, ed. Staaf, H. & Tyler, G.. Copenhagen: Blackwell, pp. 197–214.Google Scholar
Finlay, R. D. & Söderström, B. (1992). Mycorrhiza and carbon flow to the soil. In Mycorrhizal Functioning, ed. Allen, M. F.. New York: Chapman and Hall, pp. 134–60.Google Scholar
Finlay, R. D., Chalot, M., Brun, A. & Söderström, B. (1996). Interactions in the carbon and nitrogen metabolism of ectomycorrhizal associations. In Mycorrhizas in Integrated Systems – From Genes to Plant Development, ed. Barea, J. M., Azcón-Aguilar, C., Azcón, R. & Ocampo, J. A.. Brussels: European Commission Report EUR 16728 EN, pp. 279–84.Google Scholar
Frey-Klett, P., Chavatte, M., Clausse, M.-L.et al. (2005). Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytologist, 165, 317–28.CrossRefGoogle ScholarPubMed
Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytologist, 124, 25–60.CrossRefGoogle Scholar
Gadd, G. M. (1999). Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology, 41, 48–91.Google ScholarPubMed
Genet, P., Prevost, A. & Pargney, J. C. (2000). Seasonal variations of symbiotic ultrastructure and relationships of two natural ectomycorrhizae of beech (Fagus sylvatica/ Lactarius blennius var. viridis and Fagus sylvatica/ Lactarius subdulcis). Trees, 14, 465–74.CrossRefGoogle Scholar
Gharieb, M. M., Sayer, J. A. & Gadd, G. M. (1998). Solubilization of natural gypsum (CaSO4∗2H2O) and the formation of calcium oxalate by Aspergillus niger and Serpula himantioides. Mycological Research, 102, 825–30.CrossRefGoogle Scholar
Graustein, W. C., Cromack, K. Jr. & Sollins, P. (1977). Calcium oxalate: occurrence in soils and effect on nutrient and geochemical cycles. Science, 198, 1252–4.CrossRefGoogle ScholarPubMed
Griffiths, R. P., Baham, J. E. & Caldwell, B. A. (1994). Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biology and Biochemistry, 26, 331–7.CrossRefGoogle Scholar
Hagerberg, D., Thelin, G. & Wallander, H. (2003). The production of ectomycorrhizal mycelium in forests: relation between forest nutrient status and local mineral sources. Plant and Soil, 252, 279–90.CrossRefGoogle Scholar
Hamel, R., Levasseur, R. & Appanna, V. D. (1999). Oxalic acid production and aluminium tolerance in Pseudomonas fluorescens. Journal of Inorganic Biochemistry, 76, 99–104.CrossRefGoogle ScholarPubMed
Haselwandter, K. & Winkelmann, G. (2002). Ferricrocin – an ectomycorrhizal siderophore of Cenococcum geophilum. BioMetals, 15, 73–7.CrossRefGoogle ScholarPubMed
Heinonsalo, J., Jorgensen, K. S. & Sen, R. (2001). Microcosm-based analyses of Scots pine seedling growth, ectomycorrhizal fungal community growth and bacterial carbon utilisation profiles in boreal forest humus and underlying illuvial mineral horizons. FEMS Microbiology Ecology, 36, 73–84.CrossRefGoogle Scholar
Henderson, M. E. K. & Duff, R. B. (1963). The release of metallic and silicate ions from minerals, rock, and soils by fungal activity. Journal of Soil Science, 14, 236–46.CrossRefGoogle Scholar
Hibbett, D. S., Gilbert, L.-B. & Donaghue, M. J. (2000). Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature, 407, 506–8.CrossRefGoogle ScholarPubMed
Hirsch, P., Eckhardt, F. E. W. & Palmer, J. R. J. (1995). Fungi active in weathering of rock and stone monuments. Canadian Journal of Botany, 73 (Suppl. 1), S1384–90.CrossRefGoogle Scholar
Hodge, A., Campbell, C. D. & Fitter, A. H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413, 297–9.CrossRefGoogle ScholarPubMed
Högberg, P., Nordgren, A., Buchmann, N.et al. (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789–92.CrossRefGoogle ScholarPubMed
Holmström, S. J. M., Lundström, U. S., Finlay, R. D. & Hees, P. A. W. (2004). Siderophores in forest soil solution. Biogeochemistry, 71, 247–58.CrossRefGoogle Scholar
Horton, T. R. & Bruns, T. D. (2001). The molecular revolution in ectomycorrhizal ecology: Peeking into the black-box. Molecular Ecology, 10, 1855–71.CrossRefGoogle ScholarPubMed
Jackson, R. B., Canadell, J., Ehleringer, J. R.et al. (1996). A global analysis of root distribution for terrestrial biomes. Oecologia, 108, 389–411.CrossRefGoogle ScholarPubMed
Jacobs, H., Boswell, G. P., Ritz, K., Davidson, F. A. & Gadd, G. M. (2002). Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiology Ecology, 40, 65–71.CrossRefGoogle ScholarPubMed
Jentschke, G., Brandes, B., Kuhn, A. J.et al. (2000). The mycorrhizal fungus Paxillus involutus transports magnesium to Norway spruce seedlings. Evidence from stable isotope labeling. Plant and Soil, 220, 243–6.CrossRefGoogle Scholar
Jentschke, G., Brandes, B., Kuhn, A. J., Schröder, W. H. & Godbold, D. L. (2001). Interdependence of phosphorus, nitrogen, potassium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus. New Phytologist, 149, 327–37.CrossRefGoogle Scholar
Johnson, D., Leake, J. R., Ostle, N., Ineson, P. & Read, D. J. (2002). In situ (CO2)-13 C pulse-labeling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytologist, 153, 327–34.CrossRefGoogle Scholar
Jones, D. L., Dennis, P. G., Owen, A. G. & Hees, P. A. W. (2003). Organic acid behaviour in soils – misconceptions and knowledge gaps. Plant and Soil, 248, 31–41.CrossRefGoogle Scholar
Jones, E. B. G. (1994). Fungal adhesion. Mycological Research, 98, 961–81.CrossRefGoogle Scholar
Jongmans, A. G., Breemen, N., Lundström, U.et al. (1997). Rock eating fungi. Nature, 389, 682–3.CrossRefGoogle Scholar
Klironomos, J. N. & Hart, M. M. (2001). Food-web dynamics. Animal nitrogen swap for plant carbon. Nature, 410, 651–2.CrossRefGoogle ScholarPubMed
Landeweert, R., Hoffland, E., Finlay, R. D. & Breemen, N. (2000). Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends in Ecology and Evolution, 16, 248–54.CrossRefGoogle Scholar
Landeweert, R., Leeflang, P., Kuyper, T. W.et al. (2003). Molecular identification of ectomycorrhizal mycelium in soil horizons. Applied and Environmental Microbiology, 69, 327–53.CrossRefGoogle ScholarPubMed
Leake, J. R., Donnelly, D. P., Saunders, E. M., Boddy, L. & Read, D. J. (2001). Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus. Tree Physiology, 21, 71–82.CrossRefGoogle ScholarPubMed
Leake, J. R., McKendrick, S. L., Bidartondo, M. & Read, D. J. (2004). Symbiotic germination and development of the myco-heterotroph Monotropa hypopitys in nature and its requirement for locally distributed Tricholoma spp. New Phytologist, 163, 405–23.CrossRefGoogle Scholar
Leyval, C. & Berthelin, J. (1989). Interactions between Laccaria laccata-Agrobacterium radiobacter and beech roots influence on phosphorus, potassium, magnesium and iron mobilisation from minerals and plant growth. Plant and Soil, 117, 103–10.CrossRefGoogle Scholar
Lindahl, B., Stenlid, J., Olsson, S. & Finlay, R. D. (1999). Translocation of 32P between interacting mycelia of a wood decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytologist, 144, 183–93.CrossRefGoogle Scholar
Lindahl, B., Stenlid, J. & Finlay, R. D. (2001). Effects of resource availability on mycelial interactions and 32P transfer between a saprotrophic and an ectomycorrhizal fungus in soil microcosms. FEMS Microbiology Ecology, 38, 43–52.CrossRefGoogle Scholar
Lindahl, B., Taylor, A. F. S. & Finlay, R. D. (2002). Defining nutritional constraints on carbon cycling – towards a less ‘phytocentric’ perspective. Plant and Soil, 242, 123–35.CrossRefGoogle Scholar
Lindahl, B. D., Finlay, R. D. & Cairney, J. W. G. (2005). Enzymatic activities of mycelia in mycorrhizal fungal communities. In The Fungal Community: its Organization and Role in the Ecosystem. ed. Dighton, J., Oudemans, P. & White, J.. New York: Marcel Dekker, pp. 331–48.CrossRefGoogle Scholar
Little, B. J. & Wagner, P. A. (1997). Spatial relationships between bacteria and mineral surfaces. Reviews in Mineralogy, 35, 123–60.Google Scholar
Lussenhop, J. & Fogel, R. (1999). Seasonal change in phosphorus content of Pinus strobus-Cenococcum geophilum mycorrhizae. Mycology, 91, 742–6.CrossRefGoogle Scholar
Ma, J. F., Zheng, S. J., Matsumoto, H. & Hiradate, S. (1997). Detoxifying aluminium with buckwheat. Nature, 390, 569–70.CrossRefGoogle Scholar
Mahmood, S., Finlay, R. D., Erland, S. & Wallander, H. (2001). Solubilization and colonisation of wood ash by ectomycorrhizal fungi isolated from a wood ash fertilised spruce forest. FEMS Microbiology Ecology, 35, 151–61.CrossRefGoogle Scholar
Marschner, H. (1998). Soil-root interface: biological and biochemical processes. In Soil Chemistry and Ecosystem Health, Special Publication no. 52. Madison: Soil Science Society of America, pp. 191–231.Google Scholar
Näsholm, T., Ekblad, A., Nordin, A.et al. (1998). Boreal forest plants take up organic nitrogen. Nature, 392, 914–16.CrossRefGoogle Scholar
Nurmiaho-Lassila, E. L., Timonen, S., Haahtela, K. & Sen, R. (1997). Bacterial colonisation patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electron microscopy study. Canadian Journal of Microbiology, 43, 1017–35.CrossRefGoogle Scholar
Olsson, P. A., Chalot, M., Bååth, E., Finlay, R. D. & Söderström, B. (1996). Reduced bacterial activity in a sandy soil with ectomycorrhizal mycelia growing with Pinus contorta seedlings. FEMS Microbiology Ecology, 21, 77–86.CrossRefGoogle Scholar
Palfreyman, J. W., Phillips, E. M. & Staines, H. J. (1996). The effect of calcium ion concentration on the growth and decay capacity of Serpula lacrymans (Schumacher ex Fr.) Gray and Coniophora puteana (Schumacher ex Fr.) Karst. Holzdorschung, 50, 3–8.CrossRefGoogle Scholar
Paris, F., Bonnaud, P., Ranger, J. & Lapeyrie, F. (1995). In vitro weathering of phlogopite by ectomycorrhizal fungi. I. Effect of K+ and Mg2 + deficiency on phyllosilicate evolution. Plant and Soil, 177, 191–205.CrossRefGoogle Scholar
Paris, F., Botton, B. & Lapeyrie, F. (1996). In vitro weathering of phlogopite by ectomycorrhizal fungi II. Effect of K+ and Mg2 + deficiency and N source on accumulation of oxalate and H+. Plant and Soil, 179, 141–50.CrossRefGoogle Scholar
Perez-Moreno, J. & Read, D. J. (2000). Mobilisation and transfer of nutrients from litter to tree seedlings via vegetative mycelium of ectomycorrhizal plants. New Phytologist, 145, 301–9.CrossRefGoogle Scholar
Perez-Moreno, J. & Read, D. J. (2001a). Nutrient transfer from soil nematodes to plants: a direct pathway provided by the mycorrhizal mycelial network. Plant Cell and Environment, 24, 1219–26.CrossRefGoogle Scholar
Perez-Moreno, J. & Read, D. J. (2001b). Exploitation of pollen by mycorrhizal mycelial systems with special reference to nutrient cycling in boreal forests. Proceedings of the Royal Society of London, Series B, 268, 1329–35.CrossRefGoogle Scholar
Piotrowski, J. S., Denich, T., Klironomos, J. N., Graham, J. M. & Rillig, M. C. (2004). The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species. New Phytologist, 164, 365–73.CrossRefGoogle Scholar
Querejeta, J. I., Egerton-Warburton, L. M. & Allen, M. F. (2003). Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia, 134, 55–64.CrossRefGoogle ScholarPubMed
Rambelli, A. (1973). The rhizosphere of mycorrhizae. In Ectomycorrhizae, ed. Marks, G. L. & Koslowski, T. T., New York: Academic Press, pp. 299–343.Google Scholar
Read, D. J. (1991). Mycorrhizas in ecosystems. Experientia, 47, 376–91.CrossRefGoogle Scholar
Read, D. J. & Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance?New Phytologist, 157, 475–92.CrossRefGoogle Scholar
Richards, B. N. (1987). The Microbiology of Terrestrial Ecosystems. New York: Longman, Harlow.Google Scholar
Robinson, D. & Fitter, A. H. (1999). The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. Journal of Experimental Botany, 50, 9–13.CrossRefGoogle Scholar
Rosling, A., Landeweert, R., Lindahl, B. D.et al. (2003). Vertical distribution of ectomycorrhizal fungal taxa in a podzol profile determined by morphotyping and genetic verification. New Phytologist, 159, 775–83.CrossRefGoogle Scholar
Rosling, A., Lindahl, B. D. & Finlay, R. D. (2004a). Carbon allocation to ectomycorrhizal roots and mycelium colonizing different mineral substrates. New Phytologist, 162, 795–802.CrossRefGoogle Scholar
Rosling, A., Lindahl, B. D., Taylor, A. F. S. & Finlay, R. D. (2004b). Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiology Ecology, 47, 31–7.CrossRefGoogle Scholar
Ruijter, G. J. G., Vondervoort, P. J. I. & Visser, J. (1999). Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and the presence of manganese. Microbiology, 145, 2563–76.CrossRefGoogle ScholarPubMed
Ryan, P. R., Delhaize, E. & Jones, D. L. (2001). Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 527–60.CrossRefGoogle ScholarPubMed
Sandnes, A., Eldhuset, T. D. & Wollebæk, G. (2005). Organic acids in root exudates and soil solution of Norway spruce and silver birch. Soil Biology and Biochemistry, 37, 259–69.CrossRefGoogle Scholar
Schimel, J. P. & Bennett, J. (2004). Nitrogen mineralisation: challenges of a changing paradigm. Ecology, 85, 591–602.CrossRefGoogle Scholar
Sen, R. (2000). Budgeting for the wood-wide web. New Phytologist, 145, 161–5.CrossRefGoogle Scholar
Shenker, M., Ghirlando, R., Oliver, I.et al. (1995). Chemical structure and biological activity of a siderophore produced by Rhizopus arrhizus. Soil Science Society of America Journal, 59, 837–43.CrossRefGoogle Scholar
Smith, S. E. & Read, D. J. (1997). Mycorrhizal Symbiosis. San Diego: Academic Press.Google Scholar
Smits, M. M., Hoffland, E., Jongmans, A. G. & Breemen, N. (2005). Contribution of feldspar tunneling by fungi in weathering. Geoderma, 125, 59–69.CrossRefGoogle Scholar
Sterflinger, K. (2000). Fungi as geologic agents. Geomicrobiology Journal, 17, 97–124.CrossRefGoogle Scholar
Sun, Y.-P., Unestam, T., Lucas, S. D.et al. (1999). Exudation-reabsorption in mycorrhizal fungi, the dynamic interface for interaction with soil and other microorganisms. Mycorrhiza, 9, 137–44.CrossRefGoogle Scholar
Sverdrup, H. & Warfvinge, P. (1995). Estimated field weathering rates using laboratory kinetics. Reviews in Mineralogy, 31, 485–541.Google Scholar
Taylor, A. F. S. (2002). Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. Plant and Soil, 244, 19–28.CrossRefGoogle Scholar
Timonen, S. & Sen, R. (1998). Heterogeneity of fungal and plant enzyme expression in intact Scots pine-Suillus bovinus and -Paxillus involutus mycorrhizospheres developed in natural forest humus. New Phytologist, 138, 355–66.CrossRefGoogle Scholar
Timonen, S., Jørgensen, K., Haahtela, K. & Sen, R. (1998). Bacterial community structure at defined locations of the Pinus sylvestris-Suillus bovinus and -Paxillus involutus mycorrhizospheres in dry forest humus and nursery peat. Canadian Journal of Microbiology, 44, 499–513.CrossRefGoogle Scholar
Tisdall, J. M. & Oades, J. M. (1979). Stabilisation of soil aggregates by the root systems of ryegrass. Australian Journal of Soil Research, 17, 429–41.CrossRefGoogle Scholar
Treseder, K. K. & Allen, M. F. (2000). Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytologist, 147, 189–200.CrossRefGoogle Scholar
Ullman, W. J., Kirchman, D. L., Welch, S. A. & Vandervivere, P. (1996). Laboratory evidence for microbially mediated silicate mineral dissolution in nature. Chemical Geology, 132, 11–17.CrossRefGoogle Scholar
Unestam, T. & Sun, Y.-P. (1995). Extramatrical structures of hydrophobic and hydrophilic ectomycorrhizal fungi. Mycorrhiza, 5, 301–11.CrossRefGoogle Scholar
Breemen, N., Finlay, R. D., Lundström, U.et al. (2000a). Mycorrhizal weathering: a true case of mineral nutrition?Biogeochemistry, 49, 53–67.CrossRefGoogle Scholar
Breemen, N., Lundström, U. S. & Jongmans, A. G. (2000b). Do plants drive podzolization via rock-eating mycorrhizal fungi?Geoderma, 94, 163–71.Google Scholar
Hees, P. A. W., Lundström, U. & Giesler, R. (2000). Low molecular weight organic acids and their Al-complexes in soil solution – composition, distribution and seasonal variation in three podzolized soils. Geoderma, 94, 173–200.CrossRefGoogle Scholar
Hees, P. A. W., Jones, D. L., Jentschke, G. & Godbold, D. L. (2003). Mobilization of aluminium, iron and silicon by Picea abies and ectomycorrhizas in a forest soil. European Journal of Soil Science, 55, 101–11.CrossRefGoogle Scholar
Hees, P. A. W., Godbold, D. L., Jentschke, G., & Jones, D. L. (2005a). Impact of ectomycorrhizas on the concentration and biodegradation of simple organic acids in a forest soil. European Journal of Soil Science, 54, 697–706.CrossRefGoogle Scholar
Hees, P. A. W., Jones, D. L., Finlay, R. D., Godbold, D. L. & Lundström, U. S. (2005b). The carbon we do not see: do low molecular weight compounds have a significant impact on carbon dynamics and respiration in forest soils?Soil Biology and Biochemistry, 37, 1–13.CrossRefGoogle Scholar
Villarréal-Ruiz, L., Anderson, I. C. & Alexander, I. J. (2004). Interaction between an isolate from the Hymenoscyphus ericae aggregate and roots of Pinus and Vaccinium. New Phytologist, 164, 183–92.CrossRefGoogle Scholar
Watmough, S. A. & Dillon, P. J. (2003). Mycorrhizal weathering in base-poor forests. Nature, 423, 823–4.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×