Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Effects of climate change on fungal diseases of trees
- 2 Effects of climate change on Fusarium foot rot of winter wheat in the United Kingdom
- 3 Effects of UV-B radiation (280–320 nm) on foliar saprotrophs and pathogens
- 4 Implications of global warming and rising sea-levels for macrofungi in UK dune systems
- 5 Red Data Lists and decline in fruiting of macromycetes in relation to pollution and loss of habitat
- 6 Effects of dry-deposited SO2 and sulphite on saprotrophic fungi and decomposition of tree leaf litter
- 7 Effects of atmospheric pollutants on phyllosphere and endophytic fungi
- 8 Influences of acid mist and ozone on the fluorescein diacetate activity of leaf litter
- 9 Mycorrhizas and environmental stress
- 10 Myccorhizas, succession, and the rehabilitation of deforested lands in the humid tropics
- 11 Potential effects on the soil mycoflora of changes in the UK agricultural policy for upland grasslands
- 12 Uptake and immobilization of caesium in UK grassland and forest soils by fungi, following the Chernobyl accident
- 13 Effects of pollutants on aquatic hyphomycetes colonizing leaf material in freshwaters
- 14 Fungi and salt stress
- 15 Fungal sequestration, mobilization and transformation of metals and metalloids
- 16 Urban, industrial and agricultural effects on lichens
- 17 Fungal interactions with metals and radionuclides for environmental bioremediation
- 18 Impact of genetically-modified microorganisms on the terrestrial microbiota including fungi
- 19 Has chaos theory a place in environmental mycology?
- Index of generic and specific names
- Subject index
17 - Fungal interactions with metals and radionuclides for environmental bioremediation
Published online by Cambridge University Press: 05 November 2011
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Effects of climate change on fungal diseases of trees
- 2 Effects of climate change on Fusarium foot rot of winter wheat in the United Kingdom
- 3 Effects of UV-B radiation (280–320 nm) on foliar saprotrophs and pathogens
- 4 Implications of global warming and rising sea-levels for macrofungi in UK dune systems
- 5 Red Data Lists and decline in fruiting of macromycetes in relation to pollution and loss of habitat
- 6 Effects of dry-deposited SO2 and sulphite on saprotrophic fungi and decomposition of tree leaf litter
- 7 Effects of atmospheric pollutants on phyllosphere and endophytic fungi
- 8 Influences of acid mist and ozone on the fluorescein diacetate activity of leaf litter
- 9 Mycorrhizas and environmental stress
- 10 Myccorhizas, succession, and the rehabilitation of deforested lands in the humid tropics
- 11 Potential effects on the soil mycoflora of changes in the UK agricultural policy for upland grasslands
- 12 Uptake and immobilization of caesium in UK grassland and forest soils by fungi, following the Chernobyl accident
- 13 Effects of pollutants on aquatic hyphomycetes colonizing leaf material in freshwaters
- 14 Fungi and salt stress
- 15 Fungal sequestration, mobilization and transformation of metals and metalloids
- 16 Urban, industrial and agricultural effects on lichens
- 17 Fungal interactions with metals and radionuclides for environmental bioremediation
- 18 Impact of genetically-modified microorganisms on the terrestrial microbiota including fungi
- 19 Has chaos theory a place in environmental mycology?
- Index of generic and specific names
- Subject index
Summary
Introduction
Microorganisms, including fungi, are known to accumulate metals from their external environment and the possibility of using fungi as a means of treating metal/radionuclide-containing effluents is well recognized (Siegel, Galun & Siegel, 1990; Gadd, 1993). However, to date, there are no commercial systems in operation which specifically use fungi as a basis for a metal treatment system. This is despite the fact that certain fungal species, under optimal conditions, are as effective as ion exchange resins in the removal of metals from solution (Tsezos & Volesky, 1981). As yet, the development of this potential from scientific curiosity to commercial fact remains to be demonstrated.
The mechanisms of microbial metal uptake may be either independent of, or dependent on, cell metabolism (Huang, Huang & Morehart, 1990; Avery & Tobin, 1992). Metal uptake which is independent of cell metabolism will be referred to as biosorption in this work. It is generally regarded that biosorptive metal uptake mechanisms would be more appropriate for use in a metal treatment system (Kuyucak, 1990). This is because environmental conditions in most effluents may be too toxic for microbial growth. Biosorption, in many cases, accounts for most of the metal accumulated by the cell, and can represent 10–20% or more of the cell dry weight (Luef, Prey & Kubicek, 1991; Gadd, 1993). The process occurs by either physical or chemical means and usually involves surface interactions of metals with microbial cell walls or excreted cell products.
- Type
- Chapter
- Information
- Fungi and Environmental Change , pp. 282 - 298Publisher: Cambridge University PressPrint publication year: 1996
- 8
- Cited by