Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T14:22:20.009Z Has data issue: false hasContentIssue false

8 - Interfacial liquid structures

Published online by Cambridge University Press:  05 February 2016

Y. R. Shen
Affiliation:
University of California, Berkeley
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vogel, V.; Shen, Y. R.: Air Liquid Interfaces and Adsorbed Molecular Monolayers Studied with Nonlinear Optical Techniques. Annu Rev Mater Sci 1991, 21, 515534.CrossRefGoogle Scholar
Bain, C. D.: Sum-Frequency Vibrational Spectroscopy of the Solid/Liquid Interface. J Chem Soc Faraday T 1995, 91, 12811296.CrossRefGoogle Scholar
Eisenthal, K. B.: Liquid Interfaces Probed by Second-Harmonic and Sum-Frequency Spectroscopy. Chem Rev 1996, 96, 13431360.CrossRefGoogle ScholarPubMed
Miranda, P. B.; Shen, Y. R.: Liquid Interfaces: A Study by Sum-Frequency Vibrational Spectroscopy. J Phys Chem B 1999, 103, 32923307.CrossRefGoogle Scholar
Superfine, R.; Huang, J. Y.; Shen, Y. R.: Nonlinear Optical Studies of the Pure Liquid Vapor Interface: Vibrational Spectra and Polar Ordering. Phys Rev Lett 1991, 66, 10661069.CrossRefGoogle ScholarPubMed
Chen, H.; Gan, W.; Lu, R.; Guo, Y.; Wang, H. F.: Determination of Structure and Energetics for Gibbs Surface Adsorption Layers of Binary Liquid Mixture 2. Methanol Plus Water. J Phys Chem B 2005, 109, 80648075.CrossRefGoogle Scholar
Stanners, C. D.; Du, Q.; Chin, R. P.; Cremer, P.; Somorjai, G. A.; Shen, Y. R.: Polar Ordering at the Liquid–Vapor Interface of N-Alcohols (C-1-C-8). Chem Phys Lett 1995, 232, 407413.CrossRefGoogle Scholar
Lu, R.; Gan, W.; Wu, B. H.; Zhang, Z.; Guo, Y.; Wang, H. F.: C–H Stretching Vibrations of Methyl, Methylene and Methine Groups at the Vapor/Alcohol (n=1–8) Interfaces. J Phys Chem B 2005, 109, 1411814129.CrossRefGoogle ScholarPubMed
Yeh, Y. L.; Zhang, C.; Held, H.; Mebel, A. M.; Wei, X.; Lin, S. H.; Shen, Y. R.: Structure of the Acetone Liquid/Vapor Interface. J Chem Phys 2001, 114, 18371843.CrossRefGoogle Scholar
Sun, S. M.; Tian, C. S.; Shen, Y. R.: Surface Sum-Frequency Vibrational Spectroscopy of Nonpolar Media. Proc Nat Acad Sci 2015, 112, 58835887.CrossRefGoogle ScholarPubMed
Du, Q.; Superfine, R.; Freysz, E.; Shen, Y. R.: Vibrational Spectroscopy of Water at the Vapor/Water Interface. Phys Rev Lett 1993, 70, 23132316.CrossRefGoogle Scholar
Shen, Y. R.: Frank Isakson Prize Address: Sum Frequency Generation for Vibrational Spectroscopy: Applications to Water Interfaces and Films of Water and Ice. Solid State Commun 1998, 108, 399406.CrossRefGoogle Scholar
Richmond, G. L.: Molecular Bonding and Interactions at Aqueous Surfaces as Probed by Vibrational Sum Frequency Spectroscopy. Chem Rev 2002, 102, 26932724.CrossRefGoogle ScholarPubMed
Shen, Y. R.; Ostroverkhov, V.: Sum-Frequency Vibrational Spectroscopy on Water Interfaces: Polar Orientation of Water Molecules at Interfaces. Chem Rev 2006, 106, 11401154.CrossRefGoogle ScholarPubMed
Moore, F. G.; Richmond, G. L.: Integration or Segregation: How do Molecules Behave at Oil/Water Interfaces? Accounts Chem Res 2008, 41, 739748.CrossRefGoogle ScholarPubMed
Tian, C. S.; Shen, Y. R.: Sum-Frequency Vibrational Spectroscopic Studies of Water/Vapor Interfaces. Chem Phys Lett 2009, 470, 16.CrossRefGoogle Scholar
Ishiyama, T.; Imamura, T.; Morita, A.: Theoretical Studies of Structures and Vibrational Sum Frequency Generation Spectra at Aqueous Interfaces. Chem Rev 2014, 114, 84478470.CrossRefGoogle ScholarPubMed
Wei, X.; Shen, Y. R.: Motional Effect in Surface Sum-Frequency Vibrational Spectroscopy. Phys Rev Lett 2001, 86, 47994802.CrossRefGoogle ScholarPubMed
Wei, X.; Miranda, P. B.; Shen, Y. R.: Surface Vibrational Spectroscopic Study of Surface Melting of Ice. Phys Rev Lett 2001, 86, 15541557.CrossRefGoogle ScholarPubMed
Sun, S. M.; Tian, C. S.; Shen, Y. R.; Physics Department, Fudan University (unpublished).Google Scholar
Liu, D. F.; Ma, G.; Levering, L. M.; Allen, H. C.: Vibrational Spectroscopy of Aqueous Sodium Halide Solutions and Air-Liquid Interfaces: Observation of Increased Interfacial Depth. J Phys Chem B 2004, 108, 22522260.CrossRefGoogle Scholar
Sovago, M.; Campen, R. K.; Wurpel, G. W. H.; Muller, M.; Bakker, H. J.; Bonn, M.: Comment on “Vibrational Response of Hydrogen-Bonded Interfacial Water is Dominated by Intramolecular Coupling” - Reply. Phys Rev Lett 2008, 101, 139402CrossRefGoogle Scholar
Raymond, E. A.; Tarbuck, T. L.; Brown, M. G.; Richmond, G. L.: Hydrogen-Bonding Interactions at the Vapor/Water Interface Investigated by Vibrational Sum-Frequency Spectroscopy of HOD/H2O/D2O Mixtures and Molecular Dynamics Simulations. J Phys Chem B 2003, 107, 546556.CrossRefGoogle Scholar
Levering, L. M.; Sierra-Hernandez, M. R.; Allen, H. C.: Observation of Hydronium Ions at the Air-Aqueous Acid Interface: Vibrational Spectroscopic Studies of Aqueous HCI, HBr, and HI. J Phys Chem C 2007, 111, 88148826.CrossRefGoogle Scholar
Gan, W.; Wu, D.; Zhang, Z.; Feng, R. R.; Wang, H. F.: Polarization and Experimental Configuration Analyses of Sum Frequency Generation Vibrational Spectra, Structure, and Orientational Motion of the Air/Water Interface. J Chem Phys 2006, 124, 114705CrossRefGoogle ScholarPubMed
Ji, N.; Ostroverkhov, V.; Tian, C. S.; Shen, Y. R.: Characterization of Vibrational Resonances of Water-Vapor Interfaces by Phase-Sensitive Sum-Frequency Spectroscopy. Phys Rev Lett 2008, 100.CrossRefGoogle ScholarPubMed
Nihonyanagi, S.; Yamaguchi, S.; Tahara, T.: Direct Evidence for Orientational Flip-Flop of Water Molecules at Charged Interfaces: A Heterodyne-Detected Vibrational Sum Frequency Generation Study. J Chem Phys 2009, 130, 204704.CrossRefGoogle ScholarPubMed
Chen, X. K.; Hua, W.; Huang, Z. S.; Allen, H. C.: Interfacial Water Structure Associated with Phospholipid Membranes Studied by Phase-Sensitive Vibrational Sum Frequency Generation Spectroscopy. J Am Chem Soc 2010, 132, 1133611342.CrossRefGoogle ScholarPubMed
Tian, C. S.; Shen, Y. R.: Isotopic Dilution Study of the Water/Vapor Interface by Phase-Sensitive Sum-Frequency Vibrational Spectroscopy. J Am Chem Soc 2009, 131, 27902791.CrossRefGoogle ScholarPubMed
Nihonyanagi, S.; Ishiyama, T.; Lee, T.; Yamaguchi, S.; Bonn, M.; Morita, A.; Tahara, T.: Unified Molecular View of the Air/Water Interface Based on Experimental and Theoretical X(2) Spectra of an Isotopically Diluted Water Surface. J Am Chem Soc 2011, 133, 1687516880.CrossRefGoogle Scholar
Morita, A.; Hynes, J. T.: A Theoretical Analysis of the Sum Frequency Generation Spectrum of the Water Surface. II. Time-Dependent Approach. J Phys Chem B 2002, 106, 673685.CrossRefGoogle Scholar
Ishiyama, T.; Morita, A.: Analysis of Anisotropic Local Field in Sum Frequency Generation Spectroscopy with the Charge Response Kernel Water Model. J Chem Phys 2009, 131, 244714.CrossRefGoogle ScholarPubMed
Ishiyama, T.; Morita, A.: Vibrational Spectroscopic Response of Intermolecular Orientational Correlation at the Water Surface. J Phys Chem C 2009, 113, 1629916302.CrossRefGoogle Scholar
Pieniazek, P. A.; Tainter, C. J.; Skinner, J. L.: Interpretation of the Water Surface Vibrational Sum-Frequency Spectrum. J Chem Phys 2011, 135, 044701.CrossRefGoogle ScholarPubMed
Nagata, Y.; Hsieh, C. S.; Hasegawa, T.; Voll, J.; Backus, E. H. G.; Bonn, M.: Water Bending Mode at the Water-Vapor Interface Probed by Sum-Frequency Generation Spectroscopy: A Combined Molecular Dynamics Simulation and Experimental Study. J Phys Chem Lett 2013, 4, 18721877.CrossRefGoogle ScholarPubMed
Wu, X. Z.; Sirota, E. B.; Sinha, S. K.; Ocko, B. M.; Deutsch, M.: Surface Crystallization of Liquid Normal-Alkanes. Phys Rev Lett 1993, 70, 958961.CrossRefGoogle ScholarPubMed
Sefler, G. A.; Du, Q.; Miranda, P. B.; Shen, Y. R.: Surface Crystallization of Liquid N-Alkanes and Alcohol Monolayers Studied by Surface Vibrational Spectroscopy. Chem Phys Lett 1995, 235, 347354.CrossRefGoogle Scholar
Petersen, P. B.; Saykally, R. J.: On the Nature of Ions at the Liquid Water Surface. Annu Rev Phys Chem 2006, 57, 333364.CrossRefGoogle ScholarPubMed
Gopalakrishnan, S.; Liu, D. F.; Allen, H. C.; Kuo, M.; Shultz, M. J.: Vibrational Spectroscopic Studies of Aqueous Interfaces: Salts, Acids, Bases, and Nanodrops. Chem Rev 2006, 106, 11551175.CrossRefGoogle ScholarPubMed
Jungwirth, P.; Tobias, D. J.: Specific Ion Effects at the Air/Water Interface. Chem Rev 2006, 106, 12591281.CrossRefGoogle ScholarPubMed
Jungwirth, P.: Spiers Memorial Lecture Ions at Aqueous Interfaces. Faraday Discuss 2009, 141, 930.CrossRefGoogle ScholarPubMed
Jubb, A. M.; Hua, W.; Allen, H. C.: Environmental Chemistry at Vapor/Water Interfaces: Insights from Vibrational Sum Frequency Generation Spectroscopy. Ann Rev Phys Chem, Vol 63 2012, 63, 107130.CrossRefGoogle ScholarPubMed
Petersen, P. B.; Saykally, R. J.: Confirmation of enhanced anion concentration at the liquid water surface. Chem Phys Lett 2004, 397, 5155.CrossRefGoogle Scholar
Miyamae, T.; Morita, A.; Ouchi, Y.: First Acid Dissociation at an Aqueous H2SO4 Interface with Sum Frequency Generation Spectroscopy. Phys Chem Chem Phys 2008, 10, 20102013.CrossRefGoogle ScholarPubMed
Wen, Y. C.; Zha, S.; Liu, X.; Yang, S. S.; Guo, P.; Shi, G. S.; Fang, H. P.; Shen, Y. R.; Tian, C. S.: Unveiling Microscopic Structures of Charged Water Interfaces by Surface-Specific Vibrational Spectroscopy. Phys. Rev. Lett. (To be published)Google Scholar
Onsager, L.; Samaras, N. N. T.: The Surface Tension of Debye-Huckel Electrolytes. J Chem Phys 1934, 2, 28536.CrossRefGoogle Scholar
Jungwirth, P.; Tobias, D. J.: Molecular Structure of Salt Solutions: A New View of the Interface with Implications for Heterogeneous Atmospheric Chemistry. J Phys Chem B 2001, 105, 1046810472.CrossRefGoogle Scholar
Netz, R. R.; Horinek, D.: Progress in Modeling of Ion Effects at the Vapor/Water Interface. Ann Rev Phys Chem, 2012, 63, 401418.CrossRefGoogle ScholarPubMed
Tian, C. S.; Byrnes, S. J.; Han, H. L.; Shen, Y. R.: Surface Propensities of Atmospherically Relevant Ions in Salt Solutions Revealed by Phase-Sensitive Sum Frequency Vibrational Spectroscopy. J Phys Chem Lett 2011, 2, 19461949.CrossRefGoogle Scholar
Hua, W.; Jubb, A. M.; Allen, H. C.: Electric Field Reversal of Na2SO4, (NH4)2SO4, and Na2CO3 Relative to CaCl2 and NaCl at the Air/Aqueous Interface Revealed by Heterodyne Detected Phase-Sensitive Sum Frequency. J Phys Chem Lett 2011, 2, 25152520.CrossRefGoogle Scholar
Petersen, P. B.; Saykally, R. J.: Is the Liquid Water Surface Basic or Acidic? Macroscopic vs. Molecular-Scale Investigations. Chem Phys Lett 2008, 458, 255261.CrossRefGoogle Scholar
Tian, C. S.; Ji, N.; Waychunas, G. A.; Shen, Y. R.: Interfacial Structures of Acidic and Basic Aqueous Solutions. J Am Chem Soc 2008, 130, 1303313039.CrossRefGoogle ScholarPubMed
Yang, S. S.; Su, Y. D.; Tian, C. S.; Shen, Y. R. : to be published.201Google Scholar
Gavish, M.; Popovitzbiro, R.; Lahav, M.; Leiserowitz, L.: Ice Nucleation by Alcohols Arranged in Monolayers at the Surface of Water Drops. Science 1990, 250, 973975.CrossRefGoogle ScholarPubMed
Wen, Y. C.; Zha, S.; Tian, C. S.; Shen, Y. R. : to be published.Google Scholar
Onorato, R. M.; Otten, D. E.; Saykally, R. J.: Measurement of Bromide Ion Affinities for the Air/Water and Dodecanol/Water Interfaces at Molar Concentrations by UV Second Harmonic Generation Spectroscopy. J Phys Chem C 2010, 114, 1374613751.CrossRefGoogle Scholar
Mondal, J. A.; Nihonyanagi, S.; Yamaguchi, S.; Tahara, T.: Structure and Orientation of Water at Charged Lipid Monolayer/Water Interfaces Probed by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. J Am Chem Soc 2010, 132, 1065610657.CrossRefGoogle Scholar
Wurpel, G. W. H.; Sovago, M.; Bonn, M.: Sensitive Probing of DNA Binding to a Cationic Lipid Monolayer. J Am Chem Soc 2007, 129, 84208421.CrossRefGoogle ScholarPubMed
Velasco-Velez, J. J.; Wu, C. H.; Pascal, T. A.; Wan, L. W. F.; Guo, J. H.; Prendergast, D.; Salmeron, M.: The Structure of Interfacial Water on Gold Electrodes Studied by X-ray Absorption Spectroscopy. Science 2014, 346, 831834.CrossRefGoogle Scholar
Borukhov, I.; Andelman, D.; Orland, H.: Steric Effects in Electrolytes: A Modified Poisson–Boltzmann Equation. Phys Rev Lett 1997, 79, 435438.CrossRefGoogle Scholar
Kilic, M. S.; Bazant, M. Z.; Ajdari, A.: Steric Effects in the Dynamics of Electrolytes at Large Applied Voltages. I. Double-Layer Charging. Phys Rev E 2007, 75.Google ScholarPubMed
Tang, C. Y.; Allen, H. C.: Ionic Binding of Na+ versus K+ to the Carboxylic Acid Headgroup of Palmitic Acid Monolayers Studied by Vibrational Sum Frequency Generation Spectroscopy. J Phys Chem A 2009, 113, 73837393.CrossRefGoogle Scholar
Du, Q.; Freysz, E.; Shen, Y. R.: Surface Vibrational Spectroscopic Studies of Hydrogen-Bonding and Hydrophobicity. Science 1994, 264, 826828.CrossRefGoogle ScholarPubMed
Lee, C. Y.; Mccammon, J. A.; Rossky, P. J.: The Structure of Liquid Water at an Extended Hydrophobic Surface. J Chem Phys 1984, 80, 44484455.CrossRefGoogle Scholar
Tian, C. S.; Shen, Y. R.: Structure and Charging of Hydrophobic Material/Water Interfaces Studied by Phase-Sensitive Sum-Frequency Vibrational Spectroscopy. P Natl Acad Sci USA 2009, 106, 1514815153.CrossRefGoogle ScholarPubMed
Wang, H. F.; Borguet, E.; Eisenthal, K. B.: Generalized Interface Polarity Scale Based on Second Harmonic Spectroscopy. J Phys Chem B 1998, 102, 49274932.CrossRefGoogle Scholar
Walker, D. S.; Brown, M.; McFearin, C. L.; Richmond, G. L.: Evidence for a Diffuse Interfacial Region at the Dichloroethane/Water Interface. J Phys Chem B 2004, 108, 21112114.CrossRefGoogle Scholar
Walker, D. S.; Richmond, G. L.: Understanding the Effects of Hydrogen Bonding at the Vapor-Water Interface: Vibrational Sum Frequency Spectroscopy of H2O/HOD/D2O Mixtures Studied Using Molecular Dynamics Simulations. J Phys Chem C 2007, 111, 83218330.CrossRefGoogle Scholar
Scatena, L. F.; Brown, M. G.; Richmond, G. L.: Water at Hydrophobic Surfaces: Weak Hydrogen Bonding and Strong Orientation Effects. Science 2001, 292, 908912.CrossRefGoogle Scholar
Beaman, D. K.; Robertson, E. J.; Richmond, G. L.: From Head to Tail: Structure, Solvation, and Hydrogen Bonding of Carboxylate Surfactants at the Organic-Water Interface. J Phys Chem C 2011, 115, 1250812516.CrossRefGoogle Scholar
Beaman, D. K.; Robertson, E. J.; Richmond, G. L.: Unique Assembly of Charged Polymers at the Oil-Water Interface. Langmuir 2011, 27, 21042106.CrossRefGoogle ScholarPubMed
McFearin, C. L.; Richmond, G. L.: The Role of Interfacial Molecular Structure in the Adsorption of Ions at the Liquid-Liquid Interface. J Phys Chem C 2009, 113, 2116221168.CrossRefGoogle Scholar
Scatena, L. F.; Richmond, G. L.: Orientation, Hydrogen Bonding, and Penetration of Water at the Organic/Water Interface. J Phys Chem B 2001, 105, 1124011250.CrossRefGoogle Scholar
Ong, S. W.; Zhao, X. L.; Eisenthal, K. B.: Polarization of Water-Molecules at a Charged Interface: 2nd Harmonic Studies of the Silica Water Interface. Chem Phys Lett 1992, 191, 327335.CrossRefGoogle Scholar
Du, Q.; Freysz, E.; Shen, Y. R.: Vibrational-Spectra of Water-Molecules at Quartz Water Interfaces. Phys Rev Lett 1994, 72, 238241.CrossRefGoogle ScholarPubMed
Ostroverkhov, V.; Waychunas, G. A.; Shen, Y. R.: New Information on Water Interfacial Structure Revealed by Phase-Sensitive Surface Spectroscopy. Phys Rev Lett 2005, 94, 046102.CrossRefGoogle ScholarPubMed
Sung, J. H.; Zhang, L. N.; Tian, C. S.; Shen, Y. R.; Waychunas, G. A.: Effect of pH on the Water/Alpha-Al2O3 (1(1)over-bar-02) Interface Structure Studied by Sum-Frequency Vibrational Spectroscopy. J Phys Chem C 2011, 115, 1388713893.CrossRefGoogle Scholar
Lis, D.; Backus, E. H. G.; Hunger, J.; Parekh, S. H.; Bonn, M.: Liquid Flow Along a Solid Surface Reversibly Alters Interfacial Chemistry. Science 2014, 344, 11381142.CrossRefGoogle ScholarPubMed
Sung, J.; Waychunas, G. A.; Shen, Y. R.: Surface-Induced Anisotropic Orientations of Interfacial Ethanol Molecules at Air/Sapphire(1(1)over-bar02) and Ethanol/Sapphire(1(1)over-bar02) Interfaces. J Phys Chem Lett 2011, 2, 18311835.CrossRefGoogle Scholar
Liu, W. T.; Zhang, L. N.; Shen, Y. R.: Interfacial Layer Structure at Alcohol/Silica Interfaces Probed by Sum-Frequency Vibrational Spectroscopy. Chem Phys Lett 2005, 412, 206209.CrossRefGoogle Scholar
Baldelli, S.: Interfacial Structure of Room-Temperature Ionic Liquids at the Solid–Liquid Interface as Probed by Sum Frequency Generation Spectroscopy. J Phys Chem Lett 2013, 4, 244252.CrossRefGoogle ScholarPubMed
Iimori, T.; Iwahashi, T.; Ishii, H.; Seki, K.; Ouchi, Y.; Ozawa, R.; Hamaguchi, H.; Kim, D.: Orientational Ordering of Alkyl Chain at the Air/Liquid Interface of Ionic Liquids Studied by Sum Frequency Vibrational Spectroscopy. Chem Phys Lett 2004, 389, 321326.CrossRefGoogle Scholar
Baldelli, S.: Influence of Water on the Orientation of Cations at the Surface of a Room-Temperature Ionic Liquid: A Sum Frequency Generation Vibrational Spectroscopic Study. J Phys Chem B 2003, 107, 61486152.CrossRefGoogle Scholar
Iwahashi, T.; Sakai, Y.; Kim, D.; Ishiyama, T.; Morita, A.; Ouchi, Y.: Nonlinear Vibrational Spectroscopic Studies on Water/Ionic Liquid([C(n)mim]TFSA: n=4, 8) interfaces. Faraday Discuss 2012, 154, 289301.CrossRefGoogle Scholar
Iwahashi, T.; Sakai, Y.; Kanai, K.; Kim, D.; Ouchi, Y.: Alkyl-Chain Dividing Layer at an Alcohol/Ionic Liquid Buried Interface Studied by Sum-Frequency Generation Vibrational Spectroscopy. Phys Chem Chem Phys 2010, 12, 1294312946.CrossRefGoogle ScholarPubMed
Romero, C.; Moore, H. J.; Lee, T. R.; Baldelli, S.: Orientation of 1-Butyl-3-Methylimidazolium Based Ionic Liquids at a Hydrophobic Quartz Interface Using Sum Frequency Generation Spectroscopy. J Phys Chem C 2007, 111, 240247.CrossRefGoogle Scholar
Fitchett, B. A.; Conboy, J. C.: Structure of the Room-Temperature Ionic Liquid/SiO2 Interface Studied by Sum-Frequency Vibrational Spectroscopy. J Phys Chem B 2004, 108, 2025520262.CrossRefGoogle Scholar
Penalber, C. Y.; Baker, G. A.; Baldelli, S.: Sum Frequency Generation Spectroscopy of Imidazolium-Based Ionic Liquids with Cyano-Functionalized Anions at the Solid Salt-Liquid Interface. J Phys Chem B 2013, 117, 59395949.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Interfacial liquid structures
  • Y. R. Shen, University of California, Berkeley
  • Book: Fundamentals of Sum-Frequency Spectroscopy
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316162613.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Interfacial liquid structures
  • Y. R. Shen, University of California, Berkeley
  • Book: Fundamentals of Sum-Frequency Spectroscopy
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316162613.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Interfacial liquid structures
  • Y. R. Shen, University of California, Berkeley
  • Book: Fundamentals of Sum-Frequency Spectroscopy
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316162613.009
Available formats
×