Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- 0 Prelude
- 1 Fundamentals
- 2 ℕ: Natural Numbers
- 3 ℤ: Integers
- 4 ℤm: Modular Arithmetic
- 5 ℚ: Rational Numbers
- 6 ℝ: Real Numbers I, Dedekind Cuts
- 7 ℝ: Real Numbers II, Cauchy Sequences
- 8 ℝ: Real Numbers III, Complete Ordered Fields
- 9 ℂ: Complex Numbers
- 10 Further Extensions
- Answers to Exercises
- Bibliography
- Index
3 - ℤ: Integers
Published online by Cambridge University Press: 05 December 2024
- Frontmatter
- Dedication
- Contents
- Preface
- 0 Prelude
- 1 Fundamentals
- 2 ℕ: Natural Numbers
- 3 ℤ: Integers
- 4 ℤm: Modular Arithmetic
- 5 ℚ: Rational Numbers
- 6 ℝ: Real Numbers I, Dedekind Cuts
- 7 ℝ: Real Numbers II, Cauchy Sequences
- 8 ℝ: Real Numbers III, Complete Ordered Fields
- 9 ℂ: Complex Numbers
- 10 Further Extensions
- Answers to Exercises
- Bibliography
- Index
Summary
We define integers as equivalence classes of pairs of natural numbers and develop key properties of integers noting that they form a commutative ring.
- Type
- Chapter
- Information
- From Counting to ContinuumWhat Are Real Numbers, Really?, pp. 53 - 66Publisher: Cambridge University PressPrint publication year: 2024