Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T06:25:17.313Z Has data issue: false hasContentIssue false

7 - Anomalous Diffusion

Published online by Cambridge University Press:  17 January 2018

Luiz Roberto Evangelista
Affiliation:
Universidade Estadual de Maringá, Brazil
Ervin Kaminski Lenzi
Affiliation:
Universidade Estadual de Maringá, Brazil
Get access

Summary

The preceding chapters dealt with the fractional diffusion equation with spatial and temporal fractional derivatives, diffusion coefficients with space and time dependencies, external forces, and surface effects in finite length situations. Remarkable consequences appear also when we consider the diffusion process in the presence of anisotropy.

To analyse the anisotropic case, we first face a problem in which suspended or dispersed particles diffuse through an anisotropic semi-infinite medium. The process is described in the framework of the usual diffusion equation, but anomalous diffusion behaviour arises in the system because the phenomenon of adsorption– desorption of particles occurs at the interface, and the conservation of the number of particles in the system has to be imposed.

The second problem is to consider a fractional diffusion equation subjected to an anisotropy, with a nonsingular spatial and temporal diffusion coefficient. We will show that the distribution governed by the equation is not separable in terms of space and time variables as in the usual diffusion, which is an unexpected behaviour since the fractional operator is linear. As a specific application, the chapter closes with the search for the solutions to the comb model with integer and fractional derivatives, and also with a drift term. This model is a simplified picture of highly disordered systems and can be connected with a rich class of diffusive processes due to geometric constraints.

The Adsorption–Desorption Process in Anisotropic Media

We consider first the diffusion problem in a semi-infinite anisotropic medium in contact with a solid substrate at which an adsorption–desorption process takes place [114, 210]. Initially, a defined number of particles is suspended or dispersed in the medium and an anisotropic diffusive process starts. The particles reaching the solid substrate can be adsorbed and desorbed in such a way that the kinetics of this process is governed by a typical balance equation characterising a chemical reaction of first kind (Langmuir approximation) as the one considered in Section 5.4. The conservation of the number of particles is then invoked and the profiles of the surface as well as of the bulk density of particles are analytically obtained by means of Laplace–Fourier techniques. The results for the momentum distribution show that the system exhibits anomalous diffusion [211] behaviour, according to the values of the characteristic times entering the problem.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×