Published online by Cambridge University Press: 23 December 2009
We have seen that surfaces grown by MBE are rough at large length scales. Moreover, the dynamics of the roughening process follows simple power laws that are predictable if one uses the correct growth equation. In our previous discussion, we neglected a particular property of the diffusion process, the existence of the Schwoebel barrier, biasing the atom diffusion (see §12.2.4). In this chapter we show that this diffusion bias generates an instability, which eventually dominates the growth process. The growth dynamics do not follow the scaling laws discussed in the previous chapters and the resulting interface is not self-affine.
Diffusion bias and instabilities
We saw in §12.2.4 that the existence of an additional potential barrier at the edge of a step generates a bias in the diffusion process, making it improbable that an atom will jump off the edge of the step. Next we investigate how one can incorporate this effect into the continuum equations.
A nonzero local slope corresponds to a series of consecutive steps in the surface (see Fig. 20.1). Suppose an atom lands on the interface and begins to diffuse. If it reaches an ascending step, it sticks by bonding with the atoms of the step. If it diffuses toward the edge of a descending step, there is only a small probability the particle will jump down the step, since the edge barrier will reflect the particle back.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.