Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T09:56:12.850Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  16 May 2011

John Collins
Affiliation:
Pennsylvania State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abazov, V. M., et al. (2008). Measurement of the inclusive jet cross section in pp collisions at. Phys. Rev. Lett. 101, 062001. arXiv:0802.2400.CrossRefGoogle Scholar
Abe, F., et al. (1990). Pseudorapidity distributions of charged particles produced in pp interactions at and 1800 GeV. Phys. Rev. D41, 2330.Google Scholar
Abe, F., et al. (1996). Inclusive jet cross section in pp collisions at. Phys. Rev. Lett. 77, 438–443. arXiv:hep-ex/9601008.CrossRefGoogle Scholar
Abe, F., et al. (1997). Observation of diffractive W boson production at the Tevatron. Phys. Rev. Lett. 78, 2698–2703. arXiv:hep-ex/9703010.CrossRefGoogle Scholar
Abramowitz, M., Stegun, I. A. (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover.Google Scholar
Abulencia, A., et al. (2007). Measurement of the inclusive jet cross section using the kT algorithm in pp collisions at with the CDF II detector. Phys. Rev. D75, 092006. arXiv:hep-ex/0701051.Google Scholar
Adloff, C., et al. (2003). Measurement and QCD analysis of neutral and charged current cross sections at HERA. Eur. Phys. J. C30, 1–32. arXiv:hep-ex/0304003.Google Scholar
Affolder, A. A., et al. (2000). The transverse momentum and total cross section of e+e- pairs in the Z boson region from pp collisions at. Phys. Rev. Lett. 84, 845–850. arXiv:hep-ex/0001021.CrossRefGoogle Scholar
Airapetian, A., et al. (2005). First measurement of the tensor structure function b1 of the deuteron. Phys. Rev. Lett. 95, 242001. arXiv:hep-ex/0506018.CrossRefGoogle ScholarPubMed
Airapetian, A., et al. (2007). Precise determination of the spin structure function g1 of the proton, deuteron and neutron. Phys. Rev. D75, 012007. arXiv:hep-ex/0609039.Google Scholar
Airapetian, A., et al. (2008). Evidence for a transverse single-spin asymmetry in leptoproduction of π+π- pairs. JHEP 06, 017. arXiv:0803.2367.Google Scholar
Aivazis, M. A. G., et al. (1994). Leptoproduction of heavy quarks. 2. A unified QCD formulation of charged and neutral current processes from fixed target to collider energies. Phys. Rev. D50, 3102–3118. arXiv:hep-ph/9312319.Google Scholar
Aktas, A., et al. (2007a). Dijet cross sections and parton densities in diffractive DIS at HERA. JHEP 10, 042. arXiv:0708.3217.Google Scholar
Aktas, A., et al. (2007b). Tests of QCD factorisation in the diffractive production of dijets in deep-inelastic scattering and photoproduction at HERA. Eur. Phys. J. C51, 549–568. arXiv:hep-ex/0703022.CrossRefGoogle Scholar
Albino, S., Kniehl, B. A., Kramer, G. (2008). AKK update: improvements from new theoretical input and experimental data. Nucl. Phys. B803, 42–104. arXiv:0803.2768.CrossRefGoogle Scholar
Alekhin, S., Melnikov, K., Petriello, F. (2006). Fixed target Drell-Yan data and NNLO QCD fits of parton distribution functions. Phys. Rev. D74, 054033. arXiv:hep-ph/0606237.Google Scholar
Allanach, B. C., et al. (2006). Les Houches “Physics at TeV colliders 2005” Beyond the Standard Model working group: summary report. arXiv:hep-ph/0602198.
Almeida, L. G., Sterman, G., Vogelsang, W. (2009). Threshold resummation for dihadron production in hadronic collisions. Phys. Rev. D80, 074016. arXiv:0907.1234.Google Scholar
Alner, G. J., et al. (1986). Scaling of pseudorapidity distributions at c.m. energies up to 0.9 TeV. Z. Phys. C33, 1–6.Google Scholar
Altarelli, G., Parisi, G. (1977). Asymptotic freedom in parton language. Nucl. Phys. B126, 298–318.CrossRefGoogle Scholar
Altarelli, G., et al. (1979). Processes involving fragmentation functions beyond the leading order in QCD. Nucl. Phys. B160, 301–329.CrossRefGoogle Scholar
Amsler, C., et al. (2008). Review of particle physics. Phys. Lett. B667, 1–1339.CrossRefGoogle Scholar
Anastasiou, C., et al. (2003). Dilepton rapidity distribution in the Drell-Yan process at next-to-next-to-leading order in QCD. Phys. Rev. Lett. 91, 182002. arXiv:hep-ph/0306192.CrossRefGoogle ScholarPubMed
Anastasiou, C., et al. (2004). High-precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at next-to-next-to leading order. Phys. Rev. D69, 094008. arXiv:hep-ph/0312266.Google Scholar
Andersson, B. (1998). The Lund Model. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Appelquist, T., Carazzone, J. (1975). Infrared singularities and massive fields. Phys. Rev. D11, 2856–2861.Google Scholar
Arnold, P. B., Kauffman, R. P. (1991). W and Z production at next-to-leading order: from large qT to small. Nucl. Phys. B349, 381–413.CrossRefGoogle Scholar
Artru, X., Collins, J. C. (1996). Measuring transverse spin correlations by 4-particle correlations in e+e- → 2 jets. Z. Phys. C69, 277–286. arXiv:hep-ph/9504220.Google Scholar
Artru, X., Mekhfi, M. (1990). Transversely polarized parton densities, their evolution and their measurement. Z. Phys. C45, 669–676.Google Scholar
,ATLAS Collaboration (2010). Charged-particle multiplicities in pp interactions at measured with the ATLAS detector at the LHC. Phys. Lett. B688, 21–42. arXiv:1003.3124.Google Scholar
Aybat, S. M., Sterman, G. (2009). Soft-gluon cancellation, phases and factorization with initialstate partons. Phys. Lett. B671, 46–50. arXiv:0811.0246.CrossRefGoogle Scholar
Bacchetta, A., et al. (2004). Single-spin asymmetries: the Trento conventions. Phys. Rev. D70, 117504. arXiv:hep-ph/0410050.Google Scholar
Bacchetta, A., et al. (2007). Semi-inclusive deep inelastic scattering at small transverse momentum. JHEP 02, 093. arXiv:hep-ph/0611265.CrossRefGoogle Scholar
Bacchetta, A., et al. (2008). Matches and mismatches in the descriptions of semi-inclusive processes at low and high transverse momentum. JHEP 08, 023. arXiv:0803.0227.CrossRefGoogle Scholar
Bacchetta, A., et al. (2009). Asymmetries involving dihadron fragmentation functions: from DIS to e+e- annihilation. Phys. Rev. D79, 034029. arXiv:0812.0611.Google Scholar
Badier, J., et al. (1981). Angular distributions in the dimuon hadronic production at 150 GeV/c. Zeit. Phys. C11, 195–202.Google Scholar
Bahr, M., et al. (2008). Herwig++ physics and manual. Eur. Phys. J. C58, 639–707. arXiv:0803.0883.CrossRefGoogle Scholar
Baier, R., Fey, K. (1979). Finite corrections to quark fragmentation functions in perturbative QCD. Z. Phys. C2, 339–349.Google Scholar
Baikov, P. A., Chetyrkin, K. G., Kuhn, J. H. (2008). Order QCD corrections to Z and τ decays. Phys. Rev. Lett. 101, 012002. arXiv:0801.1821.CrossRefGoogle Scholar
Bakker, B. L. G., Leader, E., Trueman, T. L. (2004). A critique of the angular momentum sum rules and a new angular momentum sum rule. Phys. Rev. D70, 114001. arXiv:hep-ph/0406139.Google Scholar
Balitsky, I. (1999). Factorization and high-energy effective action. Phys. Rev. D60, 014020. arXiv:hep-ph/9812311.Google Scholar
Balitsky, I. I., Lipatov, L. N. (1978). The pomeranchuk singularity in quantum chromodynamics. Sov. J. Nucl. Phys. 28, 822–829.Google Scholar
Barbieri, R., et al. (1976). Mass corrections to scaling in deep inelastic processes. Nucl. Phys. B117, 50–76.CrossRefGoogle Scholar
Bardakci, K., Halpern, M. B. (1968). Theories at infinite momentum. Phys. Rev. 176, 1686–1699.CrossRefGoogle Scholar
Bardeen, W. A., et al. (1978). Deep-inelastic scattering beyond the leading order in asymptotically free gauge theories. Phys. Rev. D18, 3998–4017.Google Scholar
Barone, V., Drago, A., Ratcliffe, P. G. (2002). Transverse polarisation of quarks in hadrons. Phys. Rept. 359, 1–168. arXiv:hep-ph/0104283.CrossRefGoogle Scholar
Barone, V., Melis, S., Prokudin, A. (2009). The Boer-Mulders effect in unpolarized SIDIS: an analysis of the COMPASS and HERMES data on the cos 2φ asymmetry. Phys. Rev. D81, 114026. arXiv:0912.5194.Google Scholar
Bassetto, A., Dalbosco, M., Soldati, R. (1987). Renormalization of the Yang-Mills theories in the light cone gauge. Phys. Rev. D36, 3138–3147.Google Scholar
Bassetto, A., et al. (1985). Yang-Mills theories in the light-cone gauge. Phys. Rev. D31, 2012–2019.Google Scholar
Bauer, C. W., Stewart, I. W. (2001). Invariant operators in collinear effective theory. Phys. Lett. B516, 134–142. arXiv:hep-ph/0107001.CrossRefGoogle Scholar
Bauer, C. W., et al. (2001). An effective field theory for collinear and soft gluons: heavy to light decays. Phys. Rev. D63, 114020. arXiv:hep-ph/0011336.Google Scholar
Becchi, C., Rouet, A., Stora, R. (1975). Renormalization of the abelian Higgs-Kibble model. Commun. Math. Phys. 42, 127–162.CrossRefGoogle Scholar
Becchi, C., Rouet, A., Stora, R. (1976). Renormalization of gauge theories. Annals Phys. 98, 287–321.CrossRefGoogle Scholar
Belitsky, A. V., Müller, D., Kirchner, A. (2002). Theory of deeply virtual Compton scattering on the nucleon. Nucl. Phys. B629, 323–392. arXiv:hep-ph/0112108.CrossRefGoogle Scholar
Bengtsson, M., Sjöstrand, T. (1988). Parton showers in leptoproduction events. Z. Phys. C37, 465–476.Google Scholar
Berera, A., Soper, D. E. (1996). Behavior of diffractive parton distribution functions. Phys. Rev. D53, 6162–6179. arXiv:hep-ph/9509239.Google Scholar
Berger, C. F., et al. (2009). Next-to-leading order QCD predictions for W +3-jet distributions at hadron colliders. Phys. Rev. D80, 074036. arXiv:0907.1984.Google Scholar
Berger, E. R., Diehl, M., Pire, B. (2002). Timelike Compton scattering: exclusive photoproduction of lepton pairs. Eur. Phys. J. C23, 675–689. arXiv:hep-ph/0110062.CrossRefGoogle Scholar
Bern, Z., Dixon, L. J., Kosower, D. A. (2007). On-shell methods in perturbative QCD. Annals Phys. 322, 1587–1634. arXiv:0704.2798.CrossRefGoogle Scholar
Bernreuther, W. (1983a). Heavy quark effects on the parameters of quantum chromodynamics defined by minimal subtraction. Z. Phys. C20, 331–333.Google Scholar
Bernreuther, W. (1983b). Decoupling of heavy quarks in quantum chromodynamics. Ann. Phys. 151, 127–162.CrossRefGoogle Scholar
Bernreuther, W., Wetzel, W. (1982). Decoupling of heavy quarks in the minimal subtraction scheme. Nucl. Phys. B197, 228–236. Erratum: B513, 758 (1998).CrossRefGoogle Scholar
Bethke, S. (2009). The 2009 world average of αs. Eur. Phys. J. C64, 689–703. arXiv:0908.1135.CrossRefGoogle Scholar
Bethke, S., et al. (2009). Determination of the strong coupling αs from hadronic event shapes and NNLO QCD predictions using JADE data. Eur. Phys. J. C64, 351–360. arXiv:0810.1389.CrossRefGoogle Scholar
Bianconi, A., et al. (2009). Effects of azimuth-symmetric acceptance cutoffs on the measured asymmetry in unpolarized Drell-Yan fixed target experiments. arXiv:0911.5493.
Binosi, D., et al. (2009). JaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notes. Comput. Phys. Commun. 180, 1709–1715. Available from: http://jaxodraw.sourceforge.net/, arXiv:0811.4113.CrossRefGoogle Scholar
Binoth, T., et al. (2008). NLO QCD corrections to tri-boson production. JHEP 06, 082. arXiv:0804.0350.CrossRefGoogle Scholar
Bjorken, J. D. (1966). Applications of the chiral U(6) ⊗ U(6) algebra of current densities. Phys. Rev. 148, 1467–1478.CrossRefGoogle Scholar
Bjorken, J. D., Paschos, E. A. (1969). Inelastic electron-proton and γ-proton scattering and the structure of the nucleon. Phys. Rev. 185, 1975–1982.CrossRefGoogle Scholar
Bloom, E. D., Gilman, F. J. (1971). Scaling and the behavior of nucleon resonances in inelastic electron-nucleon scattering. Phys. Rev. D4, 2901–2916.Google Scholar
Blümlein, J., Robaschik, D. (2000). On the structure of the virtual Compton amplitude in the generalized Bjorken region: integral relations. Nucl. Phys. B581, 449–473. arXiv:hep-ph/0002071.CrossRefGoogle Scholar
Bodwin, G. T. (1985). Factorization of the Drell-Yan cross-section in perturbation theory. Phys. Rev. D31, 2616–2642. Erratum: D34, 3932 (1986).Google Scholar
Bodwin, G. T., Brodsky, S. J., Lepage, G. P. (1981). Initial state interactions and the Drell-Yan process. Phys. Rev. Lett. 47, 1799–1803.CrossRefGoogle Scholar
Boer, D. (2008). Transversity asymmetries. Talk given at Transversity 2008: 2nd International Workshop on Transverse Polarization Phenomena in Hard Processes, Ferrara, Italy, 28–31 May 2008. arXiv:0808.2886.
Boer, D. (2009). Angular dependences in inclusive two-hadron production at BELLE. Nucl. Phys. B806, 23–67. arXiv:0804.2408.CrossRefGoogle Scholar
Bogoliubov, N. N., Shirkov, D. V. (1959). Introduction to the Theory of Quantized Fields. New York: Wiley-Interscience.Google Scholar
Bomhof, C. J., Mulders, P. J., Pijlman, F. (2004). Gauge link structure in quark-quark correlators in hard processes. Phys. Lett. B596, 277–286. arXiv:hep-ph/0406099.CrossRefGoogle Scholar
Born, M., Heisenberg, W., Jordan, P. (1926). On quantum mechanics II. Zeit. f. Phys. 35, 557–615.CrossRefGoogle Scholar
Born, M., Jordan, P. (1925). On quantum mechanics. Zeit. f. Phys. 34, 858–888.CrossRefGoogle Scholar
Bouchiat, C., Fayet, P., Meyer, P. (1971). Galilean invariance in the infinite momentum frame and the parton model. Nucl. Phys. B34, 157–176.CrossRefGoogle Scholar
Brock, R., et al. (1995). Handbook of perturbative QCD: version 1.0. Rev. Mod. Phys. 67, 157–248.Google Scholar
Brodsky, S. J., Farrar, G. R. (1973). Scaling laws at large transverse momentum. Phys. Rev. Lett. 31, 1153–1156.CrossRefGoogle Scholar
Brodsky, S. J., Hwang, D.-S., Schmidt, I. (2002). Final-state interactions and single-spin asymmetries in semi-inclusive deep inelastic scattering. Phys. Lett. B530, 99–107. arXiv:hep-ph/0201296.CrossRefGoogle Scholar
Brodsky, S. J., Lepage, G. P. (1989). Exclusive processes in quantum chromodynamics. Adv. Ser. Direct. High Energy Phys. 5, 93–240.CrossRefGoogle Scholar
Brodsky, S. J., Pauli, H.-C., Pinsky, S. S. (1998). Quantum chromodynamics and other field theories on the light cone. Phys. Rept. 301, 299–486. arXiv:hep-ph/9705477.CrossRefGoogle Scholar
Brodsky, S. J., et al. (1994). Diffractive leptoproduction of vector mesons in QCD. Phys. Rev. D50, 3134–3144. arXiv:hep-ph/9402283.Google Scholar
Brodsky, S. J., et al. (2001). Light-cone representation of the spin and orbital angular momentum of relativistic composite systems. Nucl. Phys. B593, 311–335. arXiv:hep-th/0003082.CrossRefGoogle Scholar
Brown, L. S. (1992). Quantum Field Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Buras, A. J., et al. (1977). Asymptotic freedom beyond the leading order. Nucl. Phys. B131, 308–326.CrossRefGoogle Scholar
Callan, C. G., Gross, D. J. (1969). High-energy electroproduction and the constitution of the electric current. Phys. Rev. Lett. 22, 156–159.CrossRefGoogle Scholar
Callan, C. G., Gross, D. J. (1973). Bjorken scaling in quantum field theory. Phys. Rev. D8, 4383–4394.Google Scholar
Cardy, J. L., Winbow, G. A. (1974). The absence of final state interaction corrections to the Drell-Yan formula for massive lepton pair production. Phys. Lett. B52, 95.CrossRefGoogle Scholar
Catani, S., Ciafaloni, M., Marchesini, G. (1986). Noncancelling infrared divergences in QCD coherent state. Nucl. Phys. B264, 588–620.CrossRefGoogle Scholar
Catani, S., Fiorani, F., Marchesini, G. (1990a). QCD coherence in initial state radiation. Phys. Lett. B234, 339–345.CrossRefGoogle Scholar
Catani, S., Fiorani, F., Marchesini, G. (1990b). Small-x behavior of initial state radiation in perturbative QCD. Nucl. Phys. B336, 18–85.CrossRefGoogle Scholar
Chang, S.-J., Ma, S.-K. (1969). Feynman rules and quantum electrodynamics at infinite momentum. Phys. Rev. 180, 1506–1513.CrossRefGoogle Scholar
Chekanov, S., et al. (2005). An NLO QCD analysis of inclusive cross-section and jet-production data from the ZEUS experiment. Eur. Phys. J. C42, 1–16. arXiv:hep-ph/0503274.Google Scholar
Chekanov, S., et al. (2010). A QCD analysis of ZEUS diffractive data. Nucl. Phys. B831, 1–25. arXiv:0911.4119.Google Scholar
Chetyrkin, K. G., Harlander, R. V., Kuhn, J. H. (2000). Quartic mass corrections to Rhad at. Nucl. Phys. B586, 56–72. Erratum: B634, 413–414 (2002). arXiv:hep-ph/0005139.CrossRefGoogle Scholar
Chetyrkin, K. G., Kniehl, B. A., Steinhauser, M. (1997). Strong coupling constant with flavour thresholds at four loops in the MS scheme. Phys. Rev. Lett. 79, 2184–2187. arXiv:hep-ph/9706430.CrossRefGoogle Scholar
Chetyrkin, K. G., Kniehl, B. A., Steinhauser, M. (1998). Decoupling relations to and their connection to low-energy theorems. Nucl. Phys. B510, 61–87. arXiv:hep-ph/9708255.Google Scholar
Ciafaloni, M. (1988). Coherence effects in initial jets at small Q2/s. Nucl. Phys. B296, 49–74.CrossRefGoogle Scholar
Coleman, S., Gross, D. J. (1973). Price of asymptotic freedom. Phys. Rev. Lett. 31, 851–854.CrossRefGoogle Scholar
Coleman, S., Norton, R. E. (1965). Singularities in the physical region. Nuovo Cim. 38, 438–442.CrossRefGoogle Scholar
Coleman, S., Weinberg, E. (1973). Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D7, 1888–1910.Google Scholar
Collins, J. C. (1974). Structure of counterterms in dimensional regularization. Nucl. Phys. B80, 341–348.CrossRefGoogle Scholar
Collins, J. C. (1980). Algorithm to compute corrections to the Sudakov form-factor. Phys. Rev. D22, 1478–1489.Google Scholar
Collins, J. C. (1984). Renormalization. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Collins, J. C. (1989). Sudakov form factors. Adv. Ser. Direct. High Energy Phys. 5, 573–614. arXiv:hep-ph/0312336.CrossRefGoogle Scholar
Collins, J. C. (1993). Fragmentation of transversely polarized quarks probed in transverse momentum distributions. Nucl. Phys. B396, 161–182. arXiv:hep-ph/9208213.CrossRefGoogle Scholar
Collins, J. C. (1998a). Hard-scattering factorization with heavy quarks: a general treatment. Phys. Rev. D58, 094002. arXiv:hep-ph/9806259.Google Scholar
Collins, J. C. (1998b). Proof of factorization for diffractive hard scattering. Phys. Rev. D57, 3051–3056. Erratum: D61, 019902 (2000). arXiv:hep-ph/9709499.Google Scholar
Collins, J. C. (2002). Leading-twist single-transverse-spin asymmetries: Drell-Yan and deep-inelastic scattering. Phys. Lett. B536, 43–48. arXiv:hep-ph/0204004.CrossRefGoogle Scholar
Collins, J. C., Frankfurt, L., Strikman, M. (1997). Factorization for hard exclusive electroproduction of mesons in QCD. Phys. Rev. D56, 2982–3006. arXiv:hep-ph/9611433.Google Scholar
Collins, J. C., Hautmann, F. (2000). Infrared divergences and non-lightlike eikonal lines in Sudakov processes. Phys. Lett. B472, 129–134. arXiv:hep-ph/9908467.CrossRefGoogle Scholar
Collins, J. C., Heppelmann, S. F., Ladinsky, G. A. (1994). Measuring transversity densities in singly polarized hadron-hadron and lepton-hadron collisions. Nucl. Phys. B420, 565–582. arXiv:hep-ph/9305309.CrossRefGoogle Scholar
Collins, J. C., Jung, H. (2005). Need for fully unintegrated parton densities. arXiv:hep-ph/0508280.
Collins, J. C., Manohar, A. V., Wise, M. B. (2006). Renormalization of the vector current in QED. Phys. Rev. D73, 105019. arXiv:hep-th/0512187.Google Scholar
Collins, J. C., Metz, A. (2004). Universality of soft and collinear factors in hard-scattering factorization. Phys. Rev. Lett. 93, 252001. arXiv:hep-ph/0408249.CrossRefGoogle ScholarPubMed
Collins, J. C., Qiu, J.-W. (2007). kT factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions. Phys. Rev. D75, 114014. arXiv:0705.2141.Google Scholar
Collins, J. C., Rogers, T. C. (2008). The gluon distribution function and factorization in Feynman gauge. Phys. Rev. D78, 054012. arXiv:0805.1752.Google Scholar
Collins, J. C., Rogers, T. C., Staśto, A. M. (2008). Fully unintegrated parton correlation functions and factorization in lowest order hard scattering. Phys. Rev. D77, 085009. arXiv:0708.2833.Google Scholar
Collins, J. C., Scalise, R. J. (1994). The renormalization of composite operators in Yang-Mills theories using general covariant gauge. Phys. Rev. D50, 4117–4136. arXiv:hep-ph/9403231.Google Scholar
Collins, J. C., Soper, D. E. (1977). Angular distribution of dileptons in high-energy hadron collisions. Phys. Rev. D16, 2219–2225.Google Scholar
Collins, J. C., Soper, D. E. (1981). Back-to-back jets in QCD. Nucl. Phys. B193, 381–443. Erratum: B213, 545 (1983).CrossRefGoogle Scholar
Collins, J. C., Soper, D. E. (1982a). Back-to-back jets: Fourier transform from b to kT. Nucl. Phys. B197, 446–476.CrossRefGoogle Scholar
Collins, J. C., Soper, D. E. (1982b). Parton distribution and decay functions. Nucl. Phys. B194, 445–492.Google Scholar
Collins, J. C., Soper, D. E., Sterman, G. (1985a). Factorization for short distance hadron-hadron scattering. Nucl. Phys. B261, 104–142.CrossRefGoogle Scholar
Collins, J. C., Soper, D. E., Sterman, G. (1985b). Transverse momentum distribution in Drell-Yan pair and W and Z boson production. Nucl. Phys. B250, 199–224.CrossRefGoogle Scholar
Collins, J. C., Soper, D. E., Sterman, G. (1988). Soft gluons and factorization. Nucl. Phys. B308, 833–856.CrossRefGoogle Scholar
Collins, J. C., Sterman, G. (1981). Soft partons in QCD. Nucl. Phys. B185, 172–188.CrossRefGoogle Scholar
Collins, J. C., Tung, W.-K. (1986). Calculating heavy quark distributions. Nucl. Phys. B278, 934–950.CrossRefGoogle Scholar
Collins, J. C., Wilczek, F., Zee, A. (1978). Low-energy manifestations of heavy particles: Application to the neutral current. Phys. Rev. D18, 242–247.Google Scholar
Collins, J. C., Zu, X. (2005). Initial state parton showers beyond leading order. JHEP 03, 059. arXiv:hep-ph/0411332.CrossRefGoogle Scholar
Connes, A., Kreimer, D. (2000). Renormalization in quantum field theory and the Riemann-Hilbert problem I: the Hopf algebra structure of graphs and the main theorem. Comm. Math. Phys. 210, 249–273. arXiv:hep-th/9912092.CrossRefGoogle Scholar
Connes, A., Kreimer, D. (2002). Insertion and elimination: the doubly infinite Lie algebra of Feynman graphs. Annales Henri Poincaré 3, 411–433. arXiv:hep-th/0201157.CrossRefGoogle Scholar
Conway, J. S., et al. (1989). Experimental study of muon pairs produced by 252-GeV pions on tungsten. Phys. Rev. D39, 92–122.Google Scholar
Curci, G., Furmanski, W., Petronzio, R. (1980). Evolution of parton densities beyond leading order: the nonsinglet case. Nucl. Phys. B175, 27–92.CrossRefGoogle Scholar
Cutkosky, R. E. (1960). Singularities and discontinuities of Feynman amplitudes. J. Math. Phys. 1, 429–433.CrossRefGoogle Scholar
Czakon, M. (2005). The four-loop QCD β-function and anomalous dimensions. Nucl. Phys. B710, 485–498. arXiv:hep-ph/0411261.CrossRefGoogle Scholar
Dashen, R. F., Gross, D. J. (1981). The relationship between lattice and continuum definitions of the gauge theory coupling. Phys. Rev. D23, 2340.Google Scholar
de Florian, D., Sassot, R., Stratmann, M. (2007). Global analysis of fragmentation functions for protons and charged hadrons. Phys. Rev. D76, 074033. arXiv:0707.1506.Google Scholar
DeGrand, T., Detar, C. E. (2006). Lattice Methods for Quantum Chromodynamics. Singapore: World Scientific.CrossRefGoogle Scholar
Del Debbio, L., et al. (2007). Neural network determination of parton distributions: the nonsinglet case. JHEP 03, 039. arXiv:hep-ph/0701127.Google Scholar
DeTar, C. E., Ellis, S. D., Landshoff, P. V. (1975). Final state interactions in large transverse momentum lepton and hadron production. Nucl. Phys. B87, 176.CrossRefGoogle Scholar
Diehl, M. (2003). Generalized parton distributions. Phys. Rept. 388, 41–277. arXiv:hep-ph/0307382.CrossRefGoogle Scholar
Diehl, M., Sapeta, S. (2005). On the analysis of lepton scattering on longitudinally or transversely polarized protons. Eur. Phys. J. C41, 515–533. arXiv:hep-ph/0503023.CrossRefGoogle Scholar
Dine, M. (2000). TASI lectures on the strong CP problem. arXiv:hep-ph/0011376.
Dirac, P. A. M. (1926). The fundamental equations of quantum mechanics. Proc. Roy. Soc. A 109, 642–653.CrossRefGoogle Scholar
Dirac, P. A. M. (1949). Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392–399.CrossRefGoogle Scholar
Dissertori, G., Knowles, I. G., Schmelling, M. (2003). Quantum Chromodynamics: High Energy Experiments and Theory. Oxford: Oxford University Press.Google Scholar
Dittmaier, S., Kabelschacht, A., Kasprzik, T. (2008). Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables. Nucl. Phys. B800, 146–189. arXiv:0802.1405.CrossRefGoogle Scholar
Dixon, J. A., Taylor, J. C. (1974). Renormalization of Wilson operators in gauge theories. Nucl. Phys. B78, 552–560.CrossRefGoogle Scholar
Dokshitzer, Y. L. (1977). Calculation of the structure functions for deep inelastic scattering and e+e- annihilation by perturbation theory in quantum chromodynamics. Sov. Phys. JETP 46, 641–653.Google Scholar
Donohue, J. T., Gottlieb, S. A. (1981). Dilepton production from collisions of polarized spin-1/2 hadrons. I. General kinematic analysis. Phys. Rev. D23, 2577–2580.Google Scholar
Doplicher, S., Haag, R., Roberts, J. E. (1974). Local observables and particle statistics. 2. Commun. Math. Phys. 35, 49–85.CrossRefGoogle Scholar
Drell, S. D., Levy, D. J., Yan, T.-M. (1970). A theory of deep inelastic lepton-nucleon scattering and lepton-pair annihilation processes. III. Deep inelastic electron-positron annihilation. Phys. Rev. D1, 1617–1639.Google Scholar
Drell, S. D., Yan, T.-M. (1970). Massive lepton pair production in hadron-hadron collisions at high-energies. Phys. Rev. Lett. 25, 316–320.CrossRefGoogle Scholar
Drühl, K., Haag, R., Roberts, J. E. (1970). On parastatistics. Commun. Math. Phys. 18, 204–226.CrossRefGoogle Scholar
Eden, R. J., et al. (1966). The Analytic S-matrix. Cambridge: Cambridge University Press.Google Scholar
Efremov, A. V. (1978). Polarization in high PT and cumulative hadron production. Sov. J. Nucl. Phys. 28, 83.Google Scholar
Einhorn, M. B. (1976). Confinement, form factors, and deep-inelastic scattering in two-dimensional quantum chromodynamics. Phys. Rev. D14, 3451–3471.Google Scholar
Einhorn, M. B. (1977). Failure of the parton model in inclusive electron-positron annihilation. Phys. Rev. D15, 3037–3043.Google Scholar
Elitzur, S. (1975). Impossibility of spontaneously breaking local symmetries. Phys. Rev. D12, 3978–3982.Google Scholar
Landshoff, P. V., Polkinghorne, J. C. (1971). Two high energy processes involving detected final state particles. Nucl. Phys. B33, 221–238. Erratum: B36, 642 (1972).CrossRefGoogle Scholar
Larin, S. A., Vermaseren, J. A. M. (1993). The three-loop QCD β function and anomalous dimensions. Phys. Lett. B303, 334–336. arXiv:hep-ph/9302208.CrossRefGoogle Scholar
Leader, E., Predazzi, E. (1982). An Introduction to Gauge Theories and the ‘New Physics’. Cambridge: Cambridge University Press.Google Scholar
Lee, T. D., Nauenberg, M. (1964). Degenerate systems and mass singularities. Phys. Rev. 133, B1549–B1562.CrossRefGoogle Scholar
Leibbrandt, G. (1987). Introduction to noncovariant gauges. Rev. Mod. Phys. 59, 1067–1119.CrossRefGoogle Scholar
Lepage, G. P., Brodsky, S. J. (1980). Exclusive processes in perturbative quantum chromodynamics. Phys. Rev. D22, 2157–2198.Google Scholar
Libby, S. B., Sterman, G. (1978a). Jet and lepton-pair production in high-energy lepton-hadron and hadron-hadron scattering. Phys. Rev. D18, 3252–3268.Google Scholar
Libby, S. B., Sterman, G. (1978b). Mass divergences in two-particle inelastic scattering. Phys. Rev. D18, 4737–4745.Google Scholar
Liberati, S., Maccione, L. (2009). Lorentz violation: motivation and new constraints. Ann. Rev. Nucl. Part. Sci. 59, 245–267. arXiv:0906.0681.CrossRefGoogle Scholar
Ligterink, N. E., Bakker, B. L. G. (1995). Equivalence of light front and covariant field theory. Phys. Rev. D52, 5954–5979. arXiv:hep-ph/9412315.Google Scholar
Lipatov, L. N. (1997). Small-x physics in perturbative QCD. Phys. Rept. 286, 131–198. arXiv:hep-ph/9610276.CrossRefGoogle Scholar
Lu, Z., Schmidt, I. (2010). Updating Boer-Mulders functions from unpolarized pd and pp Drell-Yan data. Phys. Rev. D81, 034023. arXiv:0912.2031.Google Scholar
Lubański, J. K. (1942a). Sur la théorie des particules élémentaires de spin quelconque. I. Physica 9, 310–324.CrossRefGoogle Scholar
Lubański, J. K. (1942b). Sur la théorie des particules élémentaires de spin quelconque. II. Physica 9, 325–338.CrossRefGoogle Scholar
Manohar, A. V. (1998). Large N QCD. arXiv:hep-ph/9802419.
Manohar, A. V., Wise, M. B. (2000). Heavy Quark Physics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Marchesini, G. (1995). QCD coherence in the structure function and associated distributions at small x. Nucl. Phys. B445, 49–80. arXiv:hep-ph/9412327.CrossRefGoogle Scholar
Martin, A. D., et al. (1998). Parton distributions: a new global analysis. Eur. Phys. J. C4, 463–496. arXiv:hep-ph/9803445.CrossRefGoogle Scholar
Martin, A. D., et al. (2007). Update of parton distributions at NNLO. Phys. Lett. B652, 292–299. arXiv:0706.0459.CrossRefGoogle Scholar
Melnitchouk, W., Ent, R., Keppel, C. (2005). Quark-hadron duality in electron scattering. Phys. Rept. 406, 127–301. arXiv:hep-ph/0501217.CrossRefGoogle Scholar
Meng, R., Olness, F. I., Soper, D. E. (1996). Semi-inclusive deeply inelastic scattering at small qT. Phys. Rev. D54, 1919–1935. arXiv:hep-ph/9511311.Google Scholar
Mirkes, E. (1992). Angular decay distribution of leptons from W bosons at NLO in hadronic collisions. Nucl. Phys. B387, 3–85.CrossRefGoogle Scholar
Moch, S., Vermaseren, J. A. M. (2000). Deep-inelastic structure functions at two loops. Nucl. Phys. B573, 853–907. arXiv:hep-ph/9912355.CrossRefGoogle Scholar
Moch, S., Vermaseren, J. A. M., Vogt, A. (2004). The three-loop splitting functions in QCD: the non-singlet case. Nucl. Phys. B688, 101–134. arXiv:hep-ph/0403192.CrossRefGoogle Scholar
Mueller, A. H. (1979). On the asymptotic behavior of the Sudakov form factor. Phys. Rev. D20, 2037.Google Scholar
Mulders, P. J., Tangerman, R. D. (1996). The complete tree-level result up to order 1/Q for polarized deep-inelastic leptoproduction. Nucl. Phys. B461, 197–237. arXiv:hep-ph/9510301.CrossRefGoogle Scholar
Müller, D., et al. (1994). Wave functions, evolution equations and evolution kernels from light-ray operators of QCD. Fortschr. Phys. 42, 101–141. arXiv:hep-ph/9812448.CrossRefGoogle Scholar
Nachtmann, O. (1973). Positivity constraints for anomalous dimensions. Nucl. Phys. B63, 237–247.CrossRefGoogle Scholar
Nadolsky, P., Stump, D. R., Yuan, C. P. (2000). Semi-inclusive hadron production at HERA: The effect of QCD gluon resummation. Phys. Rev. D61, 014003. arXiv:hep-ph/9906280.Google Scholar
Nakanishi, N., Ojima, I. (1990). Covariant Operator Formalism of Gauge Theories and Quantum Gravity. Singapore: World Scientific.CrossRefGoogle Scholar
Nakanishi, N., Yabuki, H. (1977). Null-plane quantization and Haag's theorem. Lett. Math. Phys. 1, 371–374.CrossRefGoogle Scholar
Nakanishi, N., Yamawaki, K. (1977). A consistent formulation of the null-plane quantum field theory. Nucl. Phys. B122, 15–28.CrossRefGoogle Scholar
Narison, S. (2002). QCD as a Theory of Hadrons. Cambridge: Cambridge University Press.Google Scholar
Nayak, G. C., Qiu, J.-W., Sterman, G. (2005). Fragmentation, non-relativistic QCD, and NNLO factorization analysis in heavy quarkonium production. Phys. Rev. D72, 114012. arXiv:hep-ph/0509021.Google Scholar
Pais, A. (1986). Inward Bound. Oxford: Oxford University Press.Google Scholar
Perkins, D. H. (2000). Introduction to High Energy Physics. 4th edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Peskin, M. E., Schroeder, D. V. (1995). An Introduction to Quantum Field Theory. Reading, MA: Addison-Wesley.Google Scholar
Poggio, E. C., Quinn, H. R., Weinberg, S. (1976). Smearing the quark model. Phys. Rev. D13, 1958–1968.Google Scholar
Polchinski, J. (1984). Renormalization and effective lagrangians. Nucl. Phys. B231, 269–295.CrossRefGoogle Scholar
Politzer, H. D. (1973). Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349.CrossRefGoogle Scholar
Qiu, J.-W., Sterman, G. (1991a). Power corrections in hadronic scattering (I): Leading 1/Q2 corrections to the Drell-Yan cross-section. Nucl. Phys. B353, 105–136.CrossRefGoogle Scholar
Qiu, J.-W., Sterman, G. (1991b). Power corrections in hadronic scattering (II): Factorization. Nucl. Phys. B353, 137–164.CrossRefGoogle Scholar
Quigg, C. (1997). Gauge Theories of the Strong, Weak, and Electromagnetic Interactions. Boulder, Colorado: Westview Press.Google Scholar
Ralston, J. P., Soper, D. E. (1979). Production of dimuons from high-energy polarized protonproton collisions. Nucl. Phys. B152, 109–124.CrossRefGoogle Scholar
Rijken, P. J., van Neerven, W. L. (1997). Higher order QCD corrections to the transverse and longitudinal fragmentation functions in electron-positron annihilation. Nucl. Phys. B487, 233–282. arXiv:hep-ph/9609377.CrossRefGoogle Scholar
Rogers, T. C., Mulders, P. J. (2010). No generalized transverse momentum dependent factorization in hadroproduction of high transverse momentum hadrons. Phys. Rev. D81, 094006 arXiv:1001.2977.Google Scholar
Salam, A. (1968). In Proceedings of the 8th Nobel Symposium. Stockholm: Almqvist and Wiksell.Google Scholar
Salam, G. P. (2010). Towards jetography. Eur. Phys. J. C67, 637–686. arXiv:0906.1833.CrossRefGoogle Scholar
Schienbein, I., et al. (2009). Parton distribution function nuclear corrections for charged lepton and neutrino deep inelastic scattering processes. Phys. Rev. D80, 094004. arXiv:0907.2357.Google Scholar
Seymour, M. H., Tevlin, C. (2008). TeVJet: a general framework for the calculation of jet observables in NLO QCD. arXiv:0803.2231.
Sivers, D. W. (1990). Single spin production asymmetries from the hard scattering of point-like constituents. Phys. Rev. D41, 83–90.Google Scholar
Sjöstrand, T. (2009). Monte Carlo tools. arXiv:0911.5286.
Sjöstrand, T., Mrenna, S., Skands, P. Z. (2006). PYTHIA 6.4 physics and manual. JHEP 05, 026. arXiv:hep-ph/0603175.Google Scholar
Sjöstrand, T., Mrenna, S., Skands, P. Z. (2008). A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852–867. arXiv:0710.3820.CrossRefGoogle Scholar
Slavnov, A. A. (1972). Ward identities in gauge theories. Theor. Math. Phys. 10, 99–107.CrossRefGoogle Scholar
Soper, D. E. (1977). The parton model and the Bethe-Salpeter wave function. Phys. Rev. D15, 1141–1149.Google Scholar
Soper, D. E. (1979). Partons and their transverse momenta in QCD. Phys. Rev. Lett. 43, 1847–1851.CrossRefGoogle Scholar
Srednicki, M. (2007). Quantum Field Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Srivastava, P. P., Brodsky, S. J. (2001). Light-front quantized QCD in light-cone gauge. Phys. Rev. D64, 045006. arXiv:hep-ph/0011372.Google Scholar
Steinhardt, P. J. (1980). Problems of quantization in the infinite momentum frame. Ann. Phys. 128, 425–447.CrossRefGoogle Scholar
Sterman, G. (1978). Mass divergences in annihilation processes. I. Origin and nature of divergences in cut vacuum polarization diagrams. Phys. Rev. D17, 2773–2788.Google Scholar
Sterman, G. (1993). An Introduction to Quantum Field Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Sterman, G. (1996). Partons, factorization and resummation. In QCD and beyond. Singapore: World Scientific, 327–408. arXiv:hep-ph/9606312.Google Scholar
Sudakov, V. V. (1956). Vertex parts at very high-energies in quantum electrodynamics. Sov. Phys. JETP 3, 65–71.Google Scholar
't Hooft, G. (1973). Dimensional regularization and the renormalization group. Nucl. Phys. B61, 455–468.CrossRefGoogle Scholar
't Hooft, G. (1974). A two-dimensional model for mesons. Nucl. Phys. B75, 461–470.CrossRefGoogle Scholar
't Hooft, G. (1999). When was asymptotic freedom discovered? or The rehabilitation of quantum field theory. Nucl. Phys. Proc. Suppl. 74, 413–425. arXiv:hep-th/9808154.CrossRefGoogle Scholar
't Hooft, G., Veltman, M. J. G. (1972). Combinatorics of gauge fields. Nucl. Phys. B50, 318–353.CrossRefGoogle Scholar
Tarasov, O. V., Vladimirov, A. A., Zharkov, A. Y. (1980). The Gell-Mann-Low function of QCD in the three-loop approximation. Phys. Lett. B93, 429–432.CrossRefGoogle Scholar
Taylor, J. C. (1971). Ward identities and charge renormalization of the Yang-Mills field. Nucl. Phys. B33, 436–444.CrossRefGoogle Scholar
Thorne, R. S., Tung, W. K. (2008). PQCD formulations with heavy quark masses and global analysis. arXiv:0809.0714.
Tkachov, F. V. (1994). Theory of asymptotic operation. A summary of basic principles. Sov. J. Part. Nucl. 25, 649. arXiv:hep-ph/9701272.Google Scholar
Treiman, S. B., Jackiw, R., Gross, D. J. (1972). Lectures on Current Algebra and Its Applications. Princeton, NJ: Princeton University Press.Google Scholar
Trentadue, L., Veneziano, G. (1994). Fracture functions: an improved description of inclusive hard processes in QCD. Phys. Lett. B323, 201–211.CrossRefGoogle Scholar
Tung, W.-K., Kretzer, S., Schmidt, C. (2002). Open heavy flavor production in QCD: Conceptual framework and implementation issues. J. Phys. G28, 983–996. arXiv:hep-ph/0110247.CrossRefGoogle Scholar
Tung, W.-K., et al. (2007). Heavy quark mass effects in deep inelastic scattering and global QCD analysis. JHEP 02, 053. arXiv:hep-ph/0611254.Google Scholar
Tyutin, I. V. (1975). Gauge invariance in field theory and statistical physics in operator formalism. Originally appeared in 1975 as preprint LEBEDEV-75-39. arXiv:0812.0580.
van Ritbergen, T., Vermaseren, J. A. M., Larin, S. A. (1997). The four-loop β function in quantum chromodynamics. Phys. Lett. B400, 379–384. arXiv:hep-ph/9701390.CrossRefGoogle Scholar
Vanyashin, V. S., Terentyev, M. V. (1965). Vacuum polarization of a charged vector field. Sov. Phys. JETP 21, 375–380. Zh.E.T.F.48, 565–573 (1965).Google Scholar
Vermaseren, J. A. M., Vogt, A., Moch, S. (2005). The third-order QCD corrections to deep-inelastic scattering by photon exchange. Nucl. Phys. B724, 3–182. arXiv:hep-ph/0504242.CrossRefGoogle Scholar
Vogt, A., Moch, S., Vermaseren, J. A. M. (2004). The three-loop splitting functions in QCD: the singlet case. Nucl. Phys. B691, 129–181. arXiv:hep-ph/0404111.CrossRefGoogle Scholar
Vossen, A., et al. (2009). First measurement of the interference fragmentation function in e+e- at Belle. arXiv:0912.0353.
Wandzura, S., Wilczek, F. (1977). Sum rules for spin dependent electroproduction: test of relativistic constituent quarks. Phys. Lett. B72, 195–198.CrossRefGoogle Scholar
Watt, G., Martin, A. D., Ryskin, M. G. (2003). Unintegrated parton distributions and inclusive jet production at HERA. Eur. Phys. J. C31, 73–89. arXiv:hep-ph/0306169.CrossRefGoogle Scholar
Watt, G., Martin, A. D., Ryskin, M. G. (2004). Unintegrated parton distributions and electroweak boson production at hadron colliders. Phys. Rev. D70, 014012. arXiv:hep-ph/0309096.Google Scholar
Weinberg, S. (1966). Dynamics at infinite momentum. Phys. Rev. 150, 1313–1318.CrossRefGoogle Scholar
Weinberg, S. (1967). A model of leptons. Phys. Rev. Lett. 19, 1264–1266.CrossRefGoogle Scholar
Weinberg, S. (1973a). Current algebra and gauge theories. 1. Phys. Rev. D8, 605–625.Google Scholar
Weinberg, S. (1973b). Current algebra and gauge theories. 2. Nonabelian gluons. Phys. Rev. D8, 4482–4498.Google Scholar
Weinberg, S. (1989). The cosmological constant problem. Rev. Mod. Phys. 61, 1–23.CrossRefGoogle Scholar
Weinberg, S. (1995). The Quantum Theory of Fields, Vol. I, Foundations. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Weinberg, S. (1996). The Quantum Theory of Fields, Vol. II, Modern Applications. Cambridge: Cambridge University Press.
Whitlow, L. W., et al. (1992). Precise measurements of the proton and deuteron structure functions from a global analysis of the SLAC deep inelastic electron scattering cross-sections. Phys. Lett. B282, 475–482.CrossRefGoogle Scholar
Wilson, K. G. (1973). Quantum field theory models in less than 4 dimensions. Phys. Rev. D7, 2911–2926.Google Scholar
Witten, E. (1976). Heavy quark contributions to deep inelastic scattering. Nucl. Phys. B104, 445–476.CrossRefGoogle Scholar
Wollny, H. for the COMPASS collaboration. (2009). Transversity signal in two hadron pair production in COMPASS. arXiv:0907.0961.
Yamawaki, K. (1998). Zero-mode problem on the light front. arXiv:hep-th/9802037.
Yan, T.-M. (1973). Quantum field theories in the infinite momentum frame. 4. Scattering matrix of vector and Dirac fields and perturbation theory. Phys. Rev. D7, 1780–1800.Google Scholar
Yang, C.-N., Mills, R. L. (1954). Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195.CrossRefGoogle Scholar
Zhu, L. Y., et al. (2009). Measurement of angular distributions of Drell-Yan dimuons in p + p interactions at 800 GeV/c. Phys. Rev. Lett. 102, 182001. arXiv:0811.4589.CrossRefGoogle Scholar
Zijlstra, E. B., van Neerven, W. L. (1992). Order QCD corrections to the deep inelastic proton structure functions F2 and FL. Nucl. Phys. B383, 525–574.CrossRefGoogle Scholar
Zweig, G. (1964a). An SU(3) model for strong interaction symmetry and its breaking. CERN-TH-401.
Zweig, G. (1964b). An SU(3) model for strong interaction symmetry and its breaking. 2. CERN-TH-412.
Zweig, G. (1980). Origins of the quark model. Invited talk given at 4th Int. Conf. on Baryon Resonances, Toronto, Canada, Jul. 14–16, 1980.
Ellis, R. K., Stirling, W. J., Webber, B. R. (1996). QCD and Collider Physics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ellis, R. K., et al. (1979). Perturbation theory and the parton model in QCD. Nucl. Phys. B152, 285–329.CrossRefGoogle Scholar
Eskola, K. J., Paukkunen, H., Salgado, C. A. (2009). EPS09 – a new generation of NLO and LO nuclear parton distribution functions. JHEP 04, 065. arXiv:0902.4154.Google Scholar
Faddeev, L. D., Jackiw, R. (1988). Hamiltonian reduction of unconstrained and constrained systems. Phys. Rev. Lett. 60, 1692–1694.CrossRefGoogle ScholarPubMed
Faddeev, L. D., Popov, V. N. (1967). Feynman diagrams for the Yang-Mills field. Phys. Lett. B25, 29–30.CrossRefGoogle Scholar
Fadin, V. S., Kuraev, E. A., Lipatov, L. N. (1975). On the pomeranchuk singularity in asymptotically free theories. Phys. Lett. B60, 50–52.CrossRefGoogle Scholar
Falciano, S., et al. (1986). Angular distributions of muon pairs produced by 194 GeV/c negative pions. Z. Phys. C31, 513–526.Google Scholar
Farhi, E. (1977). Quantum chromodynamics test for jets. Phys. Rev. Lett. 39, 1587–1588.CrossRefGoogle Scholar
Fetter, A. L., Walecka, J. D. (1980). Quantum Theory of Many-Particle Systems. New York: McGraw-Hill.Google Scholar
Feynman, R. P. (1972). Photon-Hadron Interactions. Reading, MA: Benjamin.Google Scholar
Fleming, S. (2009). Soft collinear effective theory: an overview. PoS EFT09, 002 arXiv:0907.3897.Google Scholar
Floratos, E. G., Kounnas, C., Lacaze, R. (1981). Higher order QCD effects in inclusive annihilation and deep inelastic scattering. Nucl. Phys. B192, 417–462.CrossRefGoogle Scholar
Floratos, E. G., Lacaze, R., Kounnas, C. (1981). Space and timelike cut vertices in QCD beyond the leading order. 2. The singlet sector. Phys. Lett. B98, 285–290.CrossRefGoogle Scholar
Floratos, E. G., Ross, D. A., Sachrajda, C. T. (1979). Higher order effects in asymptotically free gauge theories. 2. Flavor singlet Wilson operators and coefficient functions. Nucl. Phys. B152, 493–520.CrossRefGoogle Scholar
Frederix, R., Gehrmann, T., Greiner, N. (2008). Automation of the dipole subtraction method in MadGraph/MadEvent. JHEP 09, 122. arXiv:0808.2128.CrossRefGoogle Scholar
Fritzsch, H., Gell-Mann, M. (1972). Current algebra: quarks and what else? In Proceedings of XVI International Conference on High-Energy Physics, Chicago 1972 (J.D., Jackson, A., Roberts, eds.), 135–165. arXiv:hep-ph/0208010.Google Scholar
Fritzsch, H., Gell-Mann, M., Leutwyler, H. (1973). Advantages of the color octet gluon picture. Phys. Lett. B47, 365–368.CrossRefGoogle Scholar
Furmanski, W., Petronzio, R. (1980). Singlet parton densities beyond leading order. Phys. Lett. B97, 437–442.CrossRefGoogle Scholar
Gastmans, R., Wu, T. T. (1990). The Ubiquitous Photon: Helicity Method for QED and QCD. Oxford: Oxford University Press.Google Scholar
Gehrmann, T., Luisoni, G., Stenzel, H. (2008). Matching NLLA + NNLO for event shape distributions. Phys. Lett. B664, 265–273. arXiv:0803.0695.CrossRefGoogle Scholar
Gell-Mann, M. (1962). Symmetries of baryons and mesons. Phys. Rev. 125, 1067–1084.CrossRefGoogle Scholar
Gell-Mann, M. (1964). A schematic model of baryons and mesons. Phys. Lett. 8, 214–215.CrossRefGoogle Scholar
Gonzalez-Arroyo, A., Lopez, C. (1980). Second order contributions to the structure functions in deep inelastic scattering. 3. The singlet case. Nucl. Phys. B166, 429–459.CrossRefGoogle Scholar
Grammer, G. J., Yennie, D. R. (1973). Improved treatment for the infrared divergence problem in quantum electrodynamics. Phys. Rev. D8, 4332–4344.Google Scholar
Grazzini, M., Trentadue, L., Veneziano, G. (1998). Fracture functions from cut vertices. Nucl. Phys. B519, 394–404. arXiv:hep-ph/9709452.CrossRefGoogle Scholar
Gribov, V. N. (1973). Space-time description of hadron interactions at high energies. arXiv:hepph/0006158.
Gribov, V. N. (2009). Strong Interactions of Hadrons at High Energies. Cambridge: Cambridge University Press.Google Scholar
Gribov, V. N., Lipatov, L. N. (1972). Deep inelastic ep scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438–450.Google Scholar
Gross, D. J., Wilczek, F. (1973a). Ultraviolet behavior of non-Abelian gauge theories. Phys. Rev. Lett. 30, 1343–1346.CrossRefGoogle Scholar
Gross, D. J., Wilczek, F. (1973b). Asymptotically free gauge theories. 1. Phys. Rev. D8, 3633–3652.Google Scholar
Guanziroli, M., et al. (1988). Angular distributions of muon pairs produced by negative pions on deuterium and tungsten. Z. Phys. C37, 545–556.Google Scholar
Guidal, M., Vanderhaeghen, M. (2003). Double deeply virtual Compton scattering off the nucleon. Phys. Rev. Lett. 90, 012001. arXiv:hep-ph/0208275.CrossRefGoogle ScholarPubMed
Gupta, S., Quinn, H. R. (1982). Heavy quarks and perturbative QCD calculations. Phys. Rev. D25, 838.Google Scholar
,H1 Collaboration. (2010). Diffractive electroproduction of ρ and φ mesons at HERA. JHEP 05, 032. arXiv:0910.5831.Google Scholar
,H1 website. (2010). Available from: http://www-hl.desy.de.
Halzen, F., Martin, A. D. (1984). Quarks and Leptons: An Introductory Course in Modern Particle Physics. New York: Wiley.Google Scholar
Hamberg, R., van Neerven, W. L. (1992). The correct renormalization of the gluon operator in a covariant gauge. Nucl. Phys. B379, 143–171.CrossRefGoogle Scholar
Hasegawa, K., Moch, S., Uwer, P. (2008). Automating dipole subtraction. Nucl. Phys. Proc. Suppl. 183, 268–273. arXiv:0807.3701.CrossRefGoogle Scholar
Hasenfratz, A., Hasenfratz, P. (1980). The connection between the ∧ parameters of lattice and continuum QCD. Phys. Lett. B93, 165.CrossRefGoogle Scholar
Heinzl, T. (2001). Light-cone quantization: foundations and applications. Lect. Notes Phys. 572, 55–142. arXiv:hep-th/0008096.CrossRefGoogle Scholar
Heinzl, T. (2003). Light-cone zero modes revisited. arXiv:hep-th/0310165.
Heinzl, T. (2007). A novel approach to light-front perturbation theory. Phys. Rev. D75, 025013. arXiv:hep-ph/0610293.Google Scholar
Heinzl, T., Ilderton, A. (2007). Noncommutativity from spectral flow. J. Phys. A40, 9097–9125. arXiv:0704.3547.Google Scholar
Heinzl, T., Werner, E. (1994). Light front quantization as an initial boundary value problem. Z. Phys. C62, 521–532. arXiv:hep-th/9311108.Google Scholar
Henyey, F., Savit, R. (1974). Final state interactions in the parton model and massive lepton pair production. Phys. Lett. B52, 71.CrossRefGoogle Scholar
Hobbs, T., Melnitchouk, W. (2008). Finite-Q2 corrections to parity-violating DIS. Phys. Rev. D77, 114023. arXiv:0801.4791.Google Scholar
Hofstadter, R. (1956). Electron scattering and nuclear structure. Rev. Mod. Phys. 28, 214–254.CrossRefGoogle Scholar
Hofstadter, R., Bumiller, F., Yearian, M. R. (1958). Electromagnetic structure of the proton and neutron. Rev. Mod. Phys. 30, 482–497.CrossRefGoogle Scholar
Hoodbhoy, P., Jaffe, R. L., Manohar, A. (1989). Novel effects in deep inelastic scattering from spin 1 hadrons. Nucl. Phys. B312, 571–588.CrossRefGoogle Scholar
Idilbi, A., et al. (2004). Collins-Soper equation for the energy evolution of transverse-momentum and spin dependent parton distributions. Phys. Rev. D70, 074021. arXiv:hep-ph/0406302.Google Scholar
Ito, A. S., et al. (1981). Measurement of the continuum of dimuons produced in high-energy proton-nucleus collisions. Phys. Rev. D23, 604–633.Google Scholar
Itzykson, C., Zuber, J.-B. (1980). Quantum Field Theory. New York: McGraw-Hill.Google Scholar
Jackiw, R. (1968). Dynamics at high momentum and the vertex function of spinor electrodynamics. Ann. Phys. 48, 292–321.CrossRefGoogle Scholar
Jaffe, R. L. (1983). Parton distribution functions for twist four. Nucl. Phys. B229, 205–230.CrossRefGoogle Scholar
Jaffe, R. L., Ji, X.-D. (1991). Chiral odd parton distributions and polarized Drell-Yan. Phys. Rev. Lett. 67, 552–555.CrossRefGoogle ScholarPubMed
Ji, X.-D. (1993). The nucleon structure functions from deep inelastic scattering with electroweak currents. Nucl. Phys. B402, 217–250.CrossRefGoogle Scholar
Ji, X.-D., Ma, J.-P., Yuan, F. (2004). QCD factorization for spin-dependent cross sections in DIS and Drell-Yan processes at low transverse momentum. Phys. Lett. B597, 299–308. arXiv:hep-ph/0405085.CrossRefGoogle Scholar
Ji, X.-D., Ma, J.-P., Yuan, F. (2005). QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum. Phys. Rev. D71, 034005. arXiv:hep-ph/0404183.Google Scholar
Joglekar, S. D. (1977a). Local operator products in gauge theories. 1. Ann. Phys. 108, 233–287.CrossRefGoogle Scholar
Joglekar, S. D. (1977b). Local operator products in gauge theories. 2. Ann. Phys. 109, 210–241.CrossRefGoogle Scholar
Joglekar, S. D., Lee, B. W. (1976). General theory of renormalization of gauge invariant operators. Ann. Phys. 97, 160–215.CrossRefGoogle Scholar
Johnson, K., Low, F. E. (1966). Current algebras in a simple model. Prog. Theor. Phys. Suppl. 37, 74–93.CrossRefGoogle Scholar
Kalinowski, J., Konishi, K., Taylor, T. R. (1981). Jet calculus beyond leading logarithms. Nucl. Phys. B181, 221–252.CrossRefGoogle Scholar
Kalinowski, J., et al. (1981). Resolving QCD jets beyond leading order: quark decay probabilities. Nucl. Phys. B181, 253–276.CrossRefGoogle Scholar
Khachatryan, V., et al. (2010). Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at and 2.36 TeV. JHEP 02, 041. arXiv:1002.0621.Google Scholar
Khriplovich, I. B. (1970). Greens functions in theories with a non-abelian gauge group. Sov. J. Nucl. Phys. 10, 235. Yad. Fiz.10, 409 (1969).Google Scholar
Kinoshita, T. (1962). Mass singularities of Feynman amplitudes. J. Math. Phys. 3, 650–677.CrossRefGoogle Scholar
Kluberg-Stern, H., Zuber, J. B. (1975). Ward identities and some clues to the renormalization of gauge-invariant operators. Phys. Rev. D12, 467–481.Google Scholar
Knuth, D. E. (1976). Big omicron and big omega and big theta. ACM SIGACT News 8, 18–24.CrossRefGoogle Scholar
Kogut, J. B., Soper, D. E. (1970). Quantum electrodynamics in the infinite momentum frame. Phys. Rev. D1, 2901–2913.Google Scholar
Konishi, K., Ukawa, A., Veneziano, G. (1978). A simple algorithm for QCD jets. Phys. Lett. B78, 243–248.CrossRefGoogle Scholar
Konychev, A. V., Nadolsky, P. M. (2006). Universality of the Collins-Soper-Sterman nonperturbative function in gauge boson production. Phys. Lett. B633, 710–714. arXiv:hep-ph/0506225.CrossRefGoogle Scholar
Kotzinian, A. (1995). New quark distributions and semi-inclusive electroproduction on the polarized nucleons. Nucl. Phys. B441, 234–256. arXiv:hep-ph/9412283.CrossRefGoogle Scholar
Krämer, M., Olness, F. I., Soper, D. E. (2000). Treatment of heavy quarks in deeply inelastic scattering. Phys. Rev. D62, 096007. arXiv:hep-ph/0003035.Google Scholar
Kretzer, S., et al. (2004). CTEQ6 parton distributions with heavy quark mass effects. Phys. Rev. D69, 114005. arXiv:hep-ph/0307022.Google Scholar
Labastida, J. M. F., Sterman, G. (1985). Inclusive hadron-hadron scattering in the Feynman gauge. Nucl. Phys. B254, 425–440.CrossRefGoogle Scholar
Lai, H. L., et al. (2000). Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions. Eur. Phys. J. C12, 375–392. arXiv:hep-ph/9903282.CrossRefGoogle Scholar
Lam, C. S., Tung, W.-K. (1978). Systematic approach to inclusive lepton pair production in hadronic collisions. Phys. Rev. D18, 2447–2461.Google Scholar
Landry, F., et al. (2003). Tevatron Run-1 Z boson data and Collins-Soper-Sterman resummation formalism. Phys. Rev. D67, 073016. arXiv:hep-ph/0212159.Google Scholar
Landshoff, P. V. (1974). Model for elastic scattering at wide angle. Phys. Rev. D10, 1024–1030.Google Scholar
Landshoff, P. V., Polkinghorne, J. C. (1971). Two high energy processes involving detected final state particles. Nucl. Phys. B33, 221–238. Erratum: B36, 642 (1972).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • John Collins, Pennsylvania State University
  • Book: Foundations of Perturbative QCD
  • Online publication: 16 May 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511975592.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • John Collins, Pennsylvania State University
  • Book: Foundations of Perturbative QCD
  • Online publication: 16 May 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511975592.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • John Collins, Pennsylvania State University
  • Book: Foundations of Perturbative QCD
  • Online publication: 16 May 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511975592.020
Available formats
×