Published online by Cambridge University Press: 05 December 2012
Abstract
This article reviews some of the phenomena and theoretical results on the long-time energy behaviour of continuous and discretized oscillatory systems that can be explained by modulated Fourier expansions: longtime preservation of total and oscillatory energies in oscillatory Hamiltonian systems and their numerical discretizations, near-conservation of energy and angular momentum of symmetric multistep methods for celestial mechanics, metastable energy strata in nonlinear wave equations. We describe what modulated Fourier expansions are and what they are good for.
Introduction
As a new analytical tool developed in the past decade, modulated Fourier expansions have been found useful to explain various long-time phenomena in both continuous and discretized oscillatory Hamiltonian systems, ordinary differential equations as well as partial differential equations. In addition, modulated Fourier expansions have turned out useful as a numerical approximation method in oscillatory systems.
In this review paper we first show some long-time phenomena in oscillatory systems, then give theoretical results that explain these phenomena, and finally outline the basics of modulated Fourier expansions with which these results are proved.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.