Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-20T17:37:12.584Z Has data issue: false hasContentIssue false

A New Class of Bulges

from Part 4 - Physical Processes in Bulge Formation

Published online by Cambridge University Press:  10 November 2010

R. Lütticke
Affiliation:
Astronomisches Institut der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
R-J. Dettmar
Affiliation:
Astronomisches Institut der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
C. Marcella Carollo
Affiliation:
Columbia University, New York
Henry C. Ferguson
Affiliation:
Space Telescope Science Institute, Baltimore
Rosemary F. G. Wyse
Affiliation:
The Johns Hopkins University
Get access

Summary

Inspecting a sample of edge-on galaxies selected from the RC3 (de Vaucouleurs et al. 1991) with D25 >2arcmin (∼1350 galaxies) on the ‘Digital Sky Survey’ we have identified a class of approximately 20 disk galaxies with prominent, large, and boxy bulges. These bulges all show irregularities and asymmetries which are suggestive of them being formed just recently and not yet dynamically settled. We will present some examples and first results from CCD follow-up observations.

While the large frequency of boxy- or peanut-shaped bulges in disk galaxies (nearly 50%) is best explained by the response of the stellar disk to a bar potential, we propose soft-merging of companions as the most likely scenario for the evolution of this new class of thick boxy bulges.

Introduction

Statistics of boxy- and peanut-shaped (b/p) bulges in edge-on galaxies show (Shaw 1987, Dettmar 1989) that such bulges are not really that peculiar as it seemed in the past and very common processes are required to explain the high frequency. At present several mechanisms for their origin are discussed. Binney & Petrou (1985) and Whitmore & Bell in their paper on IC 4767 (1988) suggested that these structures may result from material accreted from infalling satellite companions (soft merging). An alternative mechanism for forming boxy bulges are instabilities or resonances animated by bars (Combes et al. 1990; Raha et al. 1991). N-body simulations for stars in barred potentials have demonstrated that with regard to the shape of bulges this theory and observational evidence are consistent.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • A New Class of Bulges
    • By R. Lütticke, Astronomisches Institut der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany, R-J. Dettmar, Astronomisches Institut der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
  • Edited by C. Marcella Carollo, Columbia University, New York, Henry C. Ferguson, Space Telescope Science Institute, Baltimore, Rosemary F. G. Wyse, The Johns Hopkins University
  • Book: The Formation of Galactic Bulges
  • Online publication: 10 November 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511564611.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • A New Class of Bulges
    • By R. Lütticke, Astronomisches Institut der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany, R-J. Dettmar, Astronomisches Institut der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
  • Edited by C. Marcella Carollo, Columbia University, New York, Henry C. Ferguson, Space Telescope Science Institute, Baltimore, Rosemary F. G. Wyse, The Johns Hopkins University
  • Book: The Formation of Galactic Bulges
  • Online publication: 10 November 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511564611.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • A New Class of Bulges
    • By R. Lütticke, Astronomisches Institut der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany, R-J. Dettmar, Astronomisches Institut der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
  • Edited by C. Marcella Carollo, Columbia University, New York, Henry C. Ferguson, Space Telescope Science Institute, Baltimore, Rosemary F. G. Wyse, The Johns Hopkins University
  • Book: The Formation of Galactic Bulges
  • Online publication: 10 November 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511564611.017
Available formats
×