Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgments
- Nomenclature
- 1 Introduction to Multiphase Fluid Dynamics
- 2 Single-Phase Flow Equations and Regimes
- 3 Governing Equations for an Isolated Spherical Particle
- 4 Particle Sizes, Shapes, and Trajectories
- 5 Coupling Regimes for Multiphase Flow
- 6 Single-Phase Turbulent Flow
- 7 Multiphase Turbulent Flow
- 8 Multiphase Flow Numerical Approaches
- 9 Drag Force on an Isolated Particle
- 10 Lift, Added-Mass, and History Forces on a Particle
- 11 Particle Interactions with Walls and Other Particles
- Appendix
- References
- Index
1 - Introduction to Multiphase Fluid Dynamics
Published online by Cambridge University Press: 28 July 2023
- Frontmatter
- Contents
- Preface
- Acknowledgments
- Nomenclature
- 1 Introduction to Multiphase Fluid Dynamics
- 2 Single-Phase Flow Equations and Regimes
- 3 Governing Equations for an Isolated Spherical Particle
- 4 Particle Sizes, Shapes, and Trajectories
- 5 Coupling Regimes for Multiphase Flow
- 6 Single-Phase Turbulent Flow
- 7 Multiphase Turbulent Flow
- 8 Multiphase Flow Numerical Approaches
- 9 Drag Force on an Isolated Particle
- 10 Lift, Added-Mass, and History Forces on a Particle
- 11 Particle Interactions with Walls and Other Particles
- Appendix
- References
- Index
Summary
This chapter identifies systems where dispersed multiphase flow is important as well as the key fluid physics via important engineered and natural systems. This includes energy systems and propulsion systems, manufacturing, processing and transport systems, as well as environmental and biological systems. In addition, this chapter sets forth key terminology and assumptions for dispersed multiphase flow, the key velocity reference frames used for multiphase flow, and the assumption of continuum conditions.
Keywords
- Type
- Chapter
- Information
- Fluid Dynamics of Particles, Drops, and Bubbles , pp. 1 - 34Publisher: Cambridge University PressPrint publication year: 2023