Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T09:21:47.907Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  11 March 2022

Louis P. Ronse De Craene
Affiliation:
Royal Botanic Garden Edinburgh
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Floral Diagrams
An Aid to Understanding Flower Morphology and Evolution
, pp. 446 - 497
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbe, E. C. (1935). Studies in the phylogeny of the Betulaceae I. Floral and inflorescence anatomy and morphology. Bot. Gaz. 95, 167.CrossRefGoogle Scholar
Abbe, E. C. (1938). Studies in the phylogeny of the Betulaceae II. Extremes in the range of variation of floral and inflorescence morphology. Bot. Gaz. 99, 431–69.Google Scholar
Abbe, E. C. (1974). Flowers and inflorescences of the ‘Amentiferae’. Bot. Rev. 40, 159261.Google Scholar
Albert, V. A., Gustafsson, M. H. G. and Di Laurenzio, L. (1998). Ontogenetic systematics, molecular developmental genetics, and the Angiosperm petal. In Molecular systematics of plants II, DNA sequencing, ed. Soltis, D. E., Soltis, P. S. and Doyle, J. J.. Boston: Kluwer Academic, pp. 349–74.Google Scholar
Albert, V. A., and Struwe, L. (2002). Gentianaceae in context. In Gentianaceae. Systematics and natural history, ed. Struwe, L. and Albert, V. A.. Cambridge: Cambridge University Press, pp. 120.Google Scholar
Álvarez-Buylla, E. R., Ambrose, B. A., Flores-Sandoval, E., Englund, M., Garay-Arroyo, A., Garcia-Ponce, B., de la Torre-Bárcena, E., Espinosa-Matías, S., Martínez, E., Piñero-Nelson, A., Engström, P. and Meyerowitz, E. M. (2010). B-function expression in the flower center underlies the homeotic phenotype of Lacandonia schismatica (Triuridaceae). Plant Cell 22, 3543–59.Google Scholar
Alverson, W. S., Karol, K. G., Baum, D. A., Chase, M. W., Swensen, S. M., McCourt, R. and Sytsma, K. J. (1998). Circumscription of the Malvales and relationships to other Rosidae, evidence from rbcL sequence data. Am. J. Bot. 85, 876–87.Google Scholar
Alverson, W. S., Whitlock, B. A., Nyffeler, R., Bayer, C. and Baum, D. A. (1999). Phylogeny of the core Malvales, evidence from ndhF sequence data. Am. J. Bot. 86, 1474–86.Google Scholar
Amara-Neto, L. P., Westerkamp, C. and Melo, G. A. R. (2015). From keel to inverted keel flowers: Functional morphology of ‘upside down’ papilionoid flowers and the behaviour of their bee visitors. Plant Syst. Evol. 301, 2161–78.Google Scholar
Ambrose, B. A., Espinosa-Matìas, S., Vásquez-Santana, S., Vergara-Silva, F., Martìnez, E., Márquez- Guzmán, J. and Alvarez-Buylla, E. R. (2006). Comparative developmental series of the Mexican Triurids support a euanthial interpretation for the unusual reproductive axes of Lacandonia schismatica (Triuridaceae). Am. J. Bot. 93, 1535.Google Scholar
Anderberg, A. A., Rydin, C. and Källersjö, M. 2002. Phylogenetic relationships in the order Ericales s.l., analysis of molecular data from five genes from the plastid and mitochondrial genomes. Am. J. Bot. 89, 677–87.Google Scholar
Anderberg, A. A., and Ståhl, B. (1995). Phylogenetic interrelationships in the order Primulales, with special emphasis on the family circumscriptions. Can. J. Bot. 73, 16991730.Google Scholar
Angiosperm Phylogeny Group I (1998). An ordinal classification for the families of flowering plants. Ann. Mo. Bot. Gard. 85, 531–53.Google Scholar
Angiosperm Phylogeny Group II. (2003). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants, APG II. Bot. J. Linn. Soc. 141, 399436.Google Scholar
Angiosperm Phylogeny Group. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161, 105–21.Google Scholar
Angiosperm Phylogeny Group. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181: 120.Google Scholar
Ao, C., and Tobe, H. 2015. Floral morphology and embryology of Helwingia (Helwingiaceae, Aquifoliales): Systematic and evolutionary implications. J. Plant Res. 128, 161–75.CrossRefGoogle ScholarPubMed
Appel, O. (1996). Morphology and systematics of the Scytopetalaceae. Bot. J. Linn. Soc. 121, 207–27.Google Scholar
Appleton, A. D., and Schenk, J. J. (2021). Evolution and development of staminodes in Paronychia (Caryophyllaceae). Int. J. Plant Sci. 182, 377–88.Google Scholar
Arber, A. (1925). Monocotyledons. A morphological study. Cambridge: Cambridge University Press.Google Scholar
Arber, A. (1934). The Gramineae. Cambridge: Cambridge University Press.Google Scholar
Arber, E. A. N., and Parkin, J. (1907). The origin of Angiosperms. Bot. J. Linn. Soc. 38, 2980.Google Scholar
Armstrong, J. E. (1985). The delimitation of Bignoniaceae and Scrophulariaceae based on floral anatomy, and the placement of problem genera. Am. J. Bot. 72, 755–66.CrossRefGoogle Scholar
Armstrong, J. E., and Douglas, A. W. (1989). The ontogenetic basis for corolla aestivation in Scrophulariaceae. Bull. Torrey Bot. Club 116, 378–89.Google Scholar
Armstrong, J. E., and Tucker, S. C. (1986). Floral development in Myristica (Myristicaceae). Am. J. Bot. 73, 1131–43.Google Scholar
Armstrong, J. E., and Wilson, T. K. (1978). Floral morphology of Horsfieldia (Myristicaceae). Am. J. Bot. 65, 441–9.Google Scholar
Bachelier, J. B., and Endress, P. K. (2007). Development of inflorescences, cupules, and flowers in Amphipterygium and comparison with Pistacia (Anacardiaceae). Int. J. Plant Sci. 168, 1237–53.Google Scholar
Bachelier, J. B., and Endress, P. K. (2009). Comparative floral morphology and anatomy of Anacardiaceae and Burseraceae (Sapindales), with a special focus on gynoecium structure and evolution. Bot. J. Linn. Soc. 159, 499571.CrossRefGoogle Scholar
Bachelier, J. B., Endress, P. K., and Ronse De Craene, L. P. (2011). Comparative floral structure and development of Nitrariaceae (Sapindales) and systematic implications. In Flowers on the tree of life, ed. Wanntorp, L. and Ronse De Craene, L. P. Cambridge: Cambridge University Press, pp. 181217.CrossRefGoogle Scholar
Backlund, M., Oxelman, B., and Bremer, B. 2000. Phylogenetic relationships within the Gentianales based on ndhF and rbcL sequences, with particular reference to the Loganiaceae. Am. J. Bot. 87, 1029–43.Google Scholar
Baillon, H. (1860). Observations organogéniques pour servir à l’histoire des Polygalées. Adansonia 1, 174–80.Google Scholar
Baillon, H. (1862). Organogénie florale des Cordiacées. Adansonia 3, 17.Google Scholar
Baillon, H. (1867–95). Histoire des plantes (13 vols.). Paris: Hachette.Google Scholar
Baillon, H. (1868a). Monographie des Dilléniacées. In Histoire des Plantes I, 2. Paris: Hachette, pp. 89132.Google Scholar
Baillon, H. (1868b). Monographie des Magnoliacées. In Histoire des Plantes I, 3. Paris: Hachette, pp. 133–92.Google Scholar
Baillon, H. (1868c). Monographie des Annonacées. In Histoire des plantes I, 4. Paris: Hachette, pp. 193288.Google Scholar
Baillon, H. (1870). Monographie des Elaeagnacées. In Histoire des plantes II. Paris: Hachette, pp. 487–95.Google Scholar
Baillon, H. (1871a). Du genre Garcinia et de l’origine de la gomme-gutte. Adansonia 10, 283–98.Google Scholar
Baillon, H. (1871b). Observations sur les Rutacées. Adansonia 10, 299333.Google Scholar
Baillon, H. (1874). Euphorbiacées. In Histoire des plantes V, 41. Paris: Hachette, pp. 105–76.Google Scholar
Baillon, H. (1876a). Traité du développement de la fleur et du fruit X. Castanéacées. Adansonia 12, 117.Google Scholar
Baillon, H. (1876b). Traité du développement de la fleur et du fruit. XVI. Stylidiées. Adansonia 12, 354–61.Google Scholar
Barabé, D., and Lacroix, C. (2000). Homeosis in Araceae flowers, the case of Philodendron melinonii. Ann. Bot. 86, 479–91.Google Scholar
Barroca, C. (2014). Floral development of Cuphea (Lythraceae): Understanding the origin of monosymmetry and the epicalyx in the flower. University of Edinburgh: Unpubl. MSc. Dissertation.Google Scholar
Bateman, R. M., Hilton, J. and Rudall, P. J. (2006). Morphological and molecular phylogenetic context of the angiosperms: Contrasting the ‘top-down’ and ‘bottom-up’ approaches used to infer the likely characteristics of the first flowers. J. Exper. Bot. 57, 34713503.Google Scholar
Batenburg, L. H., and Moeliono, B. M. (1982). Oligomery and vasculature in the androecium of Mollugo nudicaulis Lam. (Molluginaceae). Acta Bot. Neerl. 31, 215–20.Google Scholar
Bauer, R. (1922). Entwicklungsgeschichtliche Untersuchungen an Polygonaceenblüten. Flora 115, 273–92.Google Scholar
Bayer, C. (1999). The bicolor unit: Homology and transformation of an inflorescence structure unique to core Malvales. Plant Syst. Evol. 214, 187–98.Google Scholar
Bayer, C., Fay, M. F., De Bruijn, A., Savolainen, V., Morton, C. M., Kubitzki, K., Alverson, W. S. and Chase, M. W. (1999). Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales, a combined analysis of plastid atpB and rbcL DNA sequences. Bot. J. Linn. Soc. 129, 267303.Google Scholar
Bayer, C., and Hoppe, J. R. (1990). Die Blütenentwicklung von Theobroma cacao L. (Sterculiaceae). Beitr. Biol. Pflanz. 65, 301–12.Google Scholar
Bayer, C., and Kubitzki, K. (2003). Malvaceae. In The families and genera of vascular plants vol. V, ed. Kubitzki, K. and Bayer, C.. Berlin: Springer, pp. 225311.Google Scholar
Bechtel, A. R. (1921). The floral anatomy of the Urticales. Am. J. Bot. 8, 386410.Google Scholar
Behnke, H. D. (1999). P-type sieve-element plastids present in members of the tribes Triplareae and Coccolobeae (Polygonaceae) renew the links between the Polygonales and the Caryophyllales. Plant Syst. Evol. 214, 1527.Google Scholar
Bello, M. A., Hawkins, J. A. and Rudall, P. J. (2007). Floral morphology and development in Quillajaceae and Surianaceae (Fabales), the species-poor relatives of Leguminosae and Polygalaceae. Ann. Bot. 100, 14911505.Google Scholar
Bello, M. A., Martínez-Asperilla, A. and Fuertes-Aguilar, J. (2016). Floral development of Lavatera trimestris and Malva hispanica reveals the nature of the epicalyx in the Malva generic alliance. Bot. J. Linn. Soc. 181, 8494.CrossRefGoogle Scholar
Bello, M. A., Rudall, P. J., González, F. and Fernández-Alonso, J. L. (2004). Floral morphology and development in Aragoa (Plantaginaceae) and related members of the order Lamiales. Int. J. Plant Sci. 165, 723–38.Google Scholar
Belsham, S. R., and Orlovich, D. A. (2003). Development of the hypanthium and androecium in Acmena smithii and Syzygium australe (Acmena alliance, Myrtaceae). Aust. Syst. Bot. 16, 621–8.Google Scholar
Bennek, C. (1958). Die morphologische Beurteilung der Staub- und Blumenblätter der Rhamnaceen. Bot. Jahrb. Syst. 77, 423–57.Google Scholar
Bensel, C. R., and Palser, B. F. (1975a). Floral anatomy in the Saxifragaceae sensu lato I. Introduction, Parnassioideae and Brexioideae. Am. J. Bot. 62, 176–85.Google Scholar
Bensel, C. R., and Palser, B. F. (1975b). Floral anatomy in the Saxifragaceae sensu lato II. Saxifragoideae and Iteoideae. Am. J. Bot. 62, 661–75.Google Scholar
Berger, A. (1930). Crassulaceae. In Die natürlichen Pflanzenfamilien 18a, ed. Engler, A. and Prantl, K.. Leipzig: W. Engelmann, pp. 352483.Google Scholar
Bernardello, G. (2007). A systematic survey of floral nectaries. In Nectaries and nectar, ed. Nicolson, S. W., Nepi, M. and Pacini, E.. Dordrecht: Springer, pp. 19128.Google Scholar
Bernhard, A. (1999). Flower structure, development, and systematics in Passifloraceae and in Abatia (Flacourtiaceae). Int. J. Plant Sci. 160, 135–50.CrossRefGoogle Scholar
Bernhard, A., and Endress, P. K. (1999). Androecial development and systematics in Flacourtiaceae s.l. Plant Syst. Evol. 215, 141–55.CrossRefGoogle Scholar
Bittrich, V. (1993). Caryophyllaceae. In The families and genera of vascular plants vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer, pp. 206–36.Google Scholar
Bittrich, V., and Amaral, M. C. E. (1996). Flower morphology and pollination biology of Clusia species from the Gran Sabana (Venezuela). Kew Bull. 51, 681–94.Google Scholar
Bohte, A., and Drinnan, A. (2005). Floral development and systematic position of Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis (Myrtaceae). Plant Syst. Evol. 251, 5370.CrossRefGoogle Scholar
Boke, N. H. (1963). Anatomy and development of the flower and fruit of Pereskia pititache. Am. J. Bot. 50, 843–58.CrossRefGoogle Scholar
Boke, N. H. (1966). Ontogeny and structure of the flower and fruit of Pereskia aculeata. Am. J. Bot. 53, 534–42.CrossRefGoogle Scholar
Boraginales Working Group (2016). Familial classification of the Boraginales. Taxon 65, 502–22.Google Scholar
Bowman, J. L., and Smyth, D. R. (1998). Patterns of petal and stamen reduction in Australian species of Lepidium L. (Brassicaceae). Int. J. Plant Sci. 159, 6574.Google Scholar
Box, M. S., and Rudall, P. J. (2006). Floral structure and ontogeny in Globba (Zingiberaceae). Plant Syst. Evol. 258, 107–22.Google Scholar
Brandbyge, J. (1993). Polygonaceae. In The families and genera of vascular plants vol. II, ed. Kubitzki, K., Rohwer, J. G., and Bittrich, V.. Berlin: Springer, pp. 531–44.Google Scholar
Bremer, K., Backlund, A., Sennblad, B., Swenson, U., Andreasen, K., Hjertson, M., Lundberg, J., Backlund, M. and Bremer, B. (2001). A phylogenetic analysis of 100+ genera and 50+ families of euasterids based on morphological and molecular data with notes on possible higher level morphological synapomorphies. Plant Syst. Evol. 229, 137–69.Google Scholar
Brett, J. F., and Posluszny, U. (1982). Floral development of Caulophyllum thalictroides (Berberidaceae). Can. J. Bot. 60, 2133–41.Google Scholar
Brockington, S. F., Dos Santos, P., Glover, B. and Ronse De Craene, L. P. (2013). Evolution of the androecium in Caryophyllales: Insights from a paraphyletic Molluginaceae. Am. J. Bot. 100, 1757–78.Google Scholar
Brockington, S. F., Roolse, A., Ramdial, J., Moore, M. J., Crawley, S., Dhingra, A. Hilu, K., Soltis, D. E. and Soltis, P. S. (2009). Phylogeny of the Caryophyllales sensu lato: Revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. Int. J. Plant Sci. 170, 627–43.CrossRefGoogle Scholar
Brockington, S. F., Rudall, P. J., Frohlich, M. W., Oppenheimer, D. G., Soltis, P. S. and Soltis, D. E. (2012). ‘Living stones’ reveal alternative petal identity programs within the core eudicots. Plant J. 69, 193203.Google Scholar
Brockington, S. F., Yang, Y., Gandia-Herrero, F., Covshoff, S., Hibberd, J. M., Sage, R. F., Wong, G. K. S., Moore, M. J. and Smith, S. A. (2015). Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytol. 207, 1170–80.Google Scholar
Brown, D. K., and Kaul, R. B. (1981). Floral structure and mechanism in Loasaceae. Am. J. Bot. 68, 361–72.Google Scholar
Brown, R. H., Nickrent, D. L. and Gasser, C. S. (2010). Expression of ovule and integument-associated genes in reduced ovules of Santalales. Evol. Dev. 12, 231–40.Google Scholar
Bukhari, G., Zhang, J., Stevens, P. F. and Zhang, W. (2017). Evolution of the process underlying floral zygomorphy development in pentapetalous angiosperms. Amer. J. Bot. 104, 1846–56.Google Scholar
Buendía-Monreal, M., and Gillmor, C. S. (2018). The times they are A-changin’: Heterochrony in plant development and evolution. Front. Plant Sci. 9,1349. doi: 10.3389/fpls.2018.01349Google Scholar
Bull-Hereñu, K., and Ronse de Craene, L. P. (2020). Ontogenetic base for the variation of flowers in Malesherbia Ruiz & Pav. (Passifloraceae). Front. Ecol. Evol. 8, 202. doi: 10.3389/fevo.2020.00202Google Scholar
Bull-Hereñu, K., Ronse de Craene, L. P. and Pérez, F. (2018). Floral meristem size and organ number correlation in Eucryphia Cav. (Cunoniaceae). J. Plant Res. 131, 429–41.Google Scholar
Burtt, B. L., and Dickison, W. C. (1975). The morphology and relationships of Seemannaralia (Araliaceae). Notes Roy. Bot. Gard. Edinburgh 33, 449–66.Google Scholar
Busch, A., and Zachgo, S. (2007). Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proc. Natl. Acad. Sci. USA 104, 16714–19.Google Scholar
Buxbaum, F. (1961). Vorlaüfige Untersuchungen über Umfang, systematische Stellung und Gliederung der Caryophyllales (Centrospermae). Beitr. Biol. Pflanz. 36, 156.Google Scholar
Buzgo, M. (2001). Flower structure and development of Araceae compared with Alismatids and Acoraceae. Bot. J. Linn. Soc. 136, 393425.CrossRefGoogle Scholar
Buzgo, M., Chanderbali, A. S., Kim, S., Zheng, Z., Oppenheimer, D. G., Soltis, P. S. and Soltis, D. E. (2007). Floral developmental morphology of Persea Americana (avocado, Lauraceae), the oddities of staminate organ identity. Int. J. Plant Sci. 168, 261–84.Google Scholar
Buzgo, M., and Endress, P.K. (2000). Floral structure and development of Acoraceae and its systematic relationships with basal Angiosperms. Int. J. Plant Sci. 161, 2341.Google Scholar
Buzgo, M., Soltis, P. S. and Soltis, D. E. (2004). Floral developmental morphology of Amborella trichopoda (Amborellaceae). Int. J. Plant Sci. 165, 925–47.Google Scholar
Buzgo, M., Soltis, D. E., Soltis, P. S., Kim, S., Ma, H., Hauser, B. A., Leebens-Mack, J. and Johansen, B. (2006). Perianth development in the basal monocot Triglochin maritima (Juncaginaceae). Aliso 22, 107–25.CrossRefGoogle Scholar
Byng, J. W. (2014). The flowering plants handbook. A practical guide to families and genera of the world. Hertford: Plant Gateway.Google Scholar
Caddick, L. R., Rudall, P. J. and Wilkin, P. (2000). Floral morphology and development in Dioscoreales. Feddes Repert. 111, 189230.Google Scholar
Cano Niklitschek, M. J. (2012). Evolution of the nectaries in the Primuloid clade (Ericales). Royal Botanic Garden Edinburgh. Unpublished master’s thesis.Google Scholar
Cantino, P. D. (1992). Evidence for a polyphyletic origin of the Labiatae. Ann. Mo. Bot. Gard. 79, 361–79.Google Scholar
Cao, L.-M., Liu, J., Lin, Q., Ronse De Craene, L. P. (2018). The floral organogenesis of Koelreuteria bipinnata and its variety K. bipinnata var. integrifolia (Sapindaceae): Evidence of floral constraints on the evolution of monosymmetry. Plant Syst. Evol. 304, 923–35.Google Scholar
Cao, L.-M., Newman, M., Kirchoff, B., Ronse De Craene, L. P. (2019). Develomental evidence helps resolve the evolutionary origins of anther appendages in Globba. Bot. J. Linn. Soc. 189, 6382.CrossRefGoogle Scholar
Cao, L.-M., Ronse De Craene, L. P., Wang, Z.-X. and Wang, Y.-H. (2017). The floral organogenesis of Eurycorymbus cavaleriei (Sapindaceae) and its systematic implications. Phytotaxa 297, 234–44.Google Scholar
Caris, P. (2013). Bloemontogenetische patronen in the Ericales sensu lato. Katholieke Universiteit Leuven, Belgium: Unpubl. Doctoral Thesis.Google Scholar
Caris, P. L., Geuten, K. P., Janssens, S. B. and Smets, E. F. (2006). Floral development in three species of Impatiens (Balsaminaceae). Am. J. Bot. 93, 114.Google Scholar
Caris, P., Ronse De Craene, L. P. Smets, E. F. and Clinckemaillie, D. (2000). Floral development of three Maesa species, with special emphasis on the position of the genus within Primulales. Ann. Bot. 86, 8797.Google Scholar
Caris, P. and Smets, E. F. (2004). A floral ontogenetic study on the sister group relationship between the genus Samolus (Primulaceae) and the Theophrastaceae. Am. J. Bot. 91, 627–43.Google Scholar
Caris, P., Smets, E. F., De Coster, K. and Ronse De Craene, L. P. (2006). Floral ontogeny of Cneorum tricoccon L. (Rutaceae). Plant Syst. Evol. 257, 223–32.Google Scholar
Carolin, R. C. (1960). Floral structure and anatomy in the family Stylidiaceae Swartz. P. Linn. Soc. N. S. W. 85, 189–96.Google Scholar
Carolin, R. C. (1993). Portulacaceae. In The families and genera of vascular plants vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer, pp. 544–55.Google Scholar
Carrive, L., Domenech, B., Sauquet, H., Jabbour, F., Damerval, C. and Nadot, S. (2020). Insights into the ancestral flowers of Ranunculales. Bot. J. Linn. Soc. 194, 2346.Google Scholar
Carrucan, A. E., and Drinnan, A. N. (2000). The ontogenetic basis for floral diversity in the Baeckea sub-group. Kew Bull. 55, 593613.Google Scholar
Cavalari De-Paula, O., Assis, L. and Ronse De Craene, L. P. (2018). Unbuttoning the ancestral flower of angiosperms. Trends Plant Sci. 23, 551–4.Google Scholar
Cavalari De-Paula, O., das Graças Sajo, M., Prenner, G., Cordeiro, I. and Rudall, P.J. (2011). Morphology, development and homologies of the perianth and floral nectaries in Croton and Astraea (Euphorbiaceae – Malpighiales). Plant Syst. Evol. 292, 114.Google Scholar
Chakravarty, M. L. (1958). Morphology of the staminate flowers in the Cucurbitaceae with special reference to the evolution of the stamens. Lloydia 21, 4987.Google Scholar
Charlton, W. A. (1991). Studies in the Alismataceae. IX. Development of the flower in Ranalisma humile. Can. J. Bot. 69, 2790–6.CrossRefGoogle Scholar
Charlton, W. A. (1999a). Studies in the Alismataceae. X. Floral organogenesis in Luronium natans (L.) Raf. Can. J. Bot. 77, 1560–8.Google Scholar
Charlton, W. A. (1999b). Studies in the Alismataceae. XI. Development of the inflorescence and flowers of Wiesneria triandra (Dalzell) Micheli. Can. J. Bot. 77, 1569–79.Google Scholar
Charlton, W. A. (2004). Studies in the Alismataceae. XII. Floral organogenesis in Damasonium alisma and Baldellia ranunculoides, and comparisons with Butomus umbellatus. Can. J. Bot. 82, 528–39.Google Scholar
Chartier, M., Jabbour, F., Gerber, S., Mitteroecker, P., Sauquet, H., Von Balthazar, M., Staedler, Y., Crane, P. R. and Schönenberger, J. (2014). The floral morphospace: A modern comparative approach to study angiosperm evolution. New Phytol. 204, 841–53.Google Scholar
Chen, L., Ren, Y., Endress, P. K., Tian, X. H. and Zhang, X. H. (2007). Floral organogenesis in Tetracentron sinense (Trochodendraceae) and its systematic significance. Plant Syst. Evol. 264, 183–93.Google Scholar
Chinga, J., and Pérez, F. (2016). Ontogenetic integration in two species of Schizanthus (Solanaceae): A comparison with static integration patterns. Flora 22, 7581.Google Scholar
Chinga, J., Pérez, F. and Claßen-Bockhoff, R. (2021). The role of heterochrony in Schizanthus flower evolution: A quantitative analysis. Perspect. Plant Ecol. 49, 12559. doi: 10.1016/j.ppees.2021.125591Google Scholar
Christenhusz, M. J. M., Brockington, S. F., Christin, P.-A. and Sage, R. F. (2014). On the disintegration of Molluginaceae: A new genus and family (Kewa, Kewaceae) segregated from Hypertelis, and placement of Macarthuria in Macarthuriaceae. Phytotaxa 181, 238–42.Google Scholar
Church, A. H. (1908). Types of floral mechanism. A selection of diagrams and descriptions of common flowers. Part I. Oxford: Clarendon.Google Scholar
Citerne, H., Jabbour, F., Nadot, S. and Damerval, C. (2010). The evolution of floral symmetry. In Advances in botanical research, ed. Kader, J. C. and Delseny, M.. London: Elsevier, pp. 85137.Google Scholar
Citerne, H. L., Pennington, R. T. and Cronk, Q. C. B. (2006). An apparent reversal in floral symmetry in the legume Cadia is a homeotic transformation. Proc. Natl. Acad. Sci. USA 103, 12017–20.Google Scholar
Claßen-Bockhoff, R. (1990). Pattern analysis in pseudanthia. Plant Syst. Evol. 171, 5788.Google Scholar
Claßen-Bockhoff, R. (2016). The shoot concept of the flower: Still up to date? Flora 221, 4653.Google Scholar
Claßen-Bockhoff, R., and Arndt, M. (2018). Flower-like heads from flower-like meristems: Pseudanthium development in Davidia involucrata (Nyssaceae). J. Plant Res. 131, 443–58.Google Scholar
Claßen-Bockhoff, R., and Bull-Hereñu, K. (2013). Towards an ontogenetic understanding of inflorescence diversity. Ann. Bot. 112, 1523–42.Google Scholar
Claßen-Bockhoff, R., and Frankenhäuser, H. (2020). The ‘male flower’ of Ricinus communis (Euphorbiaceae) interpreted as a multi-flowered unit. Front. Cell Dev. Biol. 8: 313. doi: 10.3389/fcell.2020.00313Google Scholar
Claßen-Bockhoff, R., and Heller, A. (2006). Floral synorganization and secondary pollen presentation in four Marantaceae from Costa Rica. Int. J. Plant Sci. 169, 745–60.Google Scholar
Claßen-Bockhoff, R. and Meyer, C. (2016). Space matters: Meristem expansion triggers corona formation in Passiflora. Ann. Bot. 117, 277–90.Google Scholar
Claßen-Bockhoff, R., Wester, P. and Tweraser, E. (2003). The staminal lever mechanism in Salvia L. (Lamiaceae): A review. Plant Biol. 5, 3341.Google Scholar
Clinckemaillie, D., and Smets, E. F. (1992). Floral similarities between Plumbaginaceae and Primulaceae, systematic significance. Belg. J. Bot. 125, 151–3.Google Scholar
Cocucci, A. E., and Anton, A. M. (1988). The grass flower, suggestions on its origin and evolution. Flora 181, 353–62.Google Scholar
Coen, E. S., and Meyerowitz, E. M. (1991). The war of the whorls: Genetic interactions controlling flower development. Nature 353, 31–7.Google Scholar
Cook, C. D. K. (1998). Hydrocharitaceae. In The families and genera of vascular plants Vol. IV, ed. Kubitzki, K.. Berlin: Springer, pp. 234–48.Google Scholar
Copeland, H. F. (1963). Structural notes on hollies (Ilex aquifolium and I. cornuta, family Aquifoliaceae). Phytomorphology 13, 455–64.Google Scholar
Costello, A., and Motley, T. J. (2004). The development of the superior ovary in Tetraplasandra (Araliaceae). Am. J. Bot. 91, 644–55.Google Scholar
Couvreur, T. L. P., Richardson, J. E., Sosef, M. S. M., Erkens, R. H. J. and Chatrou, L. W. (2008). Evolution of syncarpy and other morphological characters in African Annonaceae: A posterior mapping approach. Mol. Phyl. Evol. 47, 302–18.Google Scholar
Cox, C. D. K. (1998). Hydrocharitaceae. In The families and genera of vascular plants, Vol. IV, ed. Kubitzki, K.. Berlin: Springer, pp. 234–48.Google Scholar
Crane, P. R., Friis, E. M. and Pedersen, K. R. (1994). Paleobotanical evidence on the early radiation of magnoliid Angiosperms. Plant Syst. Evol., Suppl. 8, 5172.Google Scholar
Crepet, W. L. (2008). The fossil record of Angiosperms: Requiem or renaissance? Ann. Mo. Bot. Gard. 95, 333.Google Scholar
Crepet, W. L., Nixon, K. C. and Weeks, A. (2018). Mid-Cretaceous angiosperm radiation and an asteroid origin of bilaterality: diverse and extinct ‘Ericales’ from New Jersey. Am. J. Bot. 105, 1412–23.Google Scholar
Cronk, Q. C. B., Needham, I. and Rudall, P. J. (2015). Evolution of catkins: Inflorescence morphology of selected Salicaceae in an evolutionary and developmental context. Front. Plant Sci. 5, 1030. doi: 10.3389/fpls.2015.01030Google Scholar
Cronquist, A. (1981). An integrated system of classification of flowering plants. New York: Columbia University Press.Google Scholar
Cuénoud, P., Savolainen, V., Chatrou, L. W., Powell, M., Grayer, R. J. and Chase, M. W. (2002). Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. Am. J. Bot. 89, 132–44.Google Scholar
Dahlgren, R. (1975). A system of classification of the Angiosperms to be used to demonstrate the distribution of characters. Bot. Not. 128, 119–47.Google Scholar
Dahgren, R. (1983). General aspects of Angiosperm evolution and macrosystematics. Nord. J. Bot. 3, 119–49.Google Scholar
Dahlgren, R., Clifford, T. H. and Yeo, P. (1985). The families of the monocotyledons. Structure, evolution and taxonomy. Berlin: Springer.Google Scholar
Dahlgren, R., and Thorne, R. F. (1984). The order Myrtales: Circumscription, variation and relationships. Ann. Mo. Bot. Gard. 71, 633–99.Google Scholar
D’Arcy, W. G. (1986). The calyx in Lycianthes and some other genera. Ann. Mo. Bot. Gard. 73, 117–27.Google Scholar
Dawson, M. L. 1936. The floral morphology of the Polemoniaceae. Am. J. Bot. 23, 501–11.Google Scholar
de Barros, T. C., Pedersoli, G. D., Paulino, J. V. and Teixeira, S. P. (2017). In the interface of caesalpinioids and mimosoids: Comparative floral development elucidates shared characters in Dimorphandra mollis and Pentaclethra macroloba (Leguminosae). Am. J. Bot. 104, 218–32.Google Scholar
de Laet, J., Clinckemaillie, D., Jansen, S. and Smets, E. F. (1995). Floral ontogeny in the Plumbaginaceae. J. Plant Res. 108, 289304.Google Scholar
de Maggio, A. E., and Wilson, C. L. (1986). Floral structure and organogenesis in Podophyllum peltatum (Berberidaceae). Am. J. Bot. 73, 2132.Google Scholar
de Menezes, N. L. (1980). Evolution in Velloziaceae, with special reference to androecial characters. In Petaloid monocotyledons, ed. Brickell, C. D., Cutler, D. F. and Gregory, M.. Hortic. and Botan. Research. Linnean Soc. Symposium Series 8. London: Academic Press, pp. 117–38.Google Scholar
de Olivera Franca, R. and Cavalari De-Paula, O. (2017). Embryology of Pera (Peraceae, Malpighiales): Systematics and evolutionary implications. J. Plant Res. 130, 709–21.Google Scholar
Deroin, T. (1985). Contribution à la morphologie comparée du gynécée des Annonaceae: Monodoroideae. Bull. Mus. Hist. Nat. (Paris) Sér. IV, 7, 167–76.Google Scholar
Deroin, T. (1997). Confirmation and origin of the paracarpy in Annonaceae, with comments on some methodological aspects. Candollea 52, 4558.Google Scholar
Deroin, T. (2000). Floral anatomy of Toussaintia hallei Le Thomas, a case of convergence of Annonaceae with Magnoliaceae. In Proceedings of the International Symposium on the Family Magnoliaceae, ed. Liu, Y.-H., Fan, H.-M., Chen, Z.-Y., Wu, Q.-G. and Zeng, Q.-W.. Beijing: Science Press, pp. 168–76.Google Scholar
Deroin, T. (2007). Floral vascular pattern of the endemic Malagasy genus Fenerivia Diels (Annonaceae). Adansonia Sér. 3, 29, 712.Google Scholar
Deroin, T. (2010). Floral anatomy of Magnolia decidua (Q. Y. Zheng) V. S. Kumar (Magnoliaceae): Recognition of a partial pentamery. Adansonia Sér. 3, 32, 3955.Google Scholar
Deroin, T., and Le Thomas, A. (1989). Sur la systématique et les potentialités évolutives des Annonacées: cas d’Ambavia gerrardii (Baill.) Le Thomas, espèce endémique de Madagascar. C. R. Acad. Sci. Paris t. 309 , Sér. III, 647–52.Google Scholar
Derstine, K. S., and Tucker, S. C. (1991). Organ initiation and development of inflorescences and flowers of Acacia baileyana. Am. J. Bot. 78, 816–32.Google Scholar
de Wilde, W. J. J. O. (1974). The genera of tribe Passifloreae (Passifloraceae) with special reference to flower morphology. Blumea 22, 3750.Google Scholar
Dickison, W. C. (1970). Comparative morphological studies in Dilleniaceae VI. Stamens and young stem. J. Arnold Arbor. 51, 403–18.Google Scholar
Dickison, W. C. (1972). Observations on the floral morphology of some species of Saurauia, Actinidia and Clematoclethra. J. Elisha Mitchell Sci. Soc. 88, 4354.Google Scholar
Dickison, W. C. (1975). Studies on the floral anatomy of the Cunoniaceae. Am. J. Bot. 62, 433–47.Google Scholar
Dickison, W. C. (1978). Comparative anatomy of Eucryphiaceae. Am. J. Bot. 65, 722–35.Google Scholar
Dickison, W.C. (1986). Floral morphology and antomy of Staphyleaceae. Bot. Gaz. 147, 312–26.Google Scholar
Dickison, W. C. (1993). Floral anatomy of the Styracaceae, including observations on intra-ovarian trichomes. Bot. J. Linn. Soc. 112, 223–55.Google Scholar
Dilcher, D. L. (2000). Toward a new synthesis, major evolutionary trends in the Angiosperm fossil record. Proc. Natl. Acad. Sci. USA 97, 7030–6.Google Scholar
Donoghue, M. J., Bell, C. D. and Winkworth, R. C. (2003). The evolution of reproductive characters in Dipsacales. Int. J. Plant Sci. 164 (5 Suppl.), S453S464.Google Scholar
Donoghue, M. J., Ree, R. H. and Baum, D. A. (1998). Phylogeny and the evolution of flower symmetry in the Asteridae. Trends Plant Sc. 3, 311–17.Google Scholar
Douglas, A. W., and Tucker, S. C. (1996a). Comparative floral ontogenies among Persoonioideae including Bellendena (Proteaceae). Am. J. Bot. 83, 1528–55.Google Scholar
Douglas, A. W., and Tucker, S. C. (1996b). Inflorescence ontogeny and floral organogenesis in Grevilleoideae (Proteaceae), with emphasis on the nature of the flower pairs. Int. J. Plant Sci. 157, 341–72.Google Scholar
Douglas, A. W., and Tucker, S. C. (1996c). The developmental basis of diverse carpel orientations in Grevilleoideae (Proteaceae). Int. J. Plant Sci. 157, 373–97.Google Scholar
Douglas, A. W., and Tucker, S. C. (1997). The developmental basis of morphological diversification and synorganization in flowers of Conospermeae (Stirlingia and Conosperminae, Proteaceae). Int. J. Plant Sci. 158, S13S48.Google Scholar
Doust, A. N. (2002). Comparative floral ontogeny in Winteraceae. Ann. Mo. Bot. Gard. 87, 366–79.Google Scholar
Doyle, J. A. (2008). Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. Int. J. Plant Sci. 169, 816–43.Google Scholar
Doyle, J. A., and Endress, P. K. (2000). Morphological phylogenetic analysis of basal Angiosperms, comparison and combination with molecular data. Int. J Plant Sci. 161 (6 Suppl.), S121S153.Google Scholar
Doyle, J. A., and Endress, P. K. (2011). Tracing the early evolutionary diversification of the angiosperm flower. In Flowers on the tree of life, ed. Wanntorp, L. and Ronse De Craene, L. P. Cambridge: Cambridge University Press, pp. 88119.Google Scholar
Drinnan, A. N., and Ladiges, P. Y. (1989). Corolla and androecium development in some Eudesmia eucalypts (Myrtaceae). Plant Syst. Evol. 165, 239–54.Google Scholar
Eames, A. J. (1961). Morphology of the Angiosperms. New York: Mc Graw-Hill.Google Scholar
Eckert, G. (1966). Entwicklungsgeschichtliche und blütenanatomische Untersuchungen zum Problem der Obdiplostemonie. Bot. Jahrb. Syst. 85, 523604.Google Scholar
Eckardt, T. (1937). Untersuchungen über Morphologie, Entwicklungsgeschichte und systematische Bedeutung des pseudomonomeren Gynoeceums. Nova Acta Leopold. N. F. 5, 1112.Google Scholar
Eckardt, T. (1974). Vom Blütenbau der Centrospermen-Gattung Lophiocarpus Turcz. Phyton (Austria) 16: 14.Google Scholar
Ecklund, H. (2000). Lauraceous flowers from the Late Cretaceous of North Carolina, U.S.A. Bot. J. Linn. Soc. 132, 397428.Google Scholar
Edgell, T. (2004). Floral studies of Brexia madagascariensis Thouars (Celastraceae). UK: Royal Botanic Garden Edinburgh: Unpubl. MSc thesis.Google Scholar
Eichler, A. W. (1875). Blüthendiagramme vol. I. Leipzig: Wilhelm Engelmann.Google Scholar
Eichler, A. W. (1878). Blütendiagramme vol. II. Leipzig: Wilhelm Engelmann.Google Scholar
El, E. S., Remizowa, M. V. and Sokoloff, D. D. (2020). Developmental flower and rhizome morphology in Nuphar (Nymphaeales): An interplay of chaos and stability. Front. Cell Dev. Biol. 8, 303. doi: 10.3389/fcell.2020.00303Google Scholar
Eliasson, U. H. 1988. Floral morphology and taxonomic relations among the genera of Amaranthaceae in the New World and the Hawaiian Islands. Bot. J. Linn. Soc. 96, 235–83.Google Scholar
El Ottra, J. H. L., Demarco, D. and Pirani, J. R. (2019). Comparative floral structure and evolution in Galipeinae (Galipeeae: Rutaceae) and its implications at different systematic levels. Bot. J. Linn. Soc. 191, 30101.Google Scholar
El Ottra, J. H. L., Mello-de-Pina, G. F. de A., Demarco, D., Pirani, J. R. and Ronse De Craene, L. P. (2022). Gynoecium structure in Sapindales: A review of selected features and a case study of Trichilia pallens C. DC. (Meliaceae). J. Plant. Res.Google Scholar
El Ottra, J. H. L., Pirani, J. R. and Endress, P. K. (2013). Fusion within and between whorls of floral organs in Galipeinae (Rutaceae): Structural features and evolutionary implications. Ann. Bot. 111, 821–37.Google Scholar
Endress, M. E., and Bittrich, V. (1993). Molluginaceae. In The families and genera of vascular plants, vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V., Berlin: Springer, pp. 419–26.Google Scholar
Endress, M. E., Sennblad, B., Nilsson, S., Civeyrel, L., Chase, M. W., Huysmans, S., Grafström, E. and Bremer, B. (1996). A phylogenetic analysis of Apocynaceae s.str. and some related taxa in Gentianales, a multidisciplinary approach. Opera Bot. Belg. 7, 59102.Google Scholar
Endress, P. K. (1967). Systematische Studien über die verwandschaftlichen Beziehungen zwischen den Hamamelidaceen und Betulaceen. Bot. Jahrb. Syst. 87, 431525.Google Scholar
Endress, P. K. (1976). Die Androeciumanlage bei polyandrischen Hamamelidaceen und ihre systematische Bedeutung. Bot. Jahrb. Syst. 97, 436–57.Google Scholar
Endress, P. K. (1977). Evolutionary trends in the Hamamelidales-Fagales group. Plant Syst. Evol. Suppl. 1, 321–47.Google Scholar
Endress, P. K. (1978). Blütenontogenese, Blütenabgrenzung und Systematische Stellung der perianthlosen Hamamelidoideae. Bot. Jahrb. Syst. 100, 249317.Google Scholar
Endress, P. K. (1980a). Ontogeny, function and evolution of extreme floral construction in Monimiaceae. Plant Syst. Evol. 134, 79120.Google Scholar
Endress, P. K. (1980b). The reproductive structures and systematic position of the Austrobaileyaceae. Bot. Jahrb. Syst. 101, 393433.Google Scholar
Endress, P. K. (1984). The role of inner staminodes in the floral display of some relic Magnoliales. Plant Syst. Evol. 146, 269–82.Google Scholar
Endress, P. K. (1986). Floral structure, systematics, and phylogeny in Trochodendrales. Ann. Mo Bot. Gard. 73, 297324.Google Scholar
Endress, P. K. (1987). Floral phyllotaxis and floral evolution. Bot. Jahrb. Syst. 108, 417–38.Google Scholar
Endress, P. K. (1989). Chaotic floral phyllotaxis and reduced perianth in Achlys (Berberidaceae). Bot. Acta 102, 159–63.Google Scholar
Endress, P. K. (1990). Patterns of floral construction in ontogeny and phylogeny. Biol. J. Linn. Soc. 39, 153–75.Google Scholar
Endress, P. K. (1992). Evolution and floral diversity, the phylogenetic surroundings of Arabidopsis and Antirrhinum. Int. J. Plant Sci. 153, S106S122.Google Scholar
Endress, P. K. (1994). Diversity and evolutionary biology of tropical flowers. Cambridge: Cambridge University Press.Google Scholar
Endress, P. K. (1995a). Major evolutionary traits of monocot flowers. In Monocotyledons, systematics and evolution, ed. Rudall, P. J., Cribb, D. F. and Humphries, C. J.. Kew: Royal Botanic Gardens, pp. 4379.Google Scholar
Endress, P. K. (1995b). Floral structure and evolution in Ranunculanae. Plant Syst. Evol. Suppl. 9, 4761.Google Scholar
Endress, P. K. (1997). Relationships between floral organization, architecture, and pollination mode in Dillenia (Dilleniaceae). Plant Syst. Evol. 206, 99118.Google Scholar
Endress, P. K. (1998). Antirrhinum and Asteridae: Evolutionary changes of floral symmetry. Soc. Exp. Biol. Sem. Ser. 51, 133–40.Google Scholar
Endress, P. K. (1999). Symmetry in flowers: Diversity and evolution. Int. J. Plant Sci. 160 (6 Suppl.), S3S23.Google Scholar
Endress, P. K. (2001). The flower in extant basal Angiosperms and inferences on ancestral flowers. Int. J. Plant Sci. 162, 1111–40.Google Scholar
Endress, P. K. (2003a). Morphology and Angiosperm systematics in the molecular era. Bot. Rev. 68, 545–70.Google Scholar
Endress, P. K. (2003b). Early floral development and nature of the calyptra in Eupomatiaceae (Magnoliales). Int. J. Plant Sci. 164, 489503.Google Scholar
Endress, P. K. (2006). Angiosperm floral evolution, morphological developmental framework. Adv. Bot. Res. 44, 161.Google Scholar
Endress, P. K. (2008a). My favourite flowering image. J. Exper. Bot. FNL 2008: 13.Google Scholar
Endress, P. K. (2008b). The whole and the parts, relationships between floral architecture and floral organ shape, and their repercussions on the interpretation of fragmentary floral fossils. Ann. Mo. Bot. Gard. 95, 101–20.Google Scholar
Endress, P. K. (2008c). Perianth biology in the basal grade of extant angiosperms. Int. J. Plant Sci. 169, 844–62.Google Scholar
Endress, P. K. (2010a). Synorganisation without organ fusion in the flowers of Geranium robertianum (Geraniaceae) and its not so trivial obdiplostemony. Ann. Bot. 106, 687–95.Google Scholar
Endress, P. K. (2010b). Disentangling confusions in inflorescence morphology: Patterns and diversity of reproductive shoot ramification in angiosperms. J. Syst. Evol. 48, 225–39.Google Scholar
Endress, P. K. (2011). Evolutionary diversification of the flowers in angiosperms. Amer. J. Bot. 98, 370–96.Google Scholar
Endress, P.K. (2012). The immense diversity of floral monosymmetry and asymmetry across angiosperms. Bot. Rev. 78, 345–97.Google Scholar
Endress, P. K. (2014). Multicarpellate gynoecia in angiosperms: Occurrence, development, organization and architectural constraints. Bot. J. Linn. Soc. 174, 143.Google Scholar
Endress, P. K. (2016). Development and evolution of extreme synorganization in angiosperm flowers and diversity: A comparison of Apocynaceae and Orchidaceae. Ann. Bot. 117, 749–67.Google Scholar
Endress, P. K. (2019). The morphological relationship between carpels and ovules in angiosperms: Pitfalls of morphological interpretation. Bot. J. Linn. Soc. 189, 201–27.Google Scholar
Endress, P. K., Davis, C. C. and Matthews, M. L. (2013) Advances in the floral structural characterization of the major subclades of Malpighiales, one of the largest orders of flowering plants. Ann. Bot. 111, 969–85.Google Scholar
Endress, P. K., and Doyle, J. A. (2007). Floral phyllotaxis in basal Angiosperms, development and evolution. Curr. Opin. Plant Biol. 10, 52–7.Google Scholar
Endress, P. K., and Doyle, J. A. (2009). Reconstructing the ancestral angiosperm flower and its initial specializations. Am. J. Bot. 96, 2266.Google Scholar
Endress, P. K., and Doyle, J. A. (2015). Ancestral traits and specializations in the flowers of the basal grade of living angiosperms. Taxon 64, 10931116.Google Scholar
Endress, P. K., and Hufford, L. D. (1989). The diversity of stamen structures and dehiscence patterns among Magnoliidae. Bot. J. Linn. Soc. 100, 4585.Google Scholar
Endress, P. K., and Igersheim, A. (1997). Gynoecium diversity and systematics of the Laurales. Bot. J. Linn. Soc. 125, 93168.Google Scholar
Endress, P. K., and Igersheim, A. (2000a). Gynoecium structure and evolution in basal Angiosperms. Int. J. Plant Sci. 161 (6 Suppl.), S211S223.Google Scholar
Endress, P. K., and Igersheim, A. (2000b). The reproductive structures of the basal Angiosperm Amborella trichopoda (Amborellaceae). Int. J. Plant Sci. 161 (6 Suppl.), S237S248.Google Scholar
Endress, P. K., Jenny, M. and Fallen, M. (1983). Convergent elaboration of apocarpous gynoecia in higher advanced dicotyledons. Nord. J. Bot. 3, 293300.Google Scholar
Endress, P. K., and Lorence, D. H. (2004). Heterodichogamy of a novel type in Hernandia (Hernandiaceae) and its structural basis. Int. J. Plant Sci. 165, 753–63.Google Scholar
Endress, P. K., and Matthews, M. L. (2006a). First steps towards a floral structural characterization of the major Rosid subclades. Plant Syst. Evol. 260, 223–51.Google Scholar
Endress, P. K., and Matthews, M. L. (2006b). Elaborate petals and staminodes in eudicots, diversity, function, and evolution. Org. Div. Evol. 6, 257–93.Google Scholar
Endress, P. K., and Matthews, M. L. (2012). Progress and problems in the assessment of flower morphology in higher-level systematics. Plant Syst. Evol. 298, 257–76.Google Scholar
Endress, P. K., and Rapini, A. (2014). Floral structure of Emmotum (Icacinaceae sensu stricto or Emmotaceae), a phylogenetically isolated genus of lamiids with a unique pseudotrimerous gynoecium, bitegmic ovules and monosporangiate thecae. Ann. Bot. 114, 945–59.Google Scholar
Engler, A., and Krause, K. (1935). Loranthaceae. In Die natürlichen Pflanzenfamilien 16b, ed. Engler, A. and Prantl, K.. 2nd edn. Leipzig: W. Engelmann, pp. 98203.Google Scholar
Engler, A., and Prantl, K., eds. (1887–1909). Die natürlichen Pflanzenfamilien I–IV, Leipzig: W. Engelmann.Google Scholar
Erbar, C. (1986). Untersuchungen zur Entwicklung der spiraligen Blüte von Stewartia pseudocamellia (Theaceae). Bot. Jahrb. Syst. 106, 391407.Google Scholar
Erbar, C. (1991). Sympetaly: A systematic character? Bot. Jahrb. Syst. 112, 417–51.Google Scholar
Erbar, C. (1992). Floral development of two species of Stylidium (Stylidiaceae) and some remarks on the systematic position of the family Stylidiaceae. Can. J. Bot. 70, 258–71.Google Scholar
Erbar, C. (1993). Studies on the floral development and pollen presentation in Acicarpha tribuloides with a discussion of the systematic position of the family Calyceraceae. Bot. Jahrb. Syst. 115, 325–50.Google Scholar
Erbar, C. (1994). Contributions to the affinities of Adoxa from the viewpoint of floral development. Bot. Jahrb. Syst. 116, 259–82.Google Scholar
Erbar, C. (1998). Coenokarpie ohne und mit Compitum, ein Vergleich der Gynoeceen von Nigella (Ranunculaceae) and Geranium (Geraniaceae). Beitr. Biol. Pflanz. 71, 1339.Google Scholar
Erbar, C. (2014) Nectar secretion and nectaries in basal angiosperms, magnoliids and non-core eudicots and a comparison with core eudicots. Plant Div. Evol. 131 /2, 63143.Google Scholar
Erbar, C., Kusma, S. and Leins, P. (1998). Development and interpretation of nectary organs in Ranunculaceae. Flora 194, 317–32.Google Scholar
Erbar, C., and Leins, P. (1981). Zur spirale in Magnolienblüten. Beitr. Biol. Pflanz. 56, 225–41.Google Scholar
Erbar, C., and Leins, P. (1983). Zur sequenz von Blütenorganen bei einigen Magnoliiden. Bot. Jahrb. Syst. 103, 433–49.Google Scholar
Erbar, C., and Leins, P. (1985). Studien zur Organsequenz in Apiaceen-Blüten. Bot. Jahrb. Syst. 105, 379400.Google Scholar
Erbar, C., and Leins, P. (1988a). Blütenentwicklungsgeschichtliche Studien an Aralia und Hedera (Araliaceae). Flora 180, 391406.Google Scholar
Erbar, C., and Leins, P. (1988b). Studien zur Blütenentwicklung und Pollenpräsentation bei Brunonia australis Smith (Brunoniaceae). Bot. Jahrb. Syst. 110, 263–82.Google Scholar
Erbar, C., and Leins, P. (1989). On the early floral development and the mechanisms of secondary pollen presentation in Campanula, Jasione and Lobelia. Bot. Jarhb. Syst. 111, 2955.Google Scholar
Erbar, C., and Leins, P. (1994). Flowers in Magnoliidae and the origin of flowers in other subclasses of the Angiosperms. I. The relationships between flowers of Magnoliidae and Alismatidae. Plant Syst. Evol., suppl. 8, 193208.Google Scholar
Erbar, C., and Leins, P. (1995a). An analysis of the early floral development of Pittosporum tobira (Thunb.) Aiton and some remarks on the systematic position of the family Pittosporaceae. Feddes Repert. 106, 463–73.Google Scholar
Erbar, C., and Leins, P. (1995b). Portioned pollen release and the syndromes of secondary pollen presentation in the Campanulales-Asterales-complex. Flora 190, 323–38.Google Scholar
Erbar, C., and Leins, P. (1997). Different patterns of floral development in whorled flowers, exemplified by Apiaceae and Brassicaceae. Int. J. Plant Sci. 158 (Suppl. 6), S49S64.Google Scholar
Erbar, C., and Leins, P. (2011). Synopsis of some important, non-DNA character states in the Asterids with special reference to sympetaly. Plant Div. Evol. 129, 93123.Google Scholar
Ernst, W. R. (1967). Floral morphology and systematics of Platystemon and its allies Hesperomecon and Meconella (Papaveraceae, Platystemonoideae). Univ. Kansas Sci. Bull. 47, 2570.Google Scholar
Etchevery, A. V., Alemán, M. M. and Fleming, T. F. (2008). Flower morphology, pollination biology and mating system of the complex flower of Vigna Caracalla (Fabaceae: Papilionoideae). Ann. Bot. 102, 305–16.Google Scholar
Evans, R. C., and Dickinson, T. A. (1996). North American black-fruited hawthorns. II. Floral development of 10- and 20- stamen morphotypes in Crateaegus section douglasii (Rosaceae, Maloideae). Am. J. Bot. 83, 961–78.Google Scholar
Evans, R. C., and Dickinson, T. A. (2005). Floral ontogeny and morphology in Gillenia (‘Spiraeoideae’) and subfamily Maloideae C. Weber (Rosaceae). Int. J. Plant Sci. 166, 427–47.Google Scholar
Eyde, R. H. (1977). Reproductive structures and evolution in Ludwigia (Onagraceae). I. androecium, placentation, merism. Ann. Mo. Bot. Gard. 64, 644–55.Google Scholar
Eyde, R. H., and Morgan, J. T. (1973). Floral structure and evolution in Lopezieae (Onagraceae). Am. J. Bot. 60, 771–87.Google Scholar
Faden, R. B. (2000). Floral biology of Commelinaceae. In Monocots, systematics and Evolution, ed. Wilson, K. L. and Morrison, D. A.. Melbourne: CSIRO, pp. 309–17.Google Scholar
Falcão, M. J. A., Paulino, J. V., Kochanowski, F. J., Figgueiredo, R. C., Basso-Alves, J. P. and Mansano, V. F. (2020). Development of inflorescences and flowers in Fabaceae subfamily Dialioideae: An evolutionary overview and complete ontogenetic series for Apuleia and Martiodendron. Bot. J. Linn. Soc. 193, 1946.Google Scholar
Farrar, J., and Ronse De Craene, L. P. (2013). To be or not to be a staminode: The floral development of Sauvagesia (Ochnaceae) reveals different origins of presumed staminodes. In Flowers, morphology, evolutionary diversification and implications for the environment, ed. Berntsen, T. and Alsvik, K.. New York: Nova Science, pp. 89103.Google Scholar
Fey, B. S., and Endress, P. K. (1983). Development and morphological interpretation of the cupule in Fagaceae. Flora 173, 451–68.Google Scholar
Fiedler, H. (1910). Beiträge zur Kenntnis der Nyctaginaceen. Engl. Bot. Jahrb. 44, 572605.Google Scholar
Flores-Olvera, H., Vrijdaghs, A., Ochoterena, H. and Smets, E. (2011). The need to re-investigate the nature of homoplastic characters: An ontogenetic case study of the ‘bracteoles’ in Atripliceae (Chenopodiaceae). Ann. Bot. 108, 847–65.Google Scholar
Frame, D., and Durou, S. (2001). Morphology and biology of Napolaeona vogellii (Lecythidaceae) flowers in relation to the natural history of insect visitors. Biotropica 33, 458–71.Google Scholar
Franz, E. (1908). Beiträge zur Kenntnis der Portulacaceen und Basellaceen. Bot. Jahrb. Syst. 42 , Beibl. 97, 128.Google Scholar
Freitas, L., Bernardello, G., Galetto, L. and Paoli, A. A. S. (2001). Nectaries and reproductive biology of Croton sarcopetalus (Euphorbiaceae). Bot. J. Linn. Soc. 136, 267–77.Google Scholar
Friedman, J. (2011). Gone with the wind: Understanding evolutionary transitions between wind and animal pollination in the angiosperms. New Phytol. 191, 911–13.Google Scholar
Friedman, J., and Barrett, S. C. (2008). A phylogenetic analysis of the evolution of wind pollination in the Angiosperms. Int. J. Plant Sci. 169, 4958.Google Scholar
Friedrich, H.-C. (1956). Studien über die natürliche Verwandtschaft der Plumbaginales und Centrospermae. Phyton (Austria) 6, 220–63.Google Scholar
Friis, E. M. (1984). Preliminary report of Upper Cretaceous Angiosperm reproductive organs from Sweden and their level of organisation. Ann. Mo Bot. Gard. 71, 403–18.Google Scholar
Friis, E. M., Pedersen, K. R. and Crane, P. R. (2006). Cretaceous Angiosperm flowers, innovation and evolution in plant reproduction. Paleogeogr. Palaeoclimat. Palaeoecol. 232, 251–93.Google Scholar
Friis, E. M., Pedersen, K. R. and Crane, P. R. (2016). The emergence of core eudicots: New floral evidence from the earliest late Cretaceous. Proc. Roy. Soc. B283, 20161325.Google Scholar
Friis, E. M., Pedersen, K. L., and Schönenberger, J. (2006). Normapolles plants, a prominent component of the Cretaceous Rosid diversification. Plant Syst. Evol. 260, 107–40.Google Scholar
Fu, L., Zen, Q.-W., Liao, J.-P. and Xu, F.-X. (2009). Anatomy and ontogeny of unisexual flowers in dioecious Woonyoungia septentrionalis (Dandy) Law (Magnoliaceae). J. Syst. Evol. 47, 263–72.Google Scholar
Fukuoka, N., Ito, M. and Iwatsuki, K. (1986). Floral anatomy of the mangrove genus Lumnizera (Combretaceae). Acta Phytotax. Geobot. 37, 6981.Google Scholar
Gagliardi, K. B., Cordeiro, I. and Demarco, D. (2018). Structure and development of flowers and inflorescences in Peraceae and the evolution of pseudanthia in Malpighiales. PLOS ONE. doi: 10.1371/journal.pone.0203954Google Scholar
Gagliardi, K. B., de Souza, L. A. and Albiero, A. L. M. (2014). Comparative fruit development in some Euphorbiaceae and Phyllanthaceae. Plant Syst. Evol. 300, 775–82.Google Scholar
Gallant, J. B., Kemp, J. R. and Lacroix, C. R. (1998). Floral development of dioecious staghorn sumac, Rhus hirta (Anacardiaceae). Int. J. Plant Sci. 159, 539–49.Google Scholar
Galle, P. (1977). Untersuchungen zur Blütenentwicklung der Polygonaceen. Bot. Jahrb. Syst. 98, 449–89.Google Scholar
Gandhi, K. N., and Dale Thomas, R. (1983). A note on the androecium of the genus Croton and flowers in general of the family Euphorbiaceae. Phytologia 54, 68.Google Scholar
Gandolfo, M. A., Nixon, K. C. and Crepet, W. L. (1998). Tylerianthus crossmanensis gen. et sp. nov. (Aff. Hydrageaceae) from the Upper Cretaceous of New Jersey. Am. J. Bot. 85, 376–86.Google Scholar
Gauthier, R., and Arros, J. (1963). L’anatomie de la fleur staminée de l’Hillebrandia sandwicensis Oliver et la vascularisation de l’étamine. Phytomorphology 13, 115–27.Google Scholar
Ge, L.-P., Lu, A.-M. and Gong, C.-R. (2007). Ontogeny of the fertile flower in Platycrater arguta (Hydrangeaceae). Int. J. Plant Sci. 168, 835–44.Google Scholar
Geitler, L. (1929). Zur Morphologie der Blüten von Polygonum. Österr. Bot. Zeit. 78, 229–41.Google Scholar
Gelius, L. (1967). Studien zur Entwicklungsgeschichte an Blüten der Saxifragales sensu lato mit besonderer Berücksichtigung des Androeceum. Bot. Jahrb. Syst. 87, 253303.Google Scholar
Gemmeke, V. (1982). Entwicklungsgeschichtliche Untersuchungen an Mimosaceen-Blüten. Bot. Jahrb. Syst. 103, 185210.Google Scholar
Gerrath, J. M., Lacroix, C. R. and Posluszny, U. (1990). The developmental morphology of Leea guineensis II. Floral development. Bot. Gaz. 151, 210–20.Google Scholar
Geuten, K., Becker, A., Kaufmann, K., Caris, P., Janssens, S., Viaene, T., Theißen, G. and Smets, E. (2006). Petaloidy and petal identity MADS-box genes in the balsaminoid genera Impatiens and Marcgravia. Plant J. 47, 501–18.Google Scholar
Gilg, E. (1894). Studien über die Verwandtschaftsverhältnisse der Thymelaeales und über die ‘Anatomische Methode’. Bot. Jahrb. Syst. 18: 488574.Google Scholar
Glinos, E., and Cocucci, A. A. (2011). Pollination biology of Canna indica (Cannaceae) with particular reference to the functional morphology of the style. Plant Syst. Evol. 291, 4958.Google Scholar
Glover, B. J. (2007). Understanding flowers and flowering. An integrated approach. Oxford: Oxford University Press.Google Scholar
Glover, B. J., Airoldi, C. A., Brockington, S. F., Fernandez-Mazuecos, M., Martinez-Perez, C., Mellers, G., Moyroud, E. and Taylor, L. (2015). How have advances in comparative floral development influenced our understanding of floral evolution? Int. J. Plant Sci. 176, 307–23.Google Scholar
Gonzalez, A. M. (2016). Floral structure, development of the gynoecium, and embryology in Schinopsis balansae Engler (Anacardiaceae) with particular reference to aporogamy. Int. J. Plant Sci. 177, 326–38.Google Scholar
González, F., and Bello, M. A. (2009). Intraindividual variation variation of flowers of Gunnera (Gunneraceae) and proposed apomorphies for Gunnerales. Bot. J. Linn. Soc. 160, 262–83.Google Scholar
González, F., and Rudall, P. (2010). Flower and fruit characters in the early-divergent Lamiid family Metteniusaceae, with particular reference to the evolution of pseudomonomery. Am. J. Bot. 97, 191206.Google Scholar
González, F., and Stevenson, D. W. (2000a). Perianth development and systematics of Aristolochia. Flora 195, 370–91.Google Scholar
González, F., and Stevenson, D. W. (2000b). Gynostemium development in Aristolochia (Aristolochiaceae). Bot. Jahrb. Syst. 122, 249–91.Google Scholar
Gottschling, M. (2004). Floral ontogeny in Bourreria (Ehretiaceae, Boraginales). Flora 199, 409–23.Google Scholar
Graf, J. (1975). Tafelwerk zur Pflanzensystematik mit euartiger Bildmethode. München: J. F. Lehmanns.Google Scholar
Greenberg, A. K., and Donoghue, M. J. (2011). Molecular systematics and character evolution in Caryophyllaceae. Taxon 60, 1637–52.Google Scholar
Grey-Wilson, C. (1980). Some observations on the floral vascular antomy of Impatiens (Studies in Balsaminaceae VI). Kew Bull. 35, 221–7.Google Scholar
Groeninckx, I., Vrijdaghs, A., Huysmans, S., Smets, E. and Dessein, S. (2007). Floral ontogeny of the Afro-Madagascan genus Mitrasacmopsis with comments on the development of superior ovaries in Rubiaceae. Ann. Bot. 100, 41–9.Google Scholar
Guédès, M. (1979). Morphology of seed-plants. Vaduz, Liechtenstein: J. Cramer.Google Scholar
Guo, X., Thomas, D. C. and Saunders, R. M. K. (2018). Organ homologies and perianth evolution in the Dasymaschalon alliance (Annonaceae): Inner petal loss and its functional consequences. Front. Plant Sci. 9, 174. doi: 10.3389/fpls.2018.00174Google Scholar
Gustafsson, M. H. G. (1995). Petal venation in Asterales and related orders. Bot. J. Linn. Soc. 118, 118.Google Scholar
Gustafsson, M. H. G. (2000). Floral morphology and relationships of Clusia gundlachii with a discussion of floral organ identity and diversity in the genus Clusia. Int. J. Plant Sci. 161, 4353.Google Scholar
Gustafsson, M. H. G., and Albert, V. A. (1999). Inferior ovaries and Angiosperm diversification. In Molecular systematics and plant evolution, ed. Hollingsworth, P. M., Bateman, R. M. and Gornall, R. J.. London: Taylor and Francis, pp. 403–31.Google Scholar
Gustafsson, M. H. G., and Bittrich, V. (2002). Evolution of morphological diversity and resin secretion in flowers of Clusia (Clusiaceae), insights from ITS sequence variation. Nord. J. Bot. 22, 183203.Google Scholar
Gustafsson, M. H. G., Bittrich, V., and Stevens, P. F. (2002). Phylogeny of Clusiaceae based on rbcL sequences. Int. J. Plant Sci. 163, 1045–54.Google Scholar
Haas, P. (1976). Morphologische, anatomische und entwicklungsgeschichtliche Untersuchungen an Blüten und Früchten hochsukkulenter Mesembryanthemaceen-Gattungen – ein Beitrag zu ihrer Systematik. Diss. Bot. 33, 1256.Google Scholar
Haber, J. M. (1966). The comparative anatomy and morphology of the flowers and inflorescences of the Proteaceae III. Some African taxa. Phytomorphology 16, 490527.Google Scholar
Hall, J. C., Sytsma, K. J. and Iltis, H. H. (2002). Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Am. J. Bot. 89, 1826–42.Google Scholar
Hardy, C. R., and Stevenson, D. W. (2000a). Development of the gametophytes, flower, and floral vasculature in Cochliostema odoratissimum (Commelinaceae). Bot. J. Linn. Soc. 134, 131–57.Google Scholar
Hardy, C. R., and Stevenson, D. W. (2000b). Floral organogenesis in some species of Tradescantia and Callisia (Commelinaceae). Int. J. Plant Sci. 161, 551–62.Google Scholar
Hardy, C. R., Davis, J. R. and Stevenson, D. W. (2004). Floral organogenesis in Plowmanianthus (Commelinaceae). Int. J. Plant Sci. 165, 511–19.Google Scholar
Harris, E. M. (1995). Inflorescence and floral ontogeny in Asteraceae, a synthesis of historical and current concepts. Bot. Rev. 61, 94278.Google Scholar
Harrison, C. J., Möller, M. and Cronk, Q. C. B. (1999). Evolution and development of floral diversity in Streptocarpus and Saintpaulia. Ann. Bot. 84, 4960.Google Scholar
Haston, E. and Ronse De Craene, L. P. (2007). Inflorescence and floral development in Streptocarpus and Saintpaulia (Gesneriaceae) with particular reference to the impact of bracteole suppression. Plant Syst. Evol. 265, 1325.Google Scholar
Hayes, V., Schneider, E. L. and Carlquist, S. (2000). Floral development of Nelumbo nucifera Nelumbonaceae). Int. J. Plant Sci. 161 (6 Suppl.), S183S191.Google Scholar
Heinig, K. H. (1951). Studies in the floral morphology of the Thymelaeaceae. Am. J. Bot. 38, 113–32.Google Scholar
Hiepko, P. (1964). Das zentrifugale Androeceum der Paeoniaceae. Ber. Dtsch. Bot. Ges. 77, 427–35.Google Scholar
Hiepko, P. (1965). Vergleichend-morphologische und entwicklungsgeschichtliche Untersuchungen über das Perianth bei den Polycarpicae. Bot. Jahrb. Syst. 84, 359508.Google Scholar
Hiepko, P. (1966). Zur Morphologie, Anatomie und Funktion des Diskus der Paeoniaceae. Ber. Dtsch. Bot. Ges. 79, 233–45.Google Scholar
Hileman, L. C., Kramer, E. M. and Baum, D. A. (2003). Differential regulation of symmetry genes and the evolution of floral morphologies. Proc. Natl. Acad. Sci. USA 100, 12814–19.Google Scholar
Hilger, H. H. (1984). Wachstum und Ausbildungsformen des Gynoeceums von Rochelia (Boraginaceae). Plant Syst. Evol. 146, 123–39.Google Scholar
Hofmann, U. (1973). Centrospermen-Studien 6, Morphologische Untersuchungen zur Umgrenzung und Gliederung der Aizoaceen. Bot. Jahrb. Syst. 93, 247324.Google Scholar
Hofmann, U. (1993). Flower morphology and ontogeny. In Caryophyllales. Evolution and Systematics, ed. Behnke, H.-D. and Mabry, T. J.. Berlin: Springer, pp. 123–66.Google Scholar
Hofmann, U., and Göttmann, J. (1990). Morina L. und Triplostegia Wall. ex DC. im Vergleich mit Valerianaceae und Dipsacaceae. Bot. Jahrb. Syst. 111, 499553.Google Scholar
Horn, J. W. (2007). Dilleniaceae. In The families and genera of vascular plants, vol. IX, ed. Kubitzki, K.. Berlin: Springer, pp. 132–54.Google Scholar
Howarth, D. G., and Donoghue, M. J. (2005). Duplications in cyc-like genes from Dipsacales correlate with floral form. Int. J. Plant Sci. 166, 357–70.Google Scholar
Hufford, L. D. (1989a). Structure of the inflorescence and flower of Petalonix linearis (Loasaceae). Plant Syst. Evol. 163, 211–26.Google Scholar
Hufford, L. D. (1989b). The structure and potential loasaceous affinities of Schismocarpus. Nord. J. Bot. 9, 217–27.Google Scholar
Hufford, L. D. (1990). Androecial development and the problem of monophyly of Loasaceae. Can. J. Bot. 68, 402–19.Google Scholar
Hufford, L. D. (1992a). Rosidae and their relationships to other non-magnoliid Dicotyledons, a phylogenetic analysis using morphological and chemical data. Ann. Mo Bot. Gard. 79, 218–48.Google Scholar
Hufford, L. D. (1992b). Floral structure of Besseya and Synthyris (Scrophulariaceae). Int. J. Plant Sci. 153, 217–29.Google Scholar
Hufford, L. D. (1995). Patterns of ontogenetic evolution in perianth diversification of Besseya (Scrophulariaceae). Am. J. Bot. 82, 655–80.Google Scholar
Hufford, L. D. (1998). Early development of androecia in polystemonous Hydrangeaceae. Am. J. Bot. 85, 1057–67.Google Scholar
Hufford, L. D. (2001). Ontogeny and morphology of the fertile flowers of Hydrangea and allied genera of tribe Hydrangeeae (Hydrangeaceae). Bot. J. Linn. Soc. 137, 139–87.Google Scholar
Hufford, L. D. (2003). Homology and developmental transformation, models for the origins of the staminodes of Loasaceae subfamily Loasoideae. Int. J. Plant Sci. 164 (5 Suppl.), S409S439.Google Scholar
Ickert-Bond, S. M., Gerrath, J. and Wen, J. (2014). Gynoecial structure of Vitales and implications for the evolution of placentation in the Rosids. Int. J. Plant Sci. 175, 9981032.Google Scholar
Igersheim, A., Buzgo, M. and Endress, P. K. (2008). Gynoecium diversity and systematics in basal monocots. Bot. J. Linn. Soc. 136, 165.Google Scholar
Igersheim, A., Puff, C., Leins, P. and Erbar, C. (1994). Gynoecial development of Gaertnera Lam. and of presumably allied taxa of the Psychotrieae (Rubiaceae), secondarily ‘superior’ vs. inferior ovaries. Bot. Jahrb. Syst. 116, 401–14.Google Scholar
Ihlenfeldt, H. D. (1960). Entwicklungsgeschichtliche, morphologische und systematische Untersuchungen an Mesembryanthemen. Feddes Repert. 63, 1104.Google Scholar
Innes, R. L., Remphrey, W. R. and Lenz, L. M. (1989). An analysis of the development of single and double flowers in Potentilla fruticosa. Can. J. Bot. 67, 1071–9.Google Scholar
Irish, V. F. (2009). Evolution of petal identity. J. Exp. Bot. 60, 2517–27.Google Scholar
Ito, M. (1986a). Studies in the floral morphology and anatomy of Nymphaeales III. Floral anatomy of Brasenia schreberi Gmel. and Cabomba caroliniana A. Gray. Bot. Mag. Tokyo 99, 169–84.Google Scholar
Ito, M. (1986b). Studies in the floral morphology and antomy of Nymphaeales IV. Floral anatomy of Nelumbo nucifera. Acta Phytotax. Geobot. 37, 8296.Google Scholar
Iwamoto, A., Ichigooka, S., Cao, L. and Ronse De Craene, L.P. (2020). Floral development reveals the existence of a fifth staminode on the labellum of basal Globbeae. Front. Ecol. Evol. 8, 133. doi: 10.3389/fevo.2020.00133Google Scholar
Iwamoto, A., Izumidate, R. and Ronse De Craene, L. P. (2015). Floral anatomy and vegetative development in Ceratophyllum demersum (Ceratophyllaceae): Morphological picture of an ‘unsolved plant’. Am. J. Bot. 102, 1578–89.Google Scholar
Iwamoto, A., Nakamura, A., Kurihara, S., Otani, A. and Ronse De Craene, L. P. (2018). Floral development of petaloid Alismatales as an insight into the origin of the trimerous Bauplan in monocot flowers. J. Plant Res. 131, 395407.Google Scholar
Iwamoto, A., Shimizu, A. and Ohba, H. (2003). Floral development and phyllotactic variation in Ceratophyllum demersum (Ceratophyllaceae). Am. J. Bot. 90, 1124–30.Google Scholar
Jabour, F., Damerval, C. and Nadot, S. (2008). Evolutionary trends in the flowers of Asteridae, is polyandry an alternative to zygomorphy? Ann. Bot. 102, 153–65.Google Scholar
Jabour, F., Ronse De Craene, L. P., Nadot, S. and Damerval, C. (2009). Establishment of zygomorphy on an ontogenic spiral and evolution of perianth in the tribe Delphinieae (Ranunculaceae). Ann. Bot. 104, 809–22.Google Scholar
Jäger-Zürn, I. (1966). Infloreszenz- und blütenmorphologische, sowie embryologische Untersuchungen an Myrothamnus Welw. Beitr. Biol Pflanz. 42, 241–71.Google Scholar
Janka, H., Von Balthazar, M., Alverson, W. S., Baum, D. A., Semir, J. and Bayer, C. (2008). Structure, development and evolution of the androecium in Adansonieae (core Bombacoideae, Malvaceae s.l.). Plant Syst. Evol. 275, 6991.Google Scholar
Jansen, R. K., Cai, Z., Raubeson, L. A., Daniell, H., dePamphilis, C. W., Leebens-Mack, J., Müller, K. Guisinger-Bellian, M. Haberle, R. C., Hansen, A. K., Chumley, T. W., Lee, S.-B., Peery, R., McNeal, J. R., Kuehl, J. V. and Boore, J. L. (2007). Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl. Acad. Sci. USA 104, 19369–74.Google Scholar
Janssens, S. B., Smets, E. F. and Vrijdaghs, A. (2012). Floral development of Hydrocera and Impatiens reveals evolutionary trends in the most early diverged lineages of the Balsaminaceae. Ann. Bot. 109, 1285–96.Google Scholar
Jaramillo, M. A., and Kramer, E. M. (2004). APETALA3 and PISTILLATA homologs exhibit novel expression patterns in the unique perianth of Aristolochia (Aristolochiaceae). Evolution and Development 6, 449–58.Google Scholar
Jaramillo, M. A., and Manos, P. S. (2001). Phylogeny and patterns of floral diversity in the genus Piper (Piperaceae). Am. J. Bot. 88, 706–16.Google Scholar
Jaramillo, M. A., Manos, P. and Zimmer, E. A. (2004). Phylogenetic relationships of the perianthless Piperales, reconstructing the evolution of floral development. Int. J. Plant Sci. 165, 403–16.Google Scholar
Jeiter, J., Danisch, F. and Hilger, H. H. (2016). Polymery and nectary chambers in Codon (Codonaceae): Flower and fruit development in a small, capsule-bearing family of Boraginales. Flora 220, 94102.Google Scholar
Jeiter, J., Langecker, S. and Weigend, M. (2020). Towards an integrative understanding of stamen-corolla tube modifications and floral architecture in Boraginaceae s.s. (Boraginales). Bot. J. Linn. Soc. 193, 100–24.Google Scholar
Jeiter, J., Staedler, Y. M., Schönenberger, J., Weigend, M. and Luebert, F. (2018). Gynoecium and fruit development in Heliotropium sect. Heliothamnus (Heliotropiaceae). Int. J. Plant Sci. 179, 275–86.Google Scholar
Jeiter, J., Weigend, M. and Hilger, H. H. (2017). Geraniales flowers revisited: Evolutionary trends in floral nectaries. Ann. Bot. 119, 395408.Google Scholar
Jenny, M. (1988). Different gynoecium types in Sterculiaceae, ontogeny and functional aspects. In Aspects of floral development, ed. Leins, P., Tucker, S. C. and Endress, P. K.. Berlin: J. Cramer, pp. 225–36.Google Scholar
Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F. and Donoghue, M. J. (2002). Plant systematics, a phylogenetic approach. 2nd ed. Sunderland, Mass.: Sinauer.Google Scholar
Judd, W. S., and Olmstead, R. G. (2004). A survey of tricolpate (eudicot) phylogenetic relationships. Am. J. Bot. 91, 1627–44.Google Scholar
Judd, W. S., Sanders, R. W. and Donoghue, M. J. (1994). Angiosperm family pairs, preliminary phylogenetic analyses. Harvard Pap. Bot. 5, 151.Google Scholar
Juncosa, A. M. (1988). Floral development and character evolution in Rhizophoraceae. In Aspects of floral development, ed. Leins, P., Tucker, S. C. and Endress, P. K.. Vaduz (Liechtenstein): Cramer, pp. 83101.Google Scholar
Juncosa, A. M., and Tomlinson, P. B. (1987). Floral development in mangrove Rhizophoraceae. Amer. J. Bot. 74, 1263–79.Google Scholar
Källersjö, M., Bergqvist, G. and Anderberg, A. A. (2000). Generic realignment in primuloid families of the Ericales s.l., a phylogenetic analysis based on DNA sequences from three chloroplast genes and morphology. Am. J. Bot. 87, 1325–41.Google Scholar
Kania, W. (1973). Entwicklungsgeschichtliche Untersuchungen an Rosaceenblüten. Bot. Jahrb. Syst. 93, 175246.Google Scholar
Kanno, A., Nakada, M., Akita, Y. and Hirae, M. (2007). Class B gene expression and the modified ABC model in nongrass monocots. The Scientific World Journal 7, 268–79.Google Scholar
Karpunina, P. V., Oskolski, A. A., Nuraliev, M. S., Lowry II, P. P., Degtjavera, G. V., Samigullin, T. H., Valiejo-Roman, C. M. and Sokoloff, D. D. (2016). Gradual vs abrupt reduction of carpels in syncarpous gynoecia: A case study from Polyscias subg. Arthrophyllum (Araliaceae: Apiales). Am. J. Bot. 103, 2028–57.Google Scholar
Karrer, A. B. (1991). Blütenentwicklung und systematische Stellung der Papaveraceae und Capparaceae. University of Zürich (Switzerland): Unpublished thesis.Google Scholar
Kaul, R. B. (1968). Floral morphology and phylogeny in the Hydrocharitaceae. Phytomorphology 18, 1335.Google Scholar
Keller, J. A., Herendeen, P. S. and Crane, P. R. (1996). Fossil flowers and fruits of the Actinidiaceae from the Campanian (late Cretaceous) of Georgia. Am. J. Bot. 83, 528–41.Google Scholar
Kelly, L. M. (2001). Taxonomy of Asarum section Asarum (Aristolochiaceae). Syst. Bot. 26, 1753.Google Scholar
Kelly, L. M., and González, F. (2003). Phylogenetic relationships in Aristolochiaceae. Syst. Bot. 28, 236–49.Google Scholar
Kessler, P. J. A. (1993). Menispermaceae. In The families and genera of vascular plants vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer, pp. 402–18.Google Scholar
Kim, S., Yoo, M.-J., Kong, H., Hu, Y., Ma, H., Soltis, P. S., and Soltis, D. E. (2005). Expression of floral MADS-box genes in basal Angiosperms, implications for the evolution of floral regulators. Plant J. 43, 724–44.Google Scholar
Kirchoff, B. K. (1983). Floral organogenesis in five genera of the Marataceae and in Canna (Cannaceae). Am. J. Bot. 70, 508–23.Google Scholar
Kirchoff, B. K. (1988). Inflorescence and flower development in Costus scaber (Costaceae). Can. J. Bot. 62, 339–45.Google Scholar
Kirchoff, B. K. (1992). Ovary structure and anatomy in the Heliconiaceae and Musaceae (Zingiberales). Can. J. Bot. 70, 24902508.Google Scholar
Kirchoff, B. K. (1997). Inflorescence and flower development in the Hedychieae (Zingiberaceae), Hedychium. Can. J. Bot. 75, 581–94.Google Scholar
Kirchoff, B. K. (2000). Hofmeister’s rule and primordium shape, influences on organ position in Hedychium coronarium (Zingiberaceae). In Monocots, systematics and evolution, ed. Wilson, K. L. and Morrison, D. A.. Melbourne: CSIRO, pp. 7583.Google Scholar
Kirchoff, B. K., Liu, H. and Liao, J.-P. (2020). Inflorescence and flower development in Orchidantha chinensis T. L. Wu (Lowiaceae; Zingiberales): Similarities to inflorescence structure in the Strelitziaceae. Int. J. Plant Sci. 181, 716–31.Google Scholar
Klopfer, K. (1973). Florale Morphogenese und Taxonomie der Saxifragaceae sensu lato. Feddes Repert. 84, 475516.Google Scholar
Knapp, S. (2002). Floral diversity and evolution in the Solanaceae. In Developmental genetics and plant evolution, ed. Cronk, Q. C. B., Bateman, R. M. and Hawkins, J. A.. London: Taylor and Francis, pp. 267–97.Google Scholar
Kocyan, A., and Endress, P. K. (2001a). Floral structure and development and systematic aspects of some ‘lower’ Asparagales. Plant Syst. Evol. 229, 187216.Google Scholar
Kocyan, A., and Endress, P. K. (2001b). Floral structure and development of Apostasia and Neuwiedia (Apostasioideae) and their relationships to other Orchidaceae. Int. J. Plant Sci. 162, 847–67.Google Scholar
Koethe, S., Bloemer, J. and Lunau, K. (2017). Testing the influence of gravity on flower symmetry in five Saxifraga species. Sci. Nat. 104, 37. doi: 10.1007/s00114-017–1458–4Google Scholar
Köhler, E. (2003). Simmondsiaceae. In The families and genera of vascular plants vol. II, ed. Kubitzki, K. and Bayer, C.. Berlin: Springer, pp. 355–8.Google Scholar
Kong, D.-R., Schori, M., Li, L. and Peng, H. (2018). Floral development of Gonocaryum with emphasis on the gynoecium. Plant Syst. Evol. 304, 327–41.Google Scholar
Kosuge, K. (1994). Petal evolution in Ranunculaceae. Plant Syst. Evol. Suppl. 8, 185–91.Google Scholar
Kramer, E. M, Di Stilio, V. S. and Schlüter, P. M. (2003). Complex patterns of gene duplication in the apetala3 and pistillata lineages of the Ranunculaceae. Int. J. Plant Sci. 164, 111.Google Scholar
Kramer, E. M., Su, H.-J. Wu, C.-C., Hu, J.-M. (2006). A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evolutionary Biology 6, 30.Google Scholar
Kress, W. J. (1990). Phylogeny and classification of Zingiberales. Ann. Mo. Bot. Gard. 77, 698721.Google Scholar
Kron, K. A. Judd, W. S., Stevens, P. F., Crayn, D. M., Anderberg, A. A., Gadek, P. A., Quinn, C. J. and Luteyn, J. L. (2002). A phylogenetic classification of Ericaceae, molecular and morphological evidence. Bot. Rev. 68, 335423.Google Scholar
Krosnick, S. E., Harris, E. M. and Freudenstein, J. V. (2006). Patterns of anomalous floral development in the Asian Passiflora (subgenus Decaloba, supersection Disemma). Am. J. Bot. 93, 620–36.Google Scholar
Krüger, H., and Robbertse, P. J. (1988). Floral ontogeny of Securidaca longepedunculata Fresen (Polygalaceae) including inflorescence morphology. In Aspects of floral development, ed. Leins, P., Tucker, S. C. and Endress, P.K.. Berlin: J. Cramer, pp. 159–67.Google Scholar
Kshetrapal, S. (1970). A contribution to the vascular anatomy of the flower of certain species of the Salvadoraceae. J. Indian Bot. Soc. 49, 92–9.Google Scholar
Kubitzki, K. (1969). Monographie der Hernandiaceen. Bot. Jahrb. Syst. 89, 78148.Google Scholar
Kubitzki, K. (1987). Origin and significance of trimerous flowers. Taxon 36, 21–8.Google Scholar
Kubitzki, K. (1993). Hernandiaceae. In The families and genera of vascular plants vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer, pp. 334–8.Google Scholar
Kubitzki, K. (2003) Salvadoraceae. In The families and genera of vascular plants vol. V, ed. Kubitzki, K.. Berlin: Springer, pp. 342–4.Google Scholar
Kubitzki, K. (2007). Berberidopsidaceae. In The families and genera of vascular plants vol. IX, ed. Kubitzki, K.. Berlin: Springer, pp. 33–5.Google Scholar
Kuijt, J. (2013). Prophyll, calyculus, and perianth in Santalales. Blumea 57, 248–52.Google Scholar
Kümpers, B. M. C., Richardson, J. E, Anderberg, A. A., Wilkie, P. and Ronse De Craene, L. P. (2016). The significance of meristic changes in the flowers of Sapotaceae. Bot. J. Linn. Soc. 180, 161–92.Google Scholar
Kuzoff, R. K., Hufford, L. and Soltis, D. E. (2001). Structural homology and developmental transformations associated with ovary diversification in Lithophragma (Saxifragaceae). Am. J. Bot. 88, 196205.Google Scholar
Lamb-Frye, A. S. and Kron, K. A. (2003). Phylogeny and character evolution in Polygonaceae. Syst. Bot. 21, 1729.Google Scholar
Landis, J. B., Barnett, L. L. and Hileman, L. C. (2012). Evolution of petaloid sepals independent of shifts in B-class MADS box gene expression. Dev. Genes Evol. 222, 1928.Google Scholar
Landrein, S., and Prenner, G. (2013). Unequal twins? Inflorescence evolution in the twinflower tribe Linnaeeae (Caprifoliaceae s.l.). Int. J. plant Sci. 174, 200–33.Google Scholar
Laubengayer, R. A. (1937). Studies in the anatomy and morphology of the Polygonaceous flower. Am. J. Bot. 24, 329–43.Google Scholar
Legume Phylogeny Working Group (2017). A new subfamily classification of the leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66: 4477.Google Scholar
Lehmann, N. L., and Sattler, R. (1992). Irregular floral development in Calla palustris (Araceae) and the concept of homeosis. Am. J. Bot. 79, 1145–57.Google Scholar
Lehmann, N. L., and Sattler, R. (1993). Homeosis in floral development of Sanguinaria canadensis and S. canadensis ‘Multiplex’ (Papaveraceae). Am. J. Bot. 80, 1323–35.Google Scholar
Lehmann, N. L., and Sattler, R. (1994). Floral development and homeosis in Actaea rubra (Ranunculaceae). Int. J. Plant Sci. 155, 658–71.Google Scholar
Lei, L.-G., and Liang, H.-X. (1998). Floral development of dioecious species and trends of floral evolution in Piper sensu lato. Bot. J. Linn. Soc. 127, 225–37.Google Scholar
Leinfellner, W. (1950). Der Bauplan des synkarpen Gynoeceums. Österr. Bot. Zeit. 97, 403–36.Google Scholar
Leins, P. (1964a). Entwicklungsgeschichtliche Studien an Ericales-Blüten. Bot. Jahrb. Syst. 83, 5788.Google Scholar
Leins, P. (1964b). Die frühe Blütenentwicklung von Hypericum hookerianum Wight et Arn. und H. aegypticum L. Ber. Dtsch. Bot. Ges. 77, 112–23.Google Scholar
Leins, P. (1967). Die frühe Blütenentwicklung von Aegle marmelos (Rutaceae). Ber. Dtsch. Bot. Ges. 80, 320–5.Google Scholar
Leins, P. (1988). Das zentripetale Androeceum von Punica. Bot. Jahrb. Syst. 109, 555–61.Google Scholar
Leins, P., and Erbar, C. (1985). Ein Beitrag zur Blütenentwicklung der Aristolochiaceen, einer Vermittlergruppe zu den Monokotylen. Bot. Jahrb. Syst. 107, 343–68.Google Scholar
Leins, P., and Erbar, C. (1987). Studien zur Blütenentwicklung an Compositen. Bot. Jahrb. Syst. 108, 381401.Google Scholar
Leins, P., and Erbar, C. (1988). Einige Bemerkungen zur Blütenentwicklung und systematische Stellung der Wasserpflanzen Callitriche, Hippuris und Hydrostachys. Beitr. Biol. Pfl. 63, 157–78.Google Scholar
Leins, P., and Erbar, C. (1989). Zur Blütenentwicklung und sekundären Pollenpräsentation bei Selliera radicans. Cav. (Goodeniaceae). Flora 182, 4356.Google Scholar
Leins, P., and Erbar, C. (1991). Fascicled androecia in Dilleniidae and some remarks on the Garcinia androecium. Bot. Acta 104, 336–44.Google Scholar
Leins, P., and Erbar, C. (1995). Das frühe Differenzierungsmuster in den Blüten von Saruma henryi Oliv. (Aristolochiaceae). Bot. Jahrb. Syst. 117, 365–76.Google Scholar
Leins, P., and Erbar, C. (1996). Early floral developmental studies in Annonaceae. In Reproductive morphology in Annonaceae, ed. Morawetz, W. and Winkler, H.. Akademie der Wissenschaften, Biosystematics and Ecology Series 10. Wien: Österr, pp. 127.Google Scholar
Leins, P., and Erbar, C. (2000). Die frühesten Entwicklungsstadien der Blüten bei den Asteraceae. Bot. Jahrb. Syst. 122, 503–15.Google Scholar
Leins, P., and Erbar, C. (2010). Flower and fruit. Morphology, ontogeny, phylogeny, function and ecology. Stuttgart: Schweizerbart Science.Google Scholar
Leins, P., Erbar, C. and Van Heel, W. A. (1988). Note on the floral development of Thottea (Aristolochiaceae). Blumea 33, 357–70.Google Scholar
Leins, P., and Galle, P. (1971). Entwicklungsgeschichtliche Untersuchungen an Cucurbitaceen-Blüten. Österr. Bot. Zeit. 119, 531–48.Google Scholar
Leins, P., and Schwitalla, S. (1985). Studien an Cactaceen-Blüten I. Einige Bermerkungen zur Blütenentwicklung von Pereskia. Beitr. Biol. Pflanz. 60, 313–23.Google Scholar
Leins, P., and Stadler, P. (1973). Entwicklungsgeschichtliche Untersuchungen am Androecium der Alismatales. Österr. Bot. Zeit. 122, 145–65.Google Scholar
Leins, P., and Winhard, W. (1973). Entwicklungsgeschichtliche Studien an Loasaceenblüten. Österr. Bot. Zeit. 122, 145–65.Google Scholar
Leite, V. G., Mansano, V. F. and Teixeira, S. P. (2018). Floral development of Moraceae species with emphasis on the perianth and androecium. Flora 240, 116–32.Google Scholar
Leme, F. M., Staedler, Y. M., Schönenberger, J. and Teixeira, S. P. (2018). Ontogeny and vascularization elucidate the atypical floral structure of Ampelocera glabra, a tropical species of Ulmaceae. Int. J. Plant Sci. 179, 461–76.Google Scholar
Leredde, C. (1955). Sur la position des étamines chez quelques Echium. Bull. Soc. Hist. Nat. Toulouse 90, 369–72.Google Scholar
Le Roux, L. G., and Kellogg, E. A. (1999). Floral development and the formation of unisexual spikelets in the Andropogoneae (Poaceae). Am. J. Bot. 86, 354–66.Google Scholar
Levyns, M. R. (1949). The floral morphology of some South African members of Polygalaceae. J. S. Afr. Bot. 15, 7992.Google Scholar
Leyser, O., and Day, S. (2003). Mechanisms in plant development. Oxford: Blackwell.Google Scholar
Li, P., and Johnston, M. O. (2000). Heterochrony in plant evolutionary studies through the twentieth century. Bot. Rev. 66, 5788.Google Scholar
Liang, H.-X., and Tucker, S. C. (1989). Floral development in Gymnotheca chinensis. Am. J. Bot. 76, 806–19.Google Scholar
Lin, R.-Z., Li, R.-Q., Lu, A.-M., Zhu, Y.-Y. and Chen, Z.-D. (2016). Comparative flower development of Juglans regia, Cyclocarya paliurus and Engelhardia spicata: Homology of floral envelopes in Juglandaceae. Bot. J. Linn. Soc. 181, 279–93.Google Scholar
Lin, R.-Z., Zeng, J. and Chen, Z.-D. (2010). Organogenesis of reproductive structures in Betula alnoides (Betulaceae). Int. J. Plant Sci. 171, 586–94.Google Scholar
Lindenhofer, A., and Weber, A. (1999a). Polyandry in Rosaceae, evidence for a spiral origin of the androecium in Spiraeoideae. Bot. Jahrb. Syst. 121, 553–82.Google Scholar
Lindenhofer, A., and Weber, A. (1999b). The spiraeoid androecium of Pyroideae and Amygdaloideae (Rosaceae). Bot. Jahrb. Syst. 121, 583605.Google Scholar
Lindenhofer, A., and Weber, A. (2000). Structural and developmental diversity of the androecium of Rosoideae (Rosaceae). Bot. Jahrb. Syst. 122, 6391.Google Scholar
Linder, H. P. (1991). A review of the southern African Restionaceae. Contr. Bolus Herb. 13, 209–64.Google Scholar
Linder, H. P. (1992a). The gynoecia of Australian Restionaceae, morphology, anatomy and systematic implications. Aust. Syst. Bot. 5, 227–45.Google Scholar
Linder, H. P. (1992b). The structure and evolution of the pistillate flower of the African Restionaceae. Bot. J. Linn. Soc. 109, 401–25.Google Scholar
Linder, H. P. (1998). Morphology and the evolution of wind pollination. In Reproductive biology in systematics, conservation and economic botany, ed. Owens, S. J. and Rudall, P. J.. Kew: Royal Botanic Gardens, pp. 123–35.Google Scholar
Linder, H. P. and Rudall, P. J. (2005). Evolutionary history of Poales. Ann. Rev. Ecol. Syst. 36, 107–24.Google Scholar
Lindsey, A. A. (1940). Floral anatomy in the Gentianaceae. Am. J. Bot. 27, 640–52.Google Scholar
Litt, A., and Kramer, E. M. (2010). The ABC model and the diversification of floral organ identity. Sem. Cell Dev. Biol. 21, 129–37.Google Scholar
Litt, A., and Stevenson, D. W. (2003a). Floral development and morphology of Vochysiaceae. I. The structure of the gynoecium. Am. J. Bot. 90, 1533–47.Google Scholar
Litt, A., and Stevenson, D. W. (2003b). Floral development and morphology of Vochysiaceae. II. The position of the single fertile stamen. Am. J. Bot. 90, 1548–59.Google Scholar
Löfstrand, S. D., and Schönenberger, J. (2015). Comparative floral structure and systematics in the sarracenioid clade (Actinidiaceae, Roridulaceae and Sarraceniaceae) of Ericales. Bot. J. Linn. Soc. 178, 146.Google Scholar
López, J., Rodríguez-Riaňo, T., Valtueňa, F. J., Pérez, J. L., González, M. and Ortega-Olivencia, A. (2016). Does the Scrophularia staminode influence female and male functions during pollination? Int. J. Plant Sci. 177, 671–81.Google Scholar
Lorence, D. H. (1985). A monograph of the Monimiaceae (Laurales) in the Malagasy region (Southwest Indian Ocean). Ann. Mo. Bot. Gard. 72, 1165.Google Scholar
Lüders, H. (1907). Systematische Untersuchungen über die Caryophyllaceen mit einfachem Diagramm. Bot. Jahrb. Syst. 40 , Beibl. 91, 137.Google Scholar
Luo, D., Carpenter, R., Vincent, C., Copsey, L. and Coen, E. (1996). Origin of floral asymmetry in Antirrhinum. Nature 383, 794–9.Google Scholar
Ma, O. S. W., and Saunders, R. M. K. (2003). Comparative floral ontogeny of Maesa (Maesaceae), Aegiceras (Myrsinaceae) and Embelia (Myrsinaceae), taxonomic and phylogenetic implications. Plant Syst. Evol. 243, 3958.Google Scholar
Maas, P. J. M., and Rübsamen, T. (1986). Triuridaceae, Flora neotropica no. 40. New York: Hafner.Google Scholar
Mabberley, D. (2000). Arthur Harry Church. The anatomy of flowers. London: The Natural History Museum.Google Scholar
Mabry, T. J. (1977). The order Centrospermae. Ann. Mo Bot. Gard. 64, 210–20.Google Scholar
Macfarlane, J. M. (1908). Nepenthaceae. In Das Pflanzenreich IV, 3, ed. Engler, A.. Leipzig: W. Engelmann, pp. 192.Google Scholar
MacMahon, M., and Hufford, L. (2005). Evolution and development in the Amorphoid clade (Amorpheae: Papilionoideae: Leguminosae): Petal loss and dedifferentiation. Int. J. Plant Sci. 166, 383–96.Google Scholar
Magallón, S. (2007). From fossils to molecules, phylogeny and the core eudicot floral groundplan in Hamamelidoideae (Hamamelidaceae, Saxifragales). Syst. Bot. 32, 317–47.Google Scholar
Malécot, V., and Nickrent, D. L. (2008). Molecular phylogenetic relationships of Olacaceae and related Santalales. Syst. Bot. 33, 97106.Google Scholar
Manchester, S. R., Dilcher, D. L., Judd, W. S., Corder, B. and Basinger, J. F. (2018). Early eudicot flower and fruits: Dakotanthus gen. nov. from the Cretaceous Dakota Formation of Kansas and Nebraska, USA. Acta Palaeobot. 58, 2740.Google Scholar
Manning, W. E. (1948). The morphology of the flowers of the Juglandaceae. III. The staminate flowers. Am. J. Bot. 35, 606–21.Google Scholar
Marazzi, B., and Endress, P. K. (2008). Patterns and development of floral asymmetry in Senna (Leguminosae, Cassiinae). Am. J. Bot. 95, 2240.Google Scholar
Martínez-Millán, M., Crepet, W. L. and Nixon, K. C. (2009). Pentapetalum trifasciculandricus gen. et sp. nov., a thealean fossil flower from the Raritan Formation, New Jersey, USA (Turonian, Late Cretaceous). Am. J. Bot. 96, 933–49.Google Scholar
Matthews, M. L., Amaral, M. C. E. and Endress, P. K. (2012). Comparative floral structure and systematics in Ochnaceae s.l. (Ochnaceae, Quiinaceae and Medusagynaceae; Malpighiales). Bot. J. Linn. Soc. 170, 299392.Google Scholar
Matthews, M. L., and Endress, P. K. (2002). Comparative floral structure and systematics in Oxalidales (Oxalidaceae, Connaraceae, Brunelliaceae, Cephalotaceae, Cunoniaceae, Elaeocarpaceae, Tremandraceae). Bot. J. Linn. Soc. 140, 321–81.Google Scholar
Matthews, M. L., and Endress, P. K. (2004). Comparative floral structure and systematics in Cucurbitales (Corynocarpaceae, Coriariaceae, Tetramelaceae, Datiscaceae, Begoniaceae, Cucurbitaceae, Anisophylleaceae). Bot. J. Linn. Soc. 145, 129–85.Google Scholar
Matthews, M. L., and Endress, P. K. (2005). Comparative floral structure and systematics in Celastrales (Celastraceae, Parnassiaceae, Lepidobotryaceae). Bot. J. Linn. Soc. 149, 129–94.Google Scholar
Matthews, M. L., and Endress, P. K. (2008). Comparative floral struture and systematics in Chrysobalanaceae s.l. (Chrysobalanaceae, Dichapetalaceae, Euphroniaceae, Trigoniaceae; Malpighiales). Bot. J. Linn. Soc. 157, 249309.Google Scholar
Matthews, M. L., and Endress, P. K. (2011). Comparative floral structure and systematics in Rhizophoraceae, Erythroxylaceae and the potentially related Ctenolophonaceae, Linaceae, Irvingiaceae and Caryocaraceae. Bot. J. Linn. Soc. 166, 331416.Google Scholar
Mayr, B. (1969). Ontogenetische Studien an Myrtales-Blüten. Bot. Jahrb. Syst. 89, 210–71.Google Scholar
Mayr, E. M., and Weber, A. (2006). Calceolariaceae: Floral development and systematic implications. Am. J. Bot. 93, 327–43.Google Scholar
Medan, D., and Hilger, H. H. 1992. Comparative flower and fruit morphogenesis in Colubrina (Rhamnaceae) with special reference to C. asiatica. Am. J. Bot. 79, 809–19.Google Scholar
Melchior, H. (1925). Violaceae. In Die natürlichen Pflanzenfamilien XXI, 2nd edn. ed. Engler, A. and Prantl, K.. Leipzig: Wilhelm Engelmann, pp. 329–77.Google Scholar
Melchior, H. (1964). Engler’s Syllabus der Pflanzenfamilien. Berlin: Gebr. Borntraeger.Google Scholar
Melville, R. (1984). The affinity of Paeonia and a second genus of Paeoniaceae. Kew Bull. 38, 87105.Google Scholar
Melzer, R., Wang, Y.-Q. and Theißen, G. (2010). The naked and the dead: The ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Sem. Cell Dev. Biol. 21, 118–28.Google Scholar
Meng, A., Zhang, Z., Li, J., Ronse De Craene, L. and Wang, H. (2012). Floral development of Stephania (Menispermaceae): Impact of organ reduction on symmetry. Int. J. Plant Sci. 173, 861–74.Google Scholar
Merckx, V., Schols, V., Maas-van de Kamer, H., Maas, P., Huysmans, S., and Smets, E. (2006). Phylogeny and evolution of Burmanniaceae (Dioscoreales) based on nuclear and mitochondrial data. Am. J. Bot. 93, 1684–98.Google Scholar
Merino Sutter, D., Foster, P. I. and Endress, P. K. (2006). Female flowers and systematic position of Picodendraceae (Euphorbiaceae s.l., Malpighiales). Plant Syst. Evol. 261, 187215.Google Scholar
Michaelis, P. (1924). Blütenmorphologische Untersuchungen an den Euphorbiaceen, unter besonderer Berücksichtigung der Phylogenie der Angiospermenblüte. Goebel Bot. Abhandl. 3, 1150.Google Scholar
Milby, T. H. (1980). Studies in the floral anatomy of Claytonia. Am. J. Bot. 67, 1046–50.Google Scholar
Mione, T., and Bogle, A. L. (1990). Comparative ontogeny of the inflorescence and flower of Hamamelis virginiana and Loropetalum chinense (Hamamelidaceae). Am. J. Bot. 77, 7791.Google Scholar
Mitchell, C. H., and Diggle, P. K. (2005). The evolution of unisexual flowers: Morphological and functional convergence results from diverse developmental transitions. Am. J. Bot. 92, 1068–76.Google Scholar
Monniaux, M., and Vandenbussche, M. (2018). How to evolve a perianth: A review of cadastral mechanisms for perianth identity. Front. Plant Sci. 9, 1573. doi: 10.3389/fpls.2018.01573Google Scholar
Moody, M., and Hufford, L. (2000a). Floral development and structure of Davidsonia (Cunoniaceae). Can. J. Bot. 78, 1034–43.Google Scholar
Moody, M., and Hufford, L. (2000b). Floral ontogeny and morphology of Cevallia, Fuertesia, and Gronovia (Loasaceae subfamily Gronovioideae). Int. J. Plant Sci. 161, 869–83.Google Scholar
Moore, H. E. (1973). The major groups of palms and their distribution. Gentes Herb. 11: 27141.Google Scholar
Moore, H. E., and Uhl, N. W. (1982). Major trends of evolution in palms. Bot. Rev. 48, 169.Google Scholar
Moore, M. J., Bell, C. D., Soltis, P. S., and Soltis, D. E. (1997). Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc. Natl. Acad. Sci. USA 104, 19363–8.Google Scholar
Moore, M. J., Soltis, P. S., Bell, C. D., Burleigh, G. and Soltis, D. E. (2010). Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc. Nat. Acad. Sci. USA 107, 4623–8.Google Scholar
Morgan, D. R., and Soltis, D. E. (1993). Phylogenetic relationships among members of Saxifragaceae sensu lato based on rbcL sequence data. Ann. Mo Bot. Gard. 80, 631–60.Google Scholar
Mort, M. E., Soltis, D. E., Soltis, P. S., Francisco-Ortega, J. and Santos-Guerra, A. (2001). Phylogenetic relationships and evolution of Crassulaceae inferred from matK sequence data. Am. J. Bot. 88, 7691.Google Scholar
Moylan, E. C., Rudall, P. J. and Scotland, R. W. (2004). Comparative floral anatomy of Strobilanthinae (Acanthaceae), with particular reference to internal partitioning of the flower. Plant Syst. Evol. 249, 7798.Google Scholar
Murbeck, S. (1912). Üntersuchungen über den Blütenbau der Papaveraceen. Kungl. Sv. Vet. Akad. Handl. 50, 1168.Google Scholar
Naghiloo, S. (2020). Patterns of symmetry expression in angiosperms: Developmental and evolutionary lability. Front. Ecol. Evol. 8: 104. doi: 10.3389/fevo.2020.00104Google Scholar
Naghiloo, S., and Claßen-Bockhoff, R. (2017). Developmental changes in time and space promote evolutionary diversification of flowers: A case study in Dipsacoideae. Front. Pl. Sci. 8, 1665. doi: 10.3389/fpls.2017.01665Google Scholar
Nair, N. C., and Abraham, V. (1962). Floral morphology of a few species of Euphorbiaceae. Proc. Indian Acad. Sci. B,56, 112.Google Scholar
Nandi, O. I. (1998). Floral development and systematics of Cistaceae. Plant Syst. Evol. 212, 107–34.Google Scholar
Narayana, R. (1958a). Morphological and embryological studies in the family Loranthaceae: II. Lysiana exocarpi (Behr.) van Tieghem. Phytomorphology 8, 147–68.Google Scholar
Narayana, R. (1958b). Morphological and embryological studies in the family Loranthaceae: III. Nuytsia floribunda (Labill.) R. Br. Phytomorphology 8, 306–23.Google Scholar
Narayana, L. L., and Rao, D. (1969). Contributions to the floral anatomy of Linaceae 1. J. Jap. Bot. 44, 289–94.Google Scholar
Narayana, L. L., and Rao, D. (1973). Contributions to the floral anatomy of Linaceae 5. J. Jap. Bot. 48, 205–8.Google Scholar
Narayana, L. L., and Rao, D. (1976). Contributions to the floral anatomy of Linaceae 6. J. Jap. Bot. 51, 92–6.Google Scholar
Narita, M., and Takahashi, H. (2008). A comparative study of shoot and floral development in Paris tetraphylla and P. verticillata (Trilliaceae). Plant Syst. Evol. 272, 6778.Google Scholar
Nepi, M., and Pacini, E. (1993). First observations on nectaries and nectar of Cucurbita pepo. Giorn. Bot. Ital. 127, 1208–10.Google Scholar
Newman, S. W. H., and Kirchoff, B. K. (1992). Ovary structure in the Costaceae (Zingiberales). Int. J. Plant Sci. 153, 471–87.Google Scholar
Ng, F. (1991). The relationship of the Sapotaceae within the Ebenales. In The genera of Sapotaceae, ed. Pennington, T. D.. Kew: Royal Botanic Garden; Bronx: New York Botanic Garden, pp. 114.Google Scholar
Nicholas, A., and Baijnath, H. (1994). A consensus classification for the order Gentianales with additional details on the suborder Apocynineae. Bot. Rev. 60, 440–82.Google Scholar
Nickrent, D. L., Malécot, V., Vidal-Russell, R. and Der, J. P. (2010). A revised classification of Santalales. Taxon 59, 538–58.Google Scholar
Niedenzu, F. (1897). Malpighiaceae. In Die natürlichen Pflanzenfamilien III, 4, 1st edn., ed. Engler, A. and Prantl, K.. Leipzig: W. Engelmann, pp. 4174.Google Scholar
Niedenzu, F. (1925). Frankeniaceae. In Die natürlichen Pflanzenfamilien 21, 2nd edn., ed. Engler, A. and Prantl, K.. Leipzig: W. Engelmann, pp. 276–81.Google Scholar
Nishino, E. (1988). Early floral organogenesis in Tripetaleia (Ericaceae). In Aspects of floral development, ed. Leins, P., Tucker, S. C. and Endress, P. K.. Berlin: J. Cramer, pp. 181–90.Google Scholar
Nooteboom, H. P. (1993). Magnoliaceae. In The families and genera of vascular plants II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer, pp. 391401.Google Scholar
Nuraliev, M. S., Degtajareva, G. V., Sokoloff, D. D., Oskolski, A. A., Samigullin, T. H. and Valiejo-Roman, C. M. (2014). Flower morphology and relationships of Schefflera subintegra (Araliaceae, Apiales): An evolutionary step towards extreme floral polymery. Bot. J. Linn. Soc. 175, 553–97.Google Scholar
Nuraliev, M. S., Oskolski, A. A., Sokoloff, D. D. and Remizowa, M. V. (2010). Flowers of Araliaceae: Structural diversity, developmental and evolutionary aspects. Plant Div. Evol. 128, 247–68.Google Scholar
Nyffeler, R., and Eggli, U. (2010). Disintegrating Portulacaceae: A new familial classification of the suborder Portulacineae (Caryophyllales) based on molecular and morphological data. Taxon 59, 227–40.Google Scholar
Ochoterena, H., Vrijdaghs, A., Smets, E. and Claßen-Bockhoff, R. (2019). The search for common origin: Homology revisited. Syst. Biol. 68, 767–80.Google Scholar
Oh, S.-H., and Manos, P. S. (2008). Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. Taxon 57, 434–51.Google Scholar
Okamoto, M. (1983). Floral development of Castanopsis cuspidata var. sieboldii. Acta Phytotax. Geobot. 34, 1017.Google Scholar
Okamoto, M., Kosuge, K. and Fukuoka, N. (1992). Pistil development and parietal placentation in the pseudomomerous ovary of Zelkova serrata (Ulmaceae). Am. J. Bot. 79, 921–7.Google Scholar
Olmstead, R. G., DePamphilis, C. W., Wolfe, A. D., Young, N. D., Elisons, W. J. and Reeves, P. A. (2001). Disintegration of the Scrophulariaceae. Am. J. Bot. 88, 348–61.Google Scholar
Olson, M. E. (2003). Ontogenetic origins of floral bilateral symmetry in Moringaceae (Brassicales). Am. J. Bot. 90, 4971.Google Scholar
Ono, A., Dohzono, I. and Sugawara, T. (2008). Bumblebee pollination and reproductive biology of Rhododendron semibarbatum (Ericaceae). J. Plant Res. 121, 319–27.Google Scholar
Orlovich, D. A., Drinnan, A. N. and Ladiges, P. Y. (1996). Floral development in the Metrosideros group (Myrtaceae) with special emphasis on the androecium. Telopea 6, 689719.Google Scholar
Orlovich, D. A., Drinnan, A. N. and Ladiges, P. Y. (1999). Floral development in Melaleuca and Callistemon (Myrtaceae). Aust. Syst. Bot. 11, 689710.Google Scholar
Pabón-Mora, N., and González, F. (2008). Floral ontogeny of Telipogon spp. (Orchidaceae) and insights on the perianth symmetry in the family. Int. J. Plant Sci. 169, 1159–73.Google Scholar
Pacini, E., Nepi, M. and Vesprini, J. L. (2003). Nectar biodiversity: A short review. Plant Syst. Evol. 238 721.Google Scholar
Pai, R. M. (1965). Morphology of the flower in the Cannaceae. J. Biol. Sci. 8, 48.Google Scholar
Pai, R. M., and Tilak, V. D. (1965). Septal nectaries in the Scitamineae. J. Biol. Sci. 8, 13.Google Scholar
Palazzesi, L., Gottschling, M., Barreda, V. and Weigend, M. (2012). First Miocene fossils of Vivianiaceae shed new light on phylogeny, divergence times, and historical biogeography of Geraniales. Biol. J. Linn. Soc. 107, 6785.Google Scholar
Patchell, M. J., Bolton, M. C., Mankowski, P. and Hall, J. C. (2011). Comparative floral development in Cleomaceae reveals two distinct pathways leading to monosymmetry. Int. J. Plant Sci. 172, 352–65.Google Scholar
Paulino, J. V., Prenner, G., Mansano, V. F. and Teixeira, S. P. (2014). Comparative development of rare cases of a polycarpellate gynoecium in an otherwise monocarpellate family, Leguminosae. Am. J. Bot. 101, 572–86.Google Scholar
Pauwels, L. (1993). Nzayilu N’ti. Guide des arbres et arbustes de la région de Kinshasa-Brazzaville. Meise: Jardin Botanique National de Belgique.Google Scholar
Pauzé, F., and Sattler, R. (1978). L’Androcée centripète d’Ochna atropurpurea.Can. J. Bot. 56, 2500–11.Google Scholar
Payer, J. B. (1857). Traité d’organogénie comparée de la fleur. Paris: Victor Masson.Google Scholar
Pennington, T. D. (2004). Sapotaceae. In The families and genera of vascular plants VI, ed. Kubitzki, K.. Berlin: Springer, pp. 390421.Google Scholar
Petersen, G., Seberg, O., Cuenca, A., Sevenson, D. W., Thadeo, M., Davis, J. I., Graham, S. and Ross, T. G. (2016). Phylogeny of the Alismatales (Monocotyledons) and the relationship of Acorus (Acorales?). Cladistics 32, 141–59.Google Scholar
Philipson, W. R. (1970). Constant and variable features of the Araliaceae. Bot. J. Linn. Soc. 63 (Suppl. 1), 87100.Google Scholar
Philipson, W. R. (1985). Is the grass gynoecium monocarpellary? Am. J. Bot. 72, 1954–61.Google Scholar
Philipson, W. R. (1993). Monimiaceae. In The families and genera of vascular plants vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer, pp. 426–37.Google Scholar
Pilger, R. (1935). Santalaceae. In Die natürlichen Pflanzenfamilien 16b, ed. Engler, A. and Prantl, K., Leipzig: W. Engelmann, pp. 5291.Google Scholar
Plunkett, G. M. (2001). Relationship of the order Apiales to subclass Asteridae: A re-evaluation of morphological characters based on insights from molecular data. Edinburgh J. Bot. 58, 183200.Google Scholar
Plunkett, G. M., Soltis, D. E. and Soltis, P. S. (1996). Higher level relationships of Apiales (Apiaceae and Araliaceae) based on phylogenetic analysis of rbcL sequences. Am. J. Bot. 83, 499515.Google Scholar
Pluys, T. (2002). Bloemontogenetische studie van de Rosaceae, Dipsacaceae en Malvaceae met bijzondere aandacht voor de bijkelk. Katholieke Universiteit Leuven (Belgium): Unpublished Dissertation.Google Scholar
Prance, G. T., and Mori, S. A. (2004). Lecythidaceae. In The families and genera of vascular plants, vol. VI, ed. Kubitzki, K., Berlin: Springer, pp. 221–32.Google Scholar
Prenner, G. (2004a). New aspects in floral development of Papilionoideae, initiated but suppressed bracteoles and variable initiation of sepals. Ann. Bot. 93, 537–45.Google Scholar
Prenner, G. (2004b). Floral development in Polygala myrtifolia (Polygalaceae) and its similarities with Leguminosae. Plant Syst. Evol. 249, 6776.Google Scholar
Prenner, G. (2004c). Floral ontogeny in Calliandra angustifolia (Leguminosae, Mimosoideae, Ingeae) and its systematic implications. Int. J. Plant Sci. 165, 417–26.Google Scholar
Prenner, G. (2014). Floral ontogeny in Passiflora lobata (Malpighiales, Passifloraceae) reveals a rare pattern in petal formation and provides new evidence for interpretation of the tendril and corona. Plant Syst. Evol. 300: 1285–97.Google Scholar
Prenner, G., Bateman, R. M. and Rudall, P. J. (2010). Floral formulae updated for routine inclusion in formal taxonomic descriptions. Taxon 59, 241–50.Google Scholar
Prenner, G., Cardoso, D., Zartman, C. E. and de Quieroz, L. P. (2015). Flowers of the early-branching papilionoid legume Petaladenium urceoliferum display unique morphological and ontogenetic features. Am. J. Bot. 102, 1780–93.Google Scholar
Prenner, G., and Klitgaard, B. B. (2008). Towards unlocking the deep nodes of Leguminosae: Floral development and morphology of the enigmatic Duparquetia orchidacea (Leguminosae, Caesalpinioideae). Am. J. Bot. 95: 1349–65.Google Scholar
Prenner, G., and Rudall, P. (2007). Comparative ontogeny of the cyathium in Euphorbia (Euphorbiaceae) and its allies, exploring the organ-flower-inflorescence boundary. Am. J. Bot. 94, 1612–29.Google Scholar
Prenner, G., and Rudall, P. (2008). The branching stamens of Ricinus and the homologies of the Angiosperm stamen fascicle. Int. J. Plant Sci. 169, 735–44.Google Scholar
Proctor, M., Yeo, P. and Lack, A. (1996). The natural history of pollination. Portland, Oreg.: Timber Press.Google Scholar
Puff, C., and Igersheim, A. (1991). The flowers of Paederia L. (Rubiaceae-Paederieae). Opera Bot. Belg. 3, 5575.Google Scholar
Qiu, Y.-L., Lee, J., Bernasconi-Quadroni, F., Soltis, D. E., Soltis, P. S., Zanis, M., Zimmer, E. A. et al. (1999). The earliest angiosperms: Evidence from mitochondrial, plastid and nuclear genomes. Nature 402, 404–7.Google Scholar
Rama Devi, D. (1991a). Floral anatomy of Hypseocharis (Oxalidaceae) with a discussion on its systematic position. Plant Syst. Evol. 177, 161–4.Google Scholar
Rama Devi, D. (1991b). Floral anatomy of six species of Impatiens. Feddes Repert. 102, 395–8.Google Scholar
Ramirez-Domenech, J. I., and Tucker, S. C. (1990). Comparative ontogeny of the perianth in Mimosoid legumes. Am. J. Bot. 77, 624–35.Google Scholar
Rao, V. S. (1953). The floral anatomy of some bicarpellatae 1. Acanthaceae. J. Univ. Bombay 21, 134.Google Scholar
Rao, V. S. (1974). The nature of the perianth in Elaeagnus on the basis of floral anatomy with some comments on the systematic position of Elaeagnaceae. J. Indian Bot. Soc. 53, 156–61.Google Scholar
Rao, V.S., Karnik, H. and Gupte, K. (1954). The floral anatomy of some Scitamineae: Part I. J. Indian Bot. Soc. 33, 118–47.Google Scholar
Rasmussen, D. A., Kramer, E. M. and Zimmer, E. A. (2009). One size fits all? Molecular evidence for a commonly inherited petal identity program in Ranunculales. Am. J. Bot. 96, 96109.Google Scholar
Reardon, R., Gallagher, P., Nolan, K. M., Wright, H., Cruz Cardeñosa-Rubio, M., Bragalini, C., Lee, C.-S., Fitzpatrick, D. A., Corcoran, K., Wolff, K. and Nugent, J. M. (2014). Different outcomes for the MYB floral symmetry genes DIVARICATA and RADIALIS during the evolution of derived actinomorphy in Plantago. New Phytol. doi: 10.1111/nph.12682Google Scholar
Reinheimer, R., Pozner, R. and Vegetti, A. C. (2005). Inflorescence, spikelet, and floral development in Panicum maximum and Urochloa plantaginea (Poaceae). Am. J. Bot. 92, 565–75.Google Scholar
Remizowa, M. V., Rudall, P., Choob, V. and Sokoloff, D. D. (2012). Racemose inflorescences of monocots: Structural and morphogenetic interaction at the flower/inflorescence level. Ann. Bot. 112, 1553–66.Google Scholar
Remizowa, M. and Sokoloff, D. (2003). Inflorescence and floral morphology in Tofieldia (Tofieldiaceae) compared with Araceae, Acoraceae and Alismatales s.str. Bot. Jahrb. Syst. 124, 255–71.Google Scholar
Remizowa, M., Sokoloff, D. and Kondo, K. (2008). Floral evolution in the monocot family Nartheciaceae (Dioscoreales), evidence from anatomy and development in Metanarthecium luteo-viride Maxim. Bot. J. Linn. Soc. 158, 118.Google Scholar
Remizowa, M., Sokoloff, D. and Rudall, P. J. (2006). Evolution of the monocot gynoecium, evidence from comparative morphology and development in Tofieldia, Japanolirion, Petrosavia and Narthecium. Plant Syst. Evol. 258, 183209.Google Scholar
Remizowa, M. V., Sokoloff, D. D. and Rudall, P. J. (2010). Evolutionary history of the monocot flower. Ann. Mo Bot. Gard. 97, 617–45.Google Scholar
Ren, Y., Li, H.-F., Zhao, L. and Endress, P. K. (2007). Floral morphogenesis in Euptelea (Eupteleaceae, Ranunculales). Ann. Bot. 100, 185–93.Google Scholar
Renner, S. S. (1999). Circumscription and phylogeny of the Laurales, evidence from molecular and morphological data. Am. J. Bot. 86, 1301–15.Google Scholar
Reynders, M., Vrijdaghs, A., Larridon, I., Huygh, W., Leroux, O., Muasya, A. M. and Goetghebeur, P. (2012). Gynoecial anatomy and development in Cyperoideae (Cyperaceae, Poales): Congenital fusion of carpels facilitates evolutionary modifications in pistil structure. Plant Ecol. Evol. 145, 96125.Google Scholar
Richardson, F.C. (1969). Morphological studies of the Nymphaeaceae IV. Structure and development of the flower of Brasenia schreberi Gmel. Univ. Calif. Publ. Bot. 47, 1101.Google Scholar
Richardson, J. E., Fay, M. F., Cronk, Q. C. B., Bowman, D. and Chase, M. W. (2000). A phylogenetic analysis of Rhamnaceae using RbcL and trnL-F plastid DNA sequences. Am. J. Bot. 87, 1309–24.Google Scholar
Robbrecht, E. (1988). Tropical woody Rubiaceae. Opera Bot. Belg. 1, 1271.Google Scholar
Rodman, J. E., Soltis, P. S., Soltis, D. E., Sytsma, K. J. and Karol, K. G. (1998). Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. Am. J. Bot. 85, 9971006.Google Scholar
Roels, P., Ronse De Craene, L. P. and Smets, E. F. (1997). A floral ontogenetic investigation of the Hydrangeaceae. Nord. J. Bot. 17, 235–54.Google Scholar
Roels, P., and Smets, E. F. (1994). A comparative floral ontogenetical study between Adoxa moschatellina and Sambucus ebulus. Belg. J. Bot. 127, 157–70.Google Scholar
Roels, P., and Smets, E. F. (1996). A floral ontogenetic study in the Dipsacales. Int. J. Plant Sci. 157, 203–18.Google Scholar
Rohrer, J. R., Robertson, K. R. and Phipps, J. B. (1994). Floral morphology of Maloideae (Rosaceae) and its systematic relevance. Am. J. Bot. 81, 574–81.Google Scholar
Rohweder, O. (1965). Centrospermen-Studien 2, Entwicklung und morphologische Deutung des Gynöciums bei Phytolacca. Bot. Jahrb. Syst. 84, 509–26.Google Scholar
Rohweder, O., and Huber, K. (1974). Centrospermen-Studien 7. Beobachtungen und Anmerkungen zur Morphologie und Entwicklungsgeschichte einiger Nyctaginaceen. Bot. Jahrb. Syst. 94, 327–59.Google Scholar
Rohwer, J. (1993a). Lauraceae. In The families and genera of vascular plants vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer, pp. 366–91.Google Scholar
Rohwer, J. (1993b). Phytolaccaceae. In The families and genera of vascular plants vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer, pp. 506–15.Google Scholar
Ronse De Craene, L. P. (1988). Two types of ringwall formation in the development of complex polyandry. Bull. Soc. Roy. Bot. Belg. 121, 122–4.Google Scholar
Ronse De Craene, L. P. (1989a). The flower of Koenigia islandica L. (Polygonaceae), an interpretation. Watsonia 17, 419–23.Google Scholar
Ronse De Craene, L. P. (1989b). The floral development of Cochlospermum tinctorium and Bixa orellana with special emphasis on the androecium. Am. J. Bot. 76, 1344–59.Google Scholar
Ronse De Craene, L. P. (1990). Morphological studies in Tamaricales I: Floral ontogeny and anatomy of Reaumuria vermiculata L. Beitr. Biol. Pflanz. 65, 181203.Google Scholar
Ronse De Craene, L. P. (2003). The evolutionary significance of homeosis in flowers, a morphological perspective. Int. J. Plant Sci. 164 (5 Suppl.), S225S235.Google Scholar
Ronse De Craene, L. P. (2004). Floral development of Berberidopsis corallina: A crucial link in the evolution of flowers in the core eudicots. Ann. Bot. 94, 111.Google Scholar
Ronse De Craene, L. P. (2005). Floral developmental evidence for the systematic position of Batis (Bataceae). Am. J. Bot. 92, 752–60.CrossRefGoogle ScholarPubMed
Ronse De Craene, L. P. (2007). Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots. Ann. Bot. 10, 621–30.Google Scholar
Ronse De Craene, L. P. (2008). Homology and evolution of petals in the core eudicots. Syst. Bot. 33, 301–25.Google Scholar
Ronse De Craene, L. P. (2010). Floral diagrams. An aid to understanding flower morphology and evolution, 1st edition. Cambridge: Cambridge University Press.Google Scholar
Ronse De Craene, L. P. (2011). Floral development of Napoleonaea (Lecythidaceae), a deceptively complex flower. In Flowers on the tree of life, ed. Wanntorp, L. and Ronse De Craene, L. P. Cambridge: Cambridge University Press, pp. 279–95.Google Scholar
Ronse De Craene, L. P. (2013). Reevaluation of the perianth and androecium in Caryophyllales: Implications for flower evolution. Plant Syst. Evol. 299, 15991636.Google Scholar
Ronse De Craene, L. P. (2016). Meristic changes in flowering plants: How flowers play with numbers. Flora 221, 2237.Google Scholar
Ronse De Craene, L. P. (2017a). Floral development of Berberidopsis beckleri (Berberidopsidaceae): Unusual species or key to understanding the origin of the floral Bauplan in the core eudicots? Ann. Bot. 119, 599610.Google Scholar
Ronse De Craene, L. P. (2017b). Floral development of the endangered genus Medusagyne (Medusagynaceae-Malpighiales): Spatial constraints of stamen and carpel increase. Int. J. Plant Sci. 178, 639–49.Google Scholar
Ronse De Craene, L. P. (2018) Understanding the role of floral development in the evolution of angiosperm flowers: Clarifications from a historical and physico-dynamic perspective. J. Plant Res. 131: 367–93.Google Scholar
Ronse De Craene, L. P. (2021). Gynoecium structure and development in Caryophyllales. A matter of proportions. Bot. J. Linn. Soc. 195, 437–66.Google Scholar
Ronse De Craene, L. P., and Akeroyd, J. R. (1988). Generic limits in Polygonum and related genera (Polygonaceae) on the basis of floral characters.Bot. J. Linn. Soc. 98, 321–71.Google Scholar
Ronse De Craene, L. P., and Brockington, S. (2013). Origin and evolution of petals in the angiosperms. Plant Ecol. Evol. 146, 525.Google Scholar
Ronse De Craene, L. P., and Bull-Hereñu, K. (2016). Obdiplostemony: The occurrence of a transitional stage linking robust flower configurations. Ann. Bot. 117, 709–24.Google Scholar
Ronse De Craene, L. P., Clinckemaillie, D. and Smets, E. F. (1993). Stamen-petal complexes in Magnoliatae. Bull. Jard. Bot. Nat. Belg. 62, 97112.Google Scholar
Ronse De Craene, L. P., De Laet, J. and Smets, E. F. (1996). Morphological studies in Zygophyllaceae. II. The floral development and vascular anatomy of Peganum harmala. Am. J. Bot. 83, 201–15.Google Scholar
Ronse De Craene, L. P., De Laet, J. and Smets, E. F. (1998). Floral development and anatomy of Moringa oleifera (Moringaceae): What is the evidence for a capparalean or sapindalean affinity? Ann. Bot. 82: 273–84.Google Scholar
Ronse De Craene, L. P., and Haston, E. (2006). The systematic relationships of glucosinolate-producing plants and related families, a cladistic investigation based on morphological and molecular characters. Bot. J. Linn. Soc. 151, 453–94.CrossRefGoogle Scholar
Ronse De Craene, L. P., Hong, S.-P. and Smets, E. F. (2004). What is the taxonomic status of Polygonella? Evidence from floral morphology. Ann. Mo. Bot. Gard. 91, 320–45.Google Scholar
Ronse De Craene, L. P., Iwamoto, A., Bull-Hereñu, K., Dos Santos, P., Luna-Castro, J. and Farrar, J. (2014). Understanding the structure of flowers: The wonderful tool of floral formulae. A response to Prenner & al. Taxon 63, 1103–11.Google Scholar
Ronse De Craene, L. P., Linder, H. P., Dlamini, T. and Smets, E. F. (2001). Evolution and development of floral diversity of Melianthaceae, an enigmatic Southern African family. Int. J. Plant Sci. 162: 5982.Google Scholar
Ronse De Craene, L. P., Linder, H. P. and Smets, E. F. (2000). The questionable relationship of Montinia (Montiniaceae), evidence from a floral ontogenetic and anatomical study. Am. J. Bot. 87, 1408–24.Google Scholar
Ronse De Craene, L. P., Linder, H. P. and Smets, E. F. (2001). Floral ontogenetic evidence in support of the Willdenowia clade of South African Restionaceae. J. Plant Res. 114, 329–42.Google Scholar
Ronse De Craene, L. P., Linder, H. P. and Smets, E. F. (2002). Ontogeny and evolution of the flower of South African Restionaceae with special emphasis on the gynoecium. Plant Syst. Evol. 231, 225–58.Google Scholar
Ronse De Craene, L. P. and Miller, A. G. (2004). Floral development and anatomy of Dirachma socotrana (Dirachmaceae), a controversial member of the Rosales. Plant Syst. Evol. 249, 111–27.Google Scholar
Ronse De Craene, L. P., Quandt, D. and Wanntorp, L. (2015a). Flower morphology and anatomy of Sabia (Sabiaceae): Structural basis of an advanced pollination system among basal eudicots. Plant Syst. Evol. 301, 1543–53.Google Scholar
Ronse De Craene, L. P., Quandt, D. and Wanntorp, L. (2015b). Floral development of Sabia (Sabiaceae): Evidence for the derivation of pentamery from a trimerous ancestry. Am. J. Bot. 102, 336–49.Google ScholarPubMed
Ronse De Craene, L. P., and Smets, E. F. (1987). The distribution and the systematic relevance of the androecial characters Oligomery and Polymery in the Magnoliophytina. Nord. J. Bot. 7, 239–53.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1990a). The floral development of Popowia whitei (Annonaceae). Nord. J. Bot. 10, 411420. [Correction in Nord. J. Bot. 11 (1991), 420].Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1990b). The systematic relationship between Begoniaceae and Papaveraceae, a comparative study of their floral development. Bull. Jard. Bot. Nat. Belg. 60, 229–73.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1991a). The impact of receptacular growth on polyandry in the Myrtales. Bot. J. Linn. Soc. 105, 257–69.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1991b). The floral nectaries of Polygonum s.l. and related genera (Persicarieae and Polygoneae), position, morphological nature and semophylesis. Flora 185, 165–85.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1991c). The floral ontogeny of some members of the Phytolaccaceae (subfamily Rivinoideae) with a discussion of the evolution of the androecium in the Rivinoideae. Biol. Jb. Dodonaea 59, 7799.Google Scholar
Ronse Decraene, L. P., and Smets, E. F. (1991d). Androecium and floral nectaries of Harungana madagascariensis (Clusiaceae). Plant Syst. Evol. 178, 179–94.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1991e). Morphological studies in Zygophyllaceae I. The floral development and vascular anatomy of Nitraria retusa. Am. J. Bot. 78, 1438–48.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1992a). Complex polyandry in the Magnoliatae, definition, distribution and systematic value. Nord. J. Bot. 12, 621–49.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1992b). An updated interpretation of the androecium of the Fumariaceae. Can. J. Bot. 70, 1765–76.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1993). The distribution and systematic relevance of the androecial character polymery. Bot. J. Linn. Soc. 113, 285350.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1994). Merosity, definition, origin and taxonomic significance. Plant Syst. Evol. 191, 83104.CrossRefGoogle Scholar
Ronse De Craene, L. P., and Smets, E. F (1995a). The androecium of monocotyledons. In Monocotyledons. Systematics and evolution, ed. Rudall, P. J., Cribb, P., Cutler, D. F. and Hymphries, C. J.. Kew: Royal Botanic Gardens, pp. 243–54.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1995b). The distribution and systematic relevance of the androecial character oligomery. Bot. J. Linn. Soc. 118, 193247.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1995c). Evolution of the androecium in the Ranunculiflorae. Plant Syst. Evol. suppl. 9, 6370.Google Scholar
Ronse Decraene, L. P., and Smets, E. F. (1996a). The morphological variation and systematic value of stamen pairs in the Magnoliatae. Feddes Repert. 107, 117.Google Scholar
Ronse Decraene, L. P., and Smets, E. F. (1996b). The floral development of Neurada procumbens L. (Neuradaceae). Acta Bot. Neerl. 45, 229–41.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1997a). A floral ontogenetic study of some species of Capparis and Boscia, with special emphasis on the androecium. Bot. Jahrb. Syst. 119, 231–55.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1997b). Evidence for carpel multiplications in the Capparaceae. Belg. J. Bot. 130, 5967.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1998a). Notes on the evolution of androecial organisation in the Magnoliophytina (Angiosperms). Bot. Acta 111, 7786.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1998b). Meristic changes in gynoecium morphology, exemplified by floral ontogeny and anatomy. In Reproductive biology in systematics, conservation and economic botany, ed. Owens, S. J. and Rudall, P. J.. Kew: Royal Botanic Gardens, pp. 85112.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1999a). The floral development and anatomy of Carica papaya (Caricaceae). Can. J. Bot. 77, 582–98.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1999b). Similarities in floral ontogeny and anatomy between the genera Francoa (Francoaceae) and Greyia (Greyiaceae). Int. J. Plant Sci. 160, 377–93.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (2000). Floral development of Galopina tomentosa with a discussion of sympetaly and placentation in the Rubiaceae. Syst. Geogr. Plants 70, 155–70.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (2001a). Staminodes. Their morphological and evolutionary significance. Bot. Rev. 67, 351402.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (2001b). Floral developmental evidence for the systematic relationships of Tropaeolum (Tropaeolaceae). Ann. Bot. 88, 879–92.Google Scholar
Ronse De Craene, L. P., Smets, E. F. and Clinckemaillie, D. (1995). The floral development and floral anatomy of Coris monspeliensis. Can. J. Bot. 73, 1687–98.Google Scholar
Ronse De Craene, L. P., Smets, E. F. and Clinckemaillie, D. (2000). Floral ontogeny and anatomy in Koelreuteria with special emphasis on monsymmetry and septal cavities. Plant Syst. Evol. 223, 91107.Google Scholar
Ronse De Craene, L. P., Smets, E. F. and Vanvinckenroye, P. (1998). Pseudodiplostemony, and its implications for the evolution of the androecium in the Caryophyllaceae. J. Plant Res. 111, 2543.Google Scholar
Ronse De Craene, L. P., Soltis, P. S. and Soltis, D. E. (2003). Evolution of floral structures in basal Angiosperms. Int. J. Plant Sci. 164 (5 Suppl.), S329S363.CrossRefGoogle Scholar
Ronse De Craene, L. P., Tréhin, C., Morel, P. and Negrutiu, I. (2011). Carpeloidy in flower evolution and diversification: A comparative study in Carica papaya and Arabidopsis thaliana. Ann. Bot. 107: 1453–63.Google Scholar
Ronse De Craene, L. P., and Stuppy, W. (2010). Floral development and anatomy of Aextoxicon punctatum (Aextoxicaceae – Berberidopsidales): An enigmatic tree at the base of core eudicots. Int. J. Plant Sci. 171, 244–57.Google Scholar
Ronse De Craene, L. P., Vanvinckenroye, P. and Smets, E. F. (1997). A study of the floral morphological diversity in Phytolacca (Phytolaccaceae) based on early floral ontogeny. Int. J. Plant Sci. 158, 5672.Google Scholar
Ronse De Craene, L. P., Volgin, S. A. and Smets, E. F. (1999). The floral development of Pleuropetalum darwinii, an anomalous member of the Amaranthaceae. Flora 194, 189–99.Google Scholar
Ronse De Craene, L. P., and Wanntorp, L. (2006). Evolution of floral characters in Gunnera (Gunneraceae). Syst. Bot. 31, 671–88.Google Scholar
Ronse De Craene, L. P., and Wanntorp, L. (2008). Morphology and anatomy of the flower of Meliosma (Sabiaceae), implications for pollination biology. Plant Syst. Evol. 271, 7991.Google Scholar
Ronse De Craene, L. P., and Wanntorp, L. (2009). Floral development and anatomy of Salvadoraceae. Ann. Bot. 104, 913–23.Google Scholar
Ronse De Craene, L. P., and Wei, L. (2019). Floral development and anatomy of Macarthuria australis (Macarthuriaceae): Key to understanding the unusual initiation sequence of Caryophyllales. Aust. Syst. Bot. 32, 4960.Google Scholar
Ronse De Craene, L. P., Yang, T. Y., Schols, P. and Smets, E. F. (2002). Floral anatomy and systematics of Bretschneidera (Bretschneideraceae). Bot. J. Linn. Soc. 139, 2945.Google Scholar
Rosas-Reinhold, I., Piñeyro-Nelson, A., Rosas, U. and Arias, S. (2021). Blurring the boundaries between a branch and a flower: Potential developmental venues in Cactaceae. Plants 10, 1134. doi: org/10.3390/plants10061134Google Scholar
Rose, J. P., and Sytsma, K. J. (2021). Complex interactions underlie the correlated evolution of floral traits and their association in a clade with diverse pollination systems. Evolution 75–76, 1431–49.Google Scholar
Ross, R. (1982). Initiation of stamens, carpels and receptacle in the Cactaceae. Am. J. Bot. 69, 369–79.CrossRefGoogle Scholar
Rothwell, G. Z., Escapa, I. H. and Tomescu, A. M. (2018). Tree of death: The role of fossils in resolving the overall pattern of plant phylogeny. Am. J. Bot. 105, 1239–42.Google Scholar
Rudall, P. J. (2002). Homologies of inferior ovaries and septal nectaries in monocotyledons. Int. J. Plant Sci. 163, 261–76.Google Scholar
Rudall, P. J. (2003). Monocot pseudanthia revisited, floral structure of the mycoheterotrophic family Triuridaceae. Int. J. Plant Sci. 164 (5 Suppl.), S307S320.Google Scholar
Rudall, P. J., Alves, M. and Sajo, M. das Graças (2016). Inside-out flowers of Lacandonia brasiliana (Triuridaceae) provide new insights into fundamental aspects of floral patterning. Peer J. doi: 10.7717/peerj.1653CrossRefGoogle Scholar
Rudall, P. J., and Bateman, R. M. (2003). Evolutionary change in flowers and inflorescences, evidence from naturally occurring terata. Trends Pl. Sci. 8, 7682.Google Scholar
Rudall, P. J., and Bateman, R. M. (2004). Evolution of zygomorphy in monocot flowers, iterative patterns and developmental constraints. New Phytol. 162, 2544.Google Scholar
Rudall, P. J., Bateman, R. M., Fay, M. F. and Eastman, A. (2002). Floral anatomy and systematics of Alliaceae with particular reference to Gilliesia, a presumed insect mimic with strongly zygomorphic flowers. Am. J. bot. 89, 1867–83.CrossRefGoogle ScholarPubMed
Rudall, P. J., Sokoloff, D. D., Remizowa, M. V., Conran, J. G., Davis, J. I., Macfarlane, T. D. and Stevenson, D. W. (2007). Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an early-divergent Angiosperm lineage. Am. J. Bot. 94, 1073–92.Google Scholar
Rudall, P. J., Stuppy, W., Cunniff, J., Kellogg, E. A. and Briggs, B. G. (2005). Evolution of reproductive structures in grasses (Poaceae) inferred by sister-group comparison with their putative closest living relatives, Ecdeiocoleaceae. Am. J. Bot. 92, 1432–43.Google Scholar
Ruhfel, B. R., Bittrich, V., Bove, C. P., Gustafsson, M. H. G., Philbrick, C. T., Rutishauser, R., Xi, Z. and Davis, C. C. (2011). Phylogeny of the clusioid clade (Malpighiales): Evidence from the plastid and mitochondrial genomes. Am. J. Bot. 98, 306–25.Google Scholar
Rümpler, F., and Theissen, G. (2019). Reconstructing the ancestral flower of extant angiosperms: The ‘war of the whorls’ is heating up. J. Exper. Bot. 70, 2615–22.Google Scholar
Rutishauser, R., Ronse De Craene, L. P., Smets, E. F. and Mendoza-Heuer, I. (1998). Theligonum cynocrambe, developmental morphology of a peculiar rubiaceous herb. Plant Syst. Evol. 210, 124.Google Scholar
Sajo, M. G., de Mello-Silva, R. and Rudall, P. J. (2010). Homologies of floral structures in Velloziaceae with particular reference to the corona. Int. J. Plant Sci. 171, 595606.Google Scholar
Sajo, M. G., Longhi-Wagner, H. and Rudall, P. J. (2007). Floral development and embryology in the early-divergent grass Pharus. Int. J. Plant Sci. 168, 181–91.Google Scholar
Sajo, M. G., Longhi-Wagner, H. M. and Rudall, P. J. (2008). Reproductive morphology of the early-divergent grass Streptochaeta and its bearing on the homologies of the grass spikelet. Plant Syst. Evol. 275, 245–55.Google Scholar
Sajo, M. G., Moraes, P. L. R., Assis, L. C. S. and Rudall, P. J. (2016). Comparative floral anatomy and development in neotropical Lauraceae. Int. J.Plant Sci. 177, 579–89.CrossRefGoogle Scholar
Sampson, F. B. (1969). Studies on the Monimiaceae II. Floral morphology of Laurelia novae-zelandiae A. Cunn. (Subfamily Atherospermoideae). New Zeal. J. Bot. 7, 214–40.Google Scholar
Sanchez, A., and Kron, K. A. (2008). Phylogenetics of Polygonaceae with an emphasis on the evolution of Eriogonoideae. Syst. Bot. 33, 8796.Google Scholar
Sánchez-Del Pino, I., Vrijdaghs, A., De Block, P., Flores-Olvera, H., Smets, E. and Eliasson, U. (2019). Floral development in Gomphrenoideae (Amaranthaceae) with a focus on androecial tube and appendages. Bot. J. Linn. Soc. 190, 315–32.Google Scholar
Sastri, R. L. N. (1952). Studies in Lauraceae: I. Floral anatomy of Cinnamomum iners Reiw. and Cassytha filiformis Linn. J. Indian Bot. Soc., 31: 240–6.Google Scholar
Sattler, R. (1962). Zur frühen Infloreszenz und Blütenentwicklung der Primulales sensu lato mit besonderer Berücksichtigung der Stamen-Petalum-Entwicklung. Bot. Jahrb. Syst. 81, 385–96.Google Scholar
Sattler, R. (1973). Organogenesis of flowers. A photographic text-atlas. Toronto and Buffalo: University of Toronto Press.Google Scholar
Sattler, R. (1974). A new conception of the shoot of higher plants. J. Theor. Biol. 47, 367–82.Google Scholar
Sattler, R. (1977). Kronröhrenentstehung bei Solanum dulcamara L. und ‘kongenitale Verwachsung’. Ber. Dtsch. Bot. Ges. 90: 2938.Google Scholar
Sattler, R. (1978). ‘Fusion’ and ‘continuity’ in floral morphology. Notes Roy. Bot. Gard. Edinburgh 36: 397405.Google Scholar
Sattler, R., and Perlin, L. (1982). Floral development of Bougainvillea spectabilis Willd., Boerhaavia diffusa L. and Mirabilis jalapa L. (Nyctaginaceae). Bot. J. Linn. Soc. 84, 161–82.Google Scholar
Sattler, R., and Singh, V. (1973). Floral development of Hydrocleis nymphoides. Can. J. Bot. 51, 2455–8.Google Scholar
Sattler, R., and Singh, V. (1977). Floral organogenesis of Limnocharis flava. Can. J. Bot. 55, 1076–86.Google Scholar
Sattler, R., and Singh, V. (1978). Floral organogenesis of Echinodorus amazonicus Rataj and floral construction of the Alismatales. Bot. J. Linn. Soc. 77, 141–56.Google Scholar
Saunders, E. R. (1937, 1939). Floral morphology. A new outlook with special reference to the interpretation of the gynoecium. Vols I and II. Cambridge: W. Heffer and Sons.Google Scholar
Saunders, R. M. K. (2010). Floral evolution in the Annonaceae: Hypotheses of homeotic mutations and functional convergence. Biol. Rev. 85, 571–91.Google Scholar
Sauquet, H. (2003). Androecium diversity and evolution in Myristicaceae (Magnoliales), with a description of a new Malagasy genus, Doyleanthus gen. nov. Am. J. Bot. 90, 12931305.Google Scholar
Sauquet, H., Von Balthazar, M., Magallón, S., Doyle, J. A., Endress, P. K. et al. (2017). The ancestral flower of angiosperms and its early diversification. Nature Comm. 8, 16047. doi: 10.1038/ncomms16047Google Scholar
Schaeppi, H. (1976). Über die männlichen Blüten einiger Menispermaceen. Beitr. Biol. Pflanz. 52, 207–15.Google Scholar
Schindler, A. K. (1905). Halorrhagaceae. In Das Pflanzenreich IV, 225, ed. Engler, A.. Leipzig: W. Engelmann, pp. 1133.Google Scholar
Schmid, R. (1980). Comparative anatomy and morphology of Psiloxylon and Heteropyxis, and the subfamilial and tribal classification of Myrtaceae. Taxon 29, 559–95.Google Scholar
Schmidt, E. (1928). Untersuchungen über Berberidaceen. Beih. Bot. Centralbl. 45, 329–96.Google Scholar
Schneider, E. L. (1976). The floral anatomy of Victoria Schomb. (Nymphaeaceae). Bot. J. Linn. Soc. 72, 115–48.Google Scholar
Schneider, E. L., Tucker, S. C. and Williamson, P. S. (2003). Floral development in the Nymphaeales. Int. J. Plant Sci. 164 (5 Suppl.), S279S292.Google Scholar
Schöffel, K. (1932). Untersuchungen über den Blütenbau der Ranunculaceen. Planta 17, 315–71.Google Scholar
Schönenberger, J., (2009). Comparative floral structure and systematics of Fouquieriaceae and Polemoniaceae (Ericales). Int. J. Plant Sci. 170, 1132–67.Google Scholar
Schönenberger, J., Anderberg, A. A. and Systsma, K. J. (2005). Molecular phylogenetics and patterns of floral evolution in the Ericales. Int. J. Plant Sci. 166, 265–88.Google Scholar
Schönenberger, J., and Conti, E. (2003). Molecular phylogeny and floral evolution of Penaeaceae, Oliniaceae, Rhychocalycaceae, and Alzateaceae (Myrtales). Am. J. Bot. 90, 293309.Google Scholar
Schönenberger, J., and Endress, P. K. (1998). Structure and development of the flowers in Mendoncia, Pseudocalyx, and Thunbergia (Acanthaceae) and their systematic implications. Int. J. Plant Sci. 159, 446–65.Google Scholar
Schönenberger, J., and Friis, E. M. (2001). Fossil flowers of ericalean s.l. affinity from the Late Cretaceous of southern Sweden. Am. J. Bot. 88, 467–80.Google Scholar
Schönenberger, J., Friis, E. M., Matthews, M. L. and Endress, P. K. (2001). Cunoniaceae in the Cretaceous of Europe, evidence from fossil flowers. Ann. Bot. 88, 423–37.Google Scholar
Schönenberger, J., and Grenhagen, A. (2005). Early floral development and androecium organization in Fouquieriaceae (Ericales). Plant Syst. Evol. 254, 233–49.Google Scholar
Schönenberger, J., and Von Balthazar, M. (2006). Reproductive structures and phylogenetic framework of the Rosids: Progress and prospects. Plant Syst. Evol. 260, 87106.Google Scholar
Schönenberger, J., Von Balthazar, M., Lopez Martinez, A., Albert, B., Prieu, C., Magallón, S. and Sauquet, H. (2020). Phylogenetic analysis of fossil flowers using an angiosperm-wide data set: Proof-of-concept and challenges ahead. Am. J. Bot. 107, 116.Google Scholar
Schönenberger, J., Von Balthazar, M., Takahashi, M., Xiao, X., Crane, P. R. and Herendeen, P. S. (2012). Glandulocalyx upatoiensis, a fossil flower of Ericales (Actinidiaceae/Clethraceae) from the Late Cretaceous (Santonian) of Georgia, USA. Ann. Bot. 109, 921–36.Google Scholar
Scotland, R. W., Endress, P. K. and Lawrence, T. J. (1994). Corolla ontogeny and aestivation in the Acanthaceae. Bot. J. Linn. Soc. 114, 4965.Google Scholar
Scribailo, R. W., and Posluszny, U. (1985). Floral development of Hydrocharis morsus-ranae L. (Hydrocharitaceae). Am. J. Bot. 72, 1578–89.Google Scholar
Sérsic, A. N., and Cocucci, A. A. (1999). An unusual kind of nectary in the oil flowers of Monttea, its structure and function. Flora 194, 393404.Google Scholar
Setoguchi, H., Ohba, H., Tobe, H. (1996). Floral morphology and phylogenetic analysis in Crossostylis (Rhizophoraceae). J. Plant Res. 109, 719.Google Scholar
Sharma, B., Guo, C., Kong, H., and Kramer, E. M. (2011). Petal-specific subfunctionalization of an APETALA3 paralog in the Ranunculales and its implications for petal evolution. New Phytol. 191, 870–83.Google Scholar
Simmons, M. P. (2004). Celastraceae. In The families and genera of vascular plants vol. VI, ed. Kubitzki, K.. Berlin: Springer, pp. 2964.Google Scholar
Simpson, M. G. (1990). Phylogeny and classification of Haemodoraceae. Ann. Mo. Bot. Gard. 77, 722–84.Google Scholar
Simpson, M. G. (1998a). Reversal in ovary position from inferior to superior in the Haemodoraceae, evidence from floral ontogeny. Int. J. Plant. Sci. 159, 466–79.Google Scholar
Simpson, M. G. (1998b). Haemodoraceae. In The families and genera of vascular plants vol. IV, ed. Kubitzki, K.. Berlin: Springer, pp. 212–22.Google Scholar
Simpson, M. G. (2006). Plant systematics. Amsterdam: Elseviers.Google Scholar
Simpson, N., in collaboration with Barnes, P. G. (2016). Nuphar lutea – botanical images for the digital documentation of a taxon. Visual Botany, UK.Google Scholar
Singh, V., and Sattler, R. (1973). Nonspiral androecium and gynoecium of Sagittaria latifolia. Can. J. Bot. 51, 1093–5.Google Scholar
Singh, V., and Sattler, R. (1977a). Development of the inflorescence of Sagittaria cuneata. Can. J. Bot. 55, 10871105.Google Scholar
Singh, V., and Sattler, R. (1977b). Floral development of Aponogeton natans and A. undulatus. Can. J. Bot. 55, 1106–20.Google Scholar
Sinjushin, A. A., and Ploshinskaya, M. E. (2020). Flower development in Lythrum salicaria L., Cuphea ignea A. DC and C. hyssopifolia Kunth (Lythraceae): The making of monosymmetry in hexamerous flowers. Wulfenia 27: 303–20.Google Scholar
Sleumer, H. (1935). Olacaceae. In Die natürlichen Pflanzenfamilien 16b, ed. Engler, A. and Prantl, K.. Leipzig: W. Engelmann, pp. 532.Google Scholar
Smets, E. (1986). Localization and systematic importance of the floral nectaries in the Magnoliatae (Dicotyledons). Bull. Jard. Bot. Nat. Belg. 56, 5176.Google Scholar
Smets, E. (1988). La présence des ‘nectaria persistentia’ chez les Magnoliophytina (Angiospermes). Candollea 43, 709–16.Google Scholar
Smets, E. F., Ronse De Craene, L. P., Caris, P. and Rudall, P. J. (2000). Floral nectaries in monocotyledons, distribution and evolution. In Monocots, systematics and evolution, ed. Wilson, K. L. and Morrison, D. A.. Melbourne: CSIRO, pp. 230–40.Google Scholar
Smyth, D. R. (2018). Evolution and genetic control of the floral ground plan. New Phytol. doi: 10.1111/nph.15282Google Scholar
Sobick, U. (1983). Blütenentwicklungsgeschichtliche Untersuchungen an Resedaceen unter besonderer Berücksichtigung von Androeceum und Gynoeceum. Bot. Jahrb. Syst. 104, 203–48.Google Scholar
Soetiarto, S. R., and Ball, E. (1969). Ontogenetical and experimental studies of the floral apex of Portulaca grandiflora I. Histology of transformation of the shoot apex into the floral apex. Can. J. Bot. 47, 133–40.Google Scholar
Sokoloff, D. D. (2016). Correlations between gynoecium morphology and ovary position in angiosperm flowers: Roles of developmental and terminological constraints. Biol. Bull. Rev. 6, 8495.Google Scholar
Sokoloff, D., Oskolski, A. A., Remizowa, M. V. and Nuraliev, M. S. (2007). Flower structure and development in Tupidanthus calyptratus (Araliaceae), an extreme case of polymery among asterids. Plant Syst. Evol. 268, 209–34.Google Scholar
Sokoloff, D. D., Remizowa, M. V., Bateman, R. M. and Rudall, P. J. (2018b). Was the ancestral angiosperm flower whorled throughout? Am. J. Bot. 105, 515.Google Scholar
Sokoloff, D. D., Remizowa, M. V., Timonin, A. C., Oskolski, A. A. and Nuraliev, M. S. (2018a). Types of organ fusion in angiosperm flowers (with examples from Chloranthaceae, Araliaceae and monocots). Biol. Serb. 40, 1646.Google Scholar
Sokoloff, D., Rudall, P. J. and Remizowa, M. (2006). Flower-like terminal structures in racemose inflorescences, a tool in morphogenetic and evolutionary research. J. Exper. Bot. 57, 3517–30.Google Scholar
Sokoloff, D. D., Von Mering, S., Jacobs, S. W. L. and Remizowa, M. W. (2013). Morphology of Maundia supports its isolated phylogenetic position in the early divergent monocot order Alismatales. Bot. J. Linn. Soc. 173, 1245.Google Scholar
Soltis, D. E., Senters, A. E., Zanis, M. J., Kim, S., Thompson, J. D., Soltis, P. S, Ronse De Craene, L. P., Endress, P. K. and Farris, J. S. (2003). Gunnerales are sister to other core eudicots, implications for the evolution of pentamery. Am. J. Bot. 90, 461–70.Google Scholar
Soltis, D. E., Smith, S. A., Cellinese, N., Wurdack, K. J., Tank, D. C., Brockington, S. F., Refulio-Rodriguez, N. F., Walker, J. B., Moore, M. J., Carlsward, B. S., Bell, C. D., Latvis, M., Crawley, S., Black, C., Diouf, D., Xi, Z., Rushworth, C. A., Gitzendanner, M. A., Sytsma, K. J., Qiu, Y.-L., Hilu, Y.-L., Davis, K. W., C. C., Sanderson, M. J., Beaman, R. S., Olmstead, R. G., Judd, W. S., Donoghue, M. J. and Soltis, P. S. (2011). Angiosperm phylogeny: 17 genes, 640 taxa. Am. J. Bot. 98, 704–30.Google Scholar
Soltis, P. S., and Soltis, D. E. (2004). The origin and diversification of Angiosperms. Am. J. Bot. 91, 1614–26.Google Scholar
Soltis, D. E., Soltis, P. S., Endress, P. K. and Chase, M. W. (2005). Phylogeny and evolution of angiosperms. Sunderland, Mass.: Sinauer.Google Scholar
Soltis, D. E., Soltis, P. S., Endress, P. K., Chase, M. W., Manchester, S., Judd, W., Majure, L. and Mavrodiev, E. (2018). Phylogeny and evolution of angiosperms. Revised and updated edition. Chicago: University of Chicago Press.Google Scholar
Specht, C. D., Yockteng, R., Almeida, A. M., Kirchoff, B. K. and Kress, W. J. (2012). Homoplasy, pollination, and emerging complexity during the evolution of floral development in the tropical gingers (Zingiberales). Bot. Rev. 78, 440–62.Google Scholar
Spichiger, R.-E., Savolainen, V. V., Figeat, M. and Jeanmonod, D. (2002). Botanique systématique des plantes à fleurs. 2nd edn. Lausanne (Switzerland): Presses polytechniques et universitaires Romandes.Google Scholar
Stace, C. A. (2007). Combretaceae. In The families and genera of vascular plants. Vol. IX, ed. Kubitzki, K.. Berlin: Springer, pp. 6782.Google Scholar
Staedler, Y. M., and Endress, P. K. (2009). Diversity and lability of floral phyllotaxis in the pluricarpellate families of core Laurales (Gomortegaceae, Atherospermataceae, Siparunaceae, Monimiaceae). Int. J. Plant Sci. 170, 522–50.Google Scholar
Staedler, Y. M., Weston, P. H. and Endress, P. K. (2007). Floral phyllotaxis and floral architecture in Calycanthaceae (Laurales). Int. J. Plant Sci. 168, 285306.Google Scholar
Stauffer, F. W., and Endress, P. K. (2003). Comparative morphology of female flowers and systematics in Geonomeae (Arecaceae). Plant Syst. Evol. 242, 171203.Google Scholar
Stauffer, F. W., Rutishauser, R. and Endress, P. K. (2002). Morphology and development of the female flowers in Geonoma interrupta (Arecaceae). Am. J. Bot. 89, 220–9.Google Scholar
Steeves, T. A., Steeves, M. W. and Randall Olson, A. (1991). Flower development in Amelanchier alnifolia (Maloideae). Can. J. Bot. 69, 844–57.Google Scholar
Steinecke, H. (1993). Embryologische, morphologische und systematische Untersuchungen ausgewählter Annonaceae. Diss. Bot. 205, 1237.Google Scholar
Stern, K. (1917). Beiträge zur Kenntnis der Nepenthaceae. Flora 109, 213–82.Google Scholar
Stevens, P. F. (2001 onwards). Angiosperm Phylogeny Website. Version 14, July 2017 [and more or less continuously updated since]. www.mobot.org/MOBOT/research/APwebGoogle Scholar
Stone, D. E. (1989). Biology and evolution of temperate and tropical Juglandaceae. In Evolution, systematics, and fossil history of the Hamamelidae, Vol. 2: ‘Higher’ Hamamelidae, ed. Crane, P. R. and Blackmore, S.. Oxford: Clarendon, pp. 117–45.Google Scholar
Strange, A., Rudall, P. J. and Prychid, C. J. (2004). Comparative floral anatomy of Pontederiaceae. Bot. J. Linn. Soc. 144, 395408.Google Scholar
Struwe, L., Kadereit, J. W., Klackenberg, J., Nilsson, S., Thiv, M., Von Hagen, K. B. and Albert, V. A. (2002). Systematics, character evolution, and biogeography of Gentianaceae, including a new tribal and subtribal classification. In Gentianaceae. Systematics and natural history, ed. Struwe, L. and Albert, V. A.. Cambridge: Cambridge University Press, pp. 21309.Google Scholar
Stützel, T. (2006). Botanische Bestimmungsübungen. 2nd edn. Stuttgart: Ulmer.Google Scholar
Suaza-Gaviria, V., González, F. and Pabón-Mora, N. (2017). Comparative inflorescence development in selected Andean Santalales. Am. J. Bot. 104, 2438.Google Scholar
Suaza-Gaviria, V., Pabón-Mora, N. and González, F. (2016). Development and morphology of flowers in Loranthaceae. Int. J. Plant Sci. 177, 559–78.Google Scholar
Suessenguth, K. (1938). Neue Ziele der Botanik. Über das Vorkommen getrennter Kronblätter bei den Sympetalen. München-Berlin, pp. 32–6.Google Scholar
Sugiyama, M. (1991). Scanning electron microscopy observation on early ontogeny of the flower of Camellia japonica L. J. Japan. Bot. 66, 295–9.Google Scholar
Sugiyama, M. (1995). Floral anatomy of Camelia japonica (Theaceae).J. Plant Res. 110, 4554.Google Scholar
Sutter, D., and Endress, P. K. (1995). Aspects of gynoecium structure and macrosystematics in Euphorbiaceae. Bot. Jahrb. Syst. 116, 517–36.Google Scholar
Svoma, E. (1991). The development of the bicarpellate gynoecium of Paederia L. species (Rubiaceae-Paederieae). Opera Bot. Belg. 3, 7786.Google Scholar
Sweeney, P. W. (2008). Phylogeny and floral diversity in the genus Garcinia (Clusiaceae) and relatives. Int. J. Plant Sci. 169, 12881303.Google Scholar
Sweeney, P. W. (2010). Floral anatomy in Garcinia nervosa and G. xanthochymus (Clusiaceae): A first step toward understanding the nature of nectaries in garcinia. Bull. Peabody Mus. Nat. Hist. 51, 157–68.Google Scholar
Takahashi, H. (1994). A comparative study of floral development in Trillium apetalon and T. camtschaticum (Liliaceae). J. Plant Res. 107, 237–45.Google Scholar
Takhtajan, A. (1997). Diversity and classification of flowering plants. New York: Columbia University Press.Google Scholar
Terabayashi, S. (1983). Studies in the morphology and systematics of Berberidaceae VI. Floral anatomy of Diphylleia Michx., Podophyllum L. and Dyosma Woodson. Acta Phytotax Geobot. 34, 2747.Google Scholar
Thaowetsuwan, P. (2020). Evolution of floral diversity in the genus Croton and related genera (Crotonoideae, Euphorbiaceae). University of Edinburgh and Royal Botanic Garden Edinburgh (UK): Unpublished Doctoral Thesis.Google Scholar
Thaowetsuwan, P., Honorio Coronado, E. N. and Ronse De Craene, L. P. (2017). Floral morphology and anatomy of Ophiocaryon, a paedomorphic genus of Sabiaceae. Ann. Bot. 120, 819–32.Google Scholar
Thaowetsuwan, P., Ritchie, S., Riina, R. and Ronse De Craene, L. P. (2020). Divergent developmental pathways in dimorphic flowers of Croton L. (Euphorbiaceae) with special emphasis on petals. Front. Ecol. Evol. 8, 253. doi: 10.3389/fevo.2020.00253Google Scholar
Theißen, G., Becker, A., Winter, K.-U., Münster, T., Kirchner, C. and Saedler, H. (2002). How the land plants learned their floral ABCs, the role of MADS box genes in the evolutionary origin of flowers. In Developmental genetics and plant evolution, ed. Cronk, A. C. B., Bateman, R. M. and Hawkins, J. A.. London: Taylor and Francis, pp. 173205.Google Scholar
Thorne, R. F. (1992). An updated phylogenetic classification of the flowering plants. Aliso 13, 365–89.Google Scholar
Tiagi, Y. D. (1969). Vascular anatomy of the flower of certain species of the Combretaceae. Bot. Gaz. 130, 150–7.Google Scholar
Tillson, A. H. (1940). The floral anatomy of the Kalanchoideae. Am. J. Bot. 27, 595600.Google Scholar
Tobe, H. (2012). Floral structure of Cardiopteris (Cardiopteridaceae) with special emphasis on the gynoecium: Systematic and evolutionary implications. J. Plant Res. 125, 361–9.Google Scholar
Tobe, H., Graham, S. A. and Raven, P. H. (1998). Floral morphology and evolution in Lythraceae sensu lato. In Reproductive biology in systematics, conservation and economic botany, ed. Owens, S. J. and Rudall, P. J.. Kew: Royal Botanic Gardens, pp. 329–44.Google Scholar
Tobe, H., Huang, Y.-L., Kadokawa, T. and Tamura, M. N. (2018). Floral structure and development in Nartheciaceae (Dioscoreales), with special reference to ovary position and septal nectaries. J. Plant Res. 131, 411–28.Google Scholar
Todzia, C. A. (1993). Ulmaceae. In The families and genera of vascular plants vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer, pp. 603–11.Google Scholar
Tokuoka, T. (2008). Molecular phylogenetic analysis of Violaceae (Malpighiales) based on plastid and nuclear DNA sequences. J. Plant Res. 121, 253–60.Google Scholar
Tokuoka, T., and Tobe, H. (2006). Phylogenetic analyses of Malpighiales using plastid and nuclear DNA sequences, with particular reference to the embryology of Euphorbiaceae sensu stricto. J. Plant Res. 119, 599616.Google Scholar
Tomlinson, P. B. (1986). The botany of mangroves. Cambridge: Cambridge University Press.Google Scholar
Trimbacher, C. (1989). Der Aussenkelch der Rosaceen. In 9. Symposium Morphologie, Anatomie und Systematik, Zusammenfassungen der Vorträge, ed. Weber, A., Vitek, E. and Kiehn, M.. Vienna: Institute of Botany, University of Vienna, p. 66.Google Scholar
Troll, W. (1956). Die Urbildlichkeit der organischen Gestaltung und Goethes prinzip der ‘Variablen Proportionen’. Neue Hefte zur Morphologie 2, 6476.Google Scholar
Tsou, C.-H. (1998). Early floral development of Camellioideae (Theaceae). Am. J. Bot. 85, 1531–47.Google Scholar
Tsou, C.-H., and Mori, S. A. (2007). Floral organogenesis and floral evolution of the Lecythidoideae. Am. J. Bot. 94, 716–36.Google Scholar
Tucker, S. C. (1984). Unidirectional organ initiation in leguminous flowers. Am. J. Bot. 71, 1139–48.Google Scholar
Tucker, S. C. (1985). Initiation and development of inflorescence and flower in Anemopsis californica (Saururaceae). Am. J. Bot. 72, 2031.Google Scholar
Tucker, S. C. (1988a). Dioecy in Bauhinia resulting from organ suppression. Am. J. Bot. 75, 1584–97.Google Scholar
Tucker, S. C. (1988b). Loss versus suppression of floral organs. In Aspects of floral development, ed. Leins, P., Tucker, S. C. and Endress, P. K.. Berlin: J. Cramer, pp. 6982.Google Scholar
Tucker, S. C. (1992). The developmental basis for sexual expression in Ceratonia siliqua (Leguminosae, Caesalpinioideae, Cassieae). Am. J. Bot. 79, 318–27.Google Scholar
Tucker, S. C. (1996). Trends in evolution of floral ontogeny in Cassia sensu stricto, Senna, and Chamaecrista (Leguminosae, Caesalpinioideae, Cassieae, Cassiinae): A study in convergence. Am. J. Bot. 83, 687711.Google Scholar
Tucker, S. C. (1997). Floral evolution, development, and convergence, the hierarchical-significance hypothesis. Int. J. Plant Sci. 158 (6 Suppl.), S143S161.Google Scholar
Tucker, S. C. (1998). Floral ontogeny in Legume genera Petalostylis, Labichea, and Dialium (Caesalpinioideae, Cassieae), a series in floral reduction. Am. J. Bot. 85, 184208.Google Scholar
Tucker, S. C. (1999a). The inflorescence, introduction. Bot. Rev. 65, 303–16.Google Scholar
Tucker, S. C. (1999b). Evolutionary lability of symmetry in early floral development. Int. J. Plant Sci. 160 (6 Suppl.), S25S39.Google Scholar
Tucker, S. C. (2000a). Evolutionary loss of sepals and/or petals in Detarioid legume taxa (Aphanocalyx, Brachystegia, and Monopetalanthus (Leguminosae, Caesalpinioideae). Am. J. Bot. 87, 608–24.Google Scholar
Tucker, S. C. (2000b). Floral development in tribe Detarieae (Leguminosae, Caesalpinioideae), Amherstia, Brownea, and Tamarindus. Am. J. Bot. 87, 13851407.Google Scholar
Tucker, S. C. (2000c). Floral development and homeosis in Saraca (Leguminosae, Caesalpinioideae, Detarieae). Int. J. Plant Sci. 161, 537–49.Google Scholar
Tucker, S. C. (2001a). The ontogenetic basis for missing petals in Crudia (Leguminosae, Caesalpinioideae, Detarieae). Int. J. Plant Sci. 162, 83–9.Google Scholar
Tucker, S. C. (2001b). Floral development in Schotia and Cynometra (Leguminosae, Caesalpinioideae, Detarieae). Am. J. Bot. 88, 1164–80.Google Scholar
Tucker, S. C. (2002a). Floral ontogeny in Sophoreae (Leguminosae, Papilionoideae). III. Radial symmetry and random petal aestivation in Cadia purpurea. Am. J. Bot. 89, 748–57.Google Scholar
Tucker, S. C. (2002b). Comparative floral ontogeny in Detarieae (Leguminosae, Caesalpinioideae). 2. zygomorphic taxa with petal and stamen suppression. Am. J. Bot. 89, 888907.Google Scholar
Tucker, S. C. (2003a). Floral development in Legumes. Plant Physiol. 131: 911–26.Google Scholar
Tucker, S. C. (2003b). Floral ontogeny in Swartzia (Leguminosae, Papilionoideae, Swartzieae): Distribution and role of the ring meristem. Am. J. Bot. 90, 1274–92.Google Scholar
Tucker, S. C. (2003c). Comparative floral ontogeny in Detarieae (Leguminosae: Caesalpinoideae). III. Adaxially initiated whorls in Julbernardia and Sindora. Int. J. Plant Sci. 164, 275–86.Google Scholar
Tucker, S. C., and Bernhardt, P. (2000). Floral ontogeny, pattern formation, and evolution in Hibbertia and Adrastea (Dilleniaceae). Am. J. Bot. 87, 1915–36.Google Scholar
Tucker, S. C., and Douglas, A. W. (1996). Floral structure, development, and relationships of paleoherbs, Saruma, Cabomba, Lactoris and selected Piperales. In Flowering plant origin, evolution and phylogeny, ed. Taylor, D. W. and Hickey, L. J.. New York: Chapman and Hall, pp. 141–75.Google Scholar
Tucker, S. C., Douglas, A. W. and Liang, H.-X. (1993). Utility of ontogenetic and conventional characters in determining phylogenetic relationships of Saururaceae and Piperaceae (Piperales). Syst. Bot. 18, 614–41.Google Scholar
Uhl, N. W. (1976a). Developmental studies in Ptychosperma (Palmae). I. The inflorescence and flower cluster. Am. J. Bot. 63, 8296.Google Scholar
Uhl, N. W. (1976b). Developmental studies in Ptychosperma (Palmae). II. The staminate and pistillate flowers. Am. J. Bot. 63, 97109.Google Scholar
Uhl, N. W., and Moore, H.E. (1977). Centrifugal stamen initiation in phytelephantoid palms. Am. J. Bot. 64, 1152–61.Google Scholar
Uhl, N. W., and Moore, H. E. (1980). Androecial development in six polyandrous genera representing five major groups of palms. Ann. Bot. 45, 5775.Google Scholar
Urban, I. (1892). Blüthen- und Fruchtbau der Loasaceen. Ber. Dtsch. Bot. Ges. 10, 259–65.Google Scholar
Vaes, E., Vrijdaghs, A., Smets, E. F. and Dessein, S. (2006). Elaborate petals in Australian Spermacoce (Rubiaceae) species, morphology, ontogeny and function. Ann. Bot. 98, 1167–78.Google Scholar
Van der Niet, T., Peakall, R. and Johnson, S. D. (2014). Pollinator-driven ecological speciation in plants: New evidence and future perspectives. Ann. Bot. 113, 199211.Google Scholar
Van Heel, W. A. (1966). Morphology of the androecium in Malvales. Blumea 13, 177394.Google Scholar
Van Heel, W. A. (1978). Morphology of the pistil in Malvaceae – Ureneae. Blumea 24, 123–37.Google Scholar
Van Heel, W. A. (1987). Androecium development in Actinidia chinensis and A. melanandra (Actinidiaceae). Bot. Jahrb. Syst. 109, 1723.Google Scholar
Van Heel, W. A. (1995). Morphology of the gynoecium of Kitaibelia vitifolia Willd. and Malope trifida L. (Malvaceae-Malopeae). Bot. Jahrb. Syst. 117, 485–93.Google Scholar
Vanvinckenroye, P., Cresens, E., Ronse De Craene, L. P. and Smets, E. F. (1993). A comparative floral developmental study in Pisonia, Bougainvillea and Mirabilis (Nyctaginaceae) with special emphasis on the gynoecium and floral nectaries. Bull. Jard. Bot. Nat. Belg. 62, 6996.Google Scholar
Vanvinckenroye, P., Ronse De Craene, L. P. and Smets, E. F. (1997). The floral development of Monococcus echinophorus (Phytolaccaceae). Can. J. Bot. 75, 1941–50.Google Scholar
Vanvinckenroye, P., and Smets, E. F. (1996). Floral ontogeny of five species of Talinum and of related taxa (Portulacaceae). J. Plant Res. 109, 387402.Google Scholar
Vanvinckenroye, P., and Smets, E. F. (1999). Floral ontogeny of Anacampseros subg. Anacampseros sect. Anacampseros (Portulacaceae). Syst. Geogr. Pl. 68, 173–94.Google Scholar
Vasconcelos, T. N. C, Lucas, E. J., Conejero, M., Giaretta, A. and Prenner, G. (2020). Convergent evoution in calyptrate flowers of Syzygieae (Myrtaceae). Bot. J. Linn. Soc. 192, 498509.Google Scholar
Vasconcelos, T. N. C., Prenner, G., Buenger, M. O., De-Carvalho, P. S., Wingler, A. and Lucas, E. J. (2015). Systematic and evolutionary implications of stamen position in Myrteae (Myrtaceae). Bot. J. Linn. Soc. 179, 388402.Google Scholar
Vasconcelos, T. N. C., Prenner, G., Santos, M. F., Wingler, A. and Lucas, E. J. (2017). Links between parallel evolution and systematic complexity in angiosperms: A case study of floral development in Myrcia s.l. (Myrtaceae). Perspect. Plant Ecol. 24, 1124.Google Scholar
Venkata Rao, C. (1952). Floral anatomy of some Malvales and its bearing on the affinities of families included in the order. J. Indian Bot. Soc. 31, 171203.Google Scholar
Venkata Rao, C. (1963). On the morphology of the calyculus. J. Indian Bot. Soc. 42, 618–28.Google Scholar
Vergara-Silva, F. Espinosa-Matías, S., Ambrose, B. A., Vázquez-Santana, S., Martínez-Mena, A., Márquez-Guzmán, J., Martínez, E., Meyerowitz, E. M. and Alvarez-Buylla, E. R. (2003). Inside-out flowers characteristic of Lacandonia schismatica evolved at least before its divergence from a closely related taxon, Triuris brevistylis. Int. J. Plant Sci. 164, 345–57.Google Scholar
Vogel, S. (1977). Nektarien und ihre ökologische Bedeutung. Apidology 8, 321–35.Google Scholar
Vogel, S. (1997). Remarkable nectaries, structure, ecology, organophyletic perspectives I. Substitutive nectaries. Flora 192, 305–33.Google Scholar
Vogel, S. (1998a). Remarkable nectaries, structure, ecology, organophyletic perspectives II. Nectarioles. Flora 193, 129.Google Scholar
Vogel, S. (1998b). Remarkable nectaries, structure, ecology, organophyletic perspectives III. Nectar ducts. Flora 193, 113–31.Google Scholar
Vogel, S. (1998c). Remarkable nectaries, structure, ecology, organophyletic perspectives IV. Miscellaneous cases. Flora 193, 225–48.Google Scholar
Vogel, S. (2000). The floral nectaries of Malvaceae sensu lato: A conspectus. Kurtziana 28, 155–71.Google Scholar
Von Balthazar, M., Alverson, W. S., Schönenberger, J. and Baum, D. A. (2004). Comparative floral development and androecium structure in Malvoideae (Malvaceae s.l.). Int. J. Plant Sci. 165, 445–73.Google Scholar
Von Balthazar, M., and Endress, P. K. (2002a). Reproductive structures and systematics of Buxaceae. Bot. J. Linn. Soc. 140, 193228.Google Scholar
Von Balthazar, M., and Endress, P. K. (2002b). Development of inflorescences and flowers in Buxaceae and the problem of perianth interpretation. Int. J. Plant Sci. 163, 847–76.Google Scholar
Von Balthazar, M., and Schönenberger, J. (2009). Floral structure and organization in Platanaceae. Int. J. Plant Sci. 170, 210–25.Google Scholar
Von Balthazar, M., and Schönenberger, J. (2013). Comparative floral structure and systematics in the balsaminoid clade including Balsaminaceae, Marcgraviaceae and Tetrameristaceae (Ericales). Bot. J. Linn. Soc. 173, 325–86.Google Scholar
Von Balthazar, M., Schönenberger, J., Alverson, W. S., Janka, H., Bayer, C. and Baum, D. A. (2006). Structure and evolution of the androecium in the Malvatheca clade (Malvaceae s.l.) and implications for Malvaceae and Malvales. Plant Syst. Evol. 260, 171–97.Google Scholar
Vrijdaghs, A., Caris, P., Goetghebeur, P. and Smets, E. (2005). Floral ontogeny in Scirpus, Eriophorum and Dulichium (Cyperaceae), with special reference to the perianth. Ann. Bot. 95, 11991209.Google Scholar
Vrijdaghs, A., Flores-Olvera, H. and Smets, E. (2014). Enigmatic floral structures in Alternanthera, Iresine, and Tidestromia (Gomphrenoideae, Amaranthaceae). A developmental homology assessment. Plant Syst. Evol. 147, 4966.Google Scholar
Wagenitz, G., and Laing, B. (1984). The nectaries of the Dipsacales and their systematic significance. Bot. Jahrb. Syst. 104, 483507.Google Scholar
Wagner, K. A., Rudall, P. J. and Frohlich, M. W. (2009). Environmental control of sepalness and petalness in perianth organs of waterlilies: A new mosaic theory for the evolutionary origin of a differentiated perianth. J. Exp. Bot. 60, 3559–74.Google Scholar
Walker-Larsen, J., and Harder, L. D. (2000). The evolution of staminodes in Angiosperms, patterns of stamen reduction, loss, and functional re-invention. Am. J. Bot. 87, 1367–84.Google Scholar
Walker-Larsen, J., and Harder, L. D. (2001). Vestigial organs as opportunities for functional innovation: The example of the Penstemon staminode. Evolution 55, 477–87.Google Scholar
Wallnöfer, B. (2004). Ebenaceae. In The families and genera of vascular plants vol. VI, ed. Kubitzki, K. and Bayer, C.. Berlin: Springer, pp. 125–30.Google Scholar
Walter, H. (1906). Die Diagramme der Phytolaccaceen. Bot. Jahrb. Syst. 37 , Beibl. 85, 157.Google Scholar
Wang, H., Meng, A., Li, J., Feng, M., Chen, Z. and Wang, W. (2006). Floral organogenesis of Cocculus orbiculatus and Stephania dielsiana (Menispermaceae). Int. J. Plant Sci. 167, 951–60.Google Scholar
Wang, H., Moore, M. J., Soltis, P. S., Bell, C. D., Brockington, S. F., Alexandre, R., Davis, C. C., Latvis, M., Manchester, S. R. and Soltis, D. E. (2009). Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc. Natl. Acad. Sci. USA 106, 3853–8.Google Scholar
Wang, J.-R., Wang, X., Li, Q.-J., Zhang, X.-H., Ma, Y.-P., Zhao, L., Ginefra Toni, J. F. and Ronse De Craene, L. P. (2020). Floral morphology and morphogenesis of Sanguisorba (Rosaceae) and its systematic significance. Bot. J. Linn. Soc. 193, 4763.Google Scholar
Wang, Y.-Z., Liang, R.-H., Wang, B.-H., Li, J.-M., Qiu, Z.-J., Li, Z.-Y. and Weber, A. (2010). Origin and phylogenetic relationships of the Old World Gesneriaceae with actinomorphic flowers inferred from ITS and trnL-trnF sequences. Taxon 59, 1044–52.Google Scholar
Wang, X., Wang, J. R., Xie, S., Zhang, X.-H., Chang, Z.-Y., Zhao, L., Ronse De Craene, L. P. and Wen, J. (2021). Floral morphogenesis of the Maddenia and Pygeum groups of Prunus (Rosaceae). J. Syst. Evol. doi: 10.1111/jse.12748Google Scholar
Wannan, B. C., and Quinn, C. J. (1991). Floral structure and evolution in the Anacardiaceae. Bot. J. Linn. Soc. 107, 349–85.Google Scholar
Wanntorp, L., Puglisi, C., Penneys, D. and Ronse De Craene, L. P. (2011). Multiplications of floral organs in flowers: A case study in Conostegia (Melastomataceae, Myrtales). In Flowers on the tree of life, ed. Wanntorp, L. and Ronse De Craene, L. P. Systematics Association Special Volume Series 80. Cambridge: Cambridge University Press, pp. 218–35.Google Scholar
Wanntorp, L., and Ronse De Craene, L. P. (2005). The Gunnera flower, key to eudicot diversification or response to pollination mode? Int. J. Plant Sci. 166, 945–53.Google Scholar
Wanntorp, L., and Ronse De Craene, L. P. (2007). Floral development of Meliosma (Sabiaceae). Evidence for multiple origins of pentamery in the eudicots. Am. J. Bot. 94, 1828–36.Google Scholar
Wanntorp, L., and Ronse De Craene, L. P. (2009). Perianth evolution in the Sandalwood order Santalales: How does morphology relate to molecular phylogenetics? Am. J. Bot. 96, 1361–71.Google Scholar
Wanntorp, L., Ronse De Craene, L. P., Peng, C.-I. and Anderberg, A. A. (2012). Floral ontogeny and morphology of Stimpsonia and Ardisiandra, two aberrant genera of the primuloid clade of Ericales. Int. J. Plant Sci. 173, 1023–35.Google Scholar
Waters, M. T., Tiley, A. M. M., Kramer, E. M., Meerow, A. W., Langdale, J. A. and Scotland, R. W. (2013). The corona of the daffodil Narcissus bulbocodium shares stamen-like identity and is distinct from the orthodox floral whorls. Plant J. 74, 615–25.Google Scholar
Weber, A. (2004). Gesneriaceae. In The families and genera of vascular plants, ed. Kubitzki, K. and Kadereit, J. W.. Berlin: Springer, pp. 63158.Google Scholar
Weberling, F. (1989). Morphology of flowers and inflorescences. Cambridge: Cambridge University Press.Google Scholar
Wei, L., and Ronse De Craene, L. P. (2019). What is the nature of petals in Caryophyllaceae? Developmental evidence clarifies their evolutionary origin. Ann. Bot. 124, 281–95.Google Scholar
Wei, L., and Ronse De Craene, L. P. (2020). Hofmeister’s rule’s paradox: The explanation of the changeable carpel position in Caryophyllaceae. Int. J. Plant Sc. 181, 911–25.Google Scholar
Weigend, M. (2007). Grossulariaceae. In The families and genera of vascular plants vol. IX, ed. Kubitzki, K. and Bayer, C.. Berlin: Springer, pp. 168–76.Google Scholar
Westerkamp, C., and Weber, A. (1999). Keel flowers of the Polygalaceae and Fabaceae: A functional comparison. Bot. J. Linn. Soc. 129, 207–21.Google Scholar
Whittall, J. B., and Hodges, S. A. (2007). Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447, 706–10.Google Scholar
Williams, S. E., Albert, V. A. and Chase, M. W. (1994). Relationships of Droseraceae, a cladistic analysis of rbcL sequence and morphological data. Am. J. Bot. 81, 1027–37.Google Scholar
Williamson, P. S., and Moseley, M. F. (1989). Morphological studies of the Nymphaeaceae sensu lato XVII. Floral anatomy of Ondinea purpurea ssp. purpurea (Nymphaeaceae). Am. J. Bot. 76, 1779–94.Google Scholar
Wróblewska, M., Dolzblasz, A. and Zagórska-Marek, B. (2016). The role of ABC genes in shaping perianth phenotype in the basal angiosperm Magnolia. Plant Biol. 18, 230–8.Google Scholar
Wu, H.-C., Su, H.-J. and Hu, J.-M. (2007). The identification of A-, B-, C-, and E-class Mads-Box genes and implications for perianth evolution in the basal eudicot Trochodendron aralioides (Trochodendraceae). Int. J. Plant Sci. 168, 775–99.Google Scholar
Wurdack, K. J., and Davis, C. C. (2009). Malpighiales phylogenetics: Gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. Am. J. Bot. 96, 1551–70.Google Scholar
Xi, Z., Ruhfel, B. R., Schaefer, H., Amorim, A. M., Sugumaran, M., Wurdack, K. J., Endress, P. K., Matthews, M. l., Stevens, P. F., Mathews, S. and Davis, C. C. (2012). Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proc. Nat. Acad. Sci. USA 109, 17519–24.Google Scholar
Xu, F.-X. (2006). Floral ontogeny of two species of Magnolia L. J. Integr. Plant Biol. 48, 11971203.Google Scholar
Xu, F.-X., and Ronse De Craene, L. P. (2010a). Floral ontogeny of Annonaceae: Evidence for major floral diversity in Magnoliales. Ann. Bot. 106, 591605.Google Scholar
Xu, F.-X., and Ronse De Craene, L. P. (2010b). Floral ontogeny of Knema and Horsfieldia (Myristicaceae): Evidence for a complex androecial evolution. Bot. J. Linn. Soc. 164, 4252.Google Scholar
Xu, F.-X., and Rudall, P. J. (2006). Comparative floral anatomy and ontogeny in Magnoliaceae. Plant Syst. Evol. 258, 115.Google Scholar
Xue, L.-L., Jian, H.-L., Yun, F.-Y. and Jun, Y.-Z. (2017). Floral development of Gymnospermium microrhynchum (Berberidaceae) and its systematic significance in the Nandinoideae. Flora 228, 1016.Google Scholar
Yao, G., Jin, J.-J., Li, H.-T., Yang, J.-B., Mandala, V. S., Croley, M., Mostow, R., Douglas, N. A., Chase, M. W., Christenhusz, M. J. M., Soltis, D. E., Soltis, P. S., Smith, S. A., Brockington, S. F., Moore, M. J., Yi, T.-S., Li, D.-Z. (2019). Plastid phylogenomic insights in the evolution of Caryophyllales. Mol. Phyl. Evol. 134, 7486.Google Scholar
Zalko, J., Frachon, S., Morel, A., Deroin, T., Espinosa, F., Xiang, K.-L., Wang, W., Zhang, W.-G., Lang, S., Dixon, L. Pinedo-Castro, M. and Jabbour, F. (2021). Floral organogenesis and morphogenesis of Staphisagria (Ranunculaceae): Implications for the evolution of synorganized floral structures in Delphinieae. Int. J. Plant Sci. 182, 5970.Google Scholar
Zandonella, P. (1977). Apports de l’étude comparée des nectaires floraux à la conception phylogénétique de l’ordre des Centrospermes. Ber. Dtsch. Bot. Ges. 90, 105–25.Google Scholar
Zanis, M. J., Soltis, P. S., Qiu, Y. L., Zimmer, E. and Soltis, D. E. (2003). Phylogenetic analyses and perianth evolution in basal Angiosperms. Ann. Mo Bot. Gard. 90, 129–50.Google Scholar
Zeng, L., Zhang, N., Zhang, Q., Endress, P. K., Huang, J. and Ma, H. (2017). Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets. New Phytol. 214, 1338–54.Google Scholar
Zhang, R.J., and Schönenberger, J. (2014). Early floral development of Pentaphylaceae (Ericales) and its systematic implications. Plant Syst. Evol. 300, 1547–60.Google Scholar
Zhang, Z.-G., Meng, A.-P., Li, J.-Q., Ye, Q.-G., Wang, H.-C. and Endress, P. K. (2012). Floral development of Phyllanthus chekiangensis (Phyllanthaceae), with special reference to androecium and gynoecium. Plant Syst. Evol. 298, 1229–38.Google Scholar
Zhang, R., Guo, C., Zhang, W., Wang, P., Li, L., Duan, X., Du, Q., Zhao, L., Shan, H., Hodges, S. A., Kramer, E. M., Ren, Y. and Kong, H. (2013). Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae). Proc. Nat. Acad. Sci. USA 110, 5074–9.Google Scholar
Zhang, X.-H., and Ren, Y. (2008). Floral morphology and development in Sargentodoxa (Lardizabalaceae). Int. J. Plant Sci. 169, 1148–58.Google Scholar
Zhang, X.-H., and Ren, Y. (2011). Comparative floral development in Lardizabalaceae (Ranunculales). Bot. J. Linn. Soc. 166, 171–84.Google Scholar
Zini, L. M., Galati, B. G. and Ferrucci, M. S. (2017). Perianth organs in Nymphaeaceae: Comparative study on epidermal and structural characters. J. Plant Res. 130, 1047–60.Google Scholar
Zohary, M., and Baum, B. (1965). On the androecium of Tamarix flower and its evolutionary trends. Israel J. Bot. 14, 101–11.Google Scholar
Zúñiga, J. D. (2015). Phylogenetics of Sabiaceae with emphasis on Meliosma based on nuclear and chloroplast data. Syst. Bot. 30, 761–75.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Louis P. Ronse De Craene, Royal Botanic Garden Edinburgh
  • Book: Floral Diagrams
  • Online publication: 11 March 2022
  • Chapter DOI: https://doi.org/10.1017/9781108919074.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Louis P. Ronse De Craene, Royal Botanic Garden Edinburgh
  • Book: Floral Diagrams
  • Online publication: 11 March 2022
  • Chapter DOI: https://doi.org/10.1017/9781108919074.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Louis P. Ronse De Craene, Royal Botanic Garden Edinburgh
  • Book: Floral Diagrams
  • Online publication: 11 March 2022
  • Chapter DOI: https://doi.org/10.1017/9781108919074.017
Available formats
×