Book contents
- Frontmatter
- Contents
- Preface
- How to Use the Book
- First Steps
- Project 1: Rectangular Finite Quantum Well – Stationary Schrödinger Equation in 1D
- Project 2: Diffraction of Light on a Slit
- Project 3: Pendulum as a Standard of the Unit of Time
- Project 4: Planetary System
- Project 5: Gravitation inside a Star
- Project 6: Normal Modes in a Cylindrical Waveguide
- Project 7: Thermal Insulation Properties of a Wall
- Project 8: Cylindrical Capacitor
- Advanced Projects
- Project 9: Coupled Harmonic Oscillators
- Project 10: The Fermi–Pasta–Ulam–Tsingou Problem
- Project 11: Hydrogen Star
- Project 12: Rectangular Quantum Well Filled with Electrons – The Idea of Self-Consistent Calculations
- Project 13: Time Dependent Schrödinger Equation
- Project 14: Poisson’s Equation in 2D
- Appendix A: Supplementary Materials
- Further Reading
- Index
Project 11: - Hydrogen Star
Published online by Cambridge University Press: 01 February 2024
- Frontmatter
- Contents
- Preface
- How to Use the Book
- First Steps
- Project 1: Rectangular Finite Quantum Well – Stationary Schrödinger Equation in 1D
- Project 2: Diffraction of Light on a Slit
- Project 3: Pendulum as a Standard of the Unit of Time
- Project 4: Planetary System
- Project 5: Gravitation inside a Star
- Project 6: Normal Modes in a Cylindrical Waveguide
- Project 7: Thermal Insulation Properties of a Wall
- Project 8: Cylindrical Capacitor
- Advanced Projects
- Project 9: Coupled Harmonic Oscillators
- Project 10: The Fermi–Pasta–Ulam–Tsingou Problem
- Project 11: Hydrogen Star
- Project 12: Rectangular Quantum Well Filled with Electrons – The Idea of Self-Consistent Calculations
- Project 13: Time Dependent Schrödinger Equation
- Project 14: Poisson’s Equation in 2D
- Appendix A: Supplementary Materials
- Further Reading
- Index
Summary
Unlike in Chapter 5, this project aims at finding a real mass density distribution of a hydrogen star of given mass. For that purpose an equilibrium condition for the gravitational and pressure-induced forces acting on a mass element is utilised. Using the integral form of Gauss’s law and the equation of state, we establish an integro-differential equation describing the mass density distribution. To numerically solve the integro-differential equation, we adapt the Adams–Bashforth method and implement a linear extrapolation based on known data points. This approach involves modelling the star as a gas under pressure using an exponential form for the equation of state, which helps in avoiding gravitational collapse. The equation of state is derived based on density functional theory data. We also discuss the constraints of this model and the significance of the parameters within it. The chapter concludes by suggesting potential numerical experiments to examine the influence of these parameters and their physical interpretation. This analysis aims to provide a more comprehensive understanding of stellar structure and the behaviour of mass density distribution within stars.
Keywords
- Type
- Chapter
- Information
- A First Guide to Computational Modelling in Physics , pp. 72 - 77Publisher: Cambridge University PressPrint publication year: 2024