Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T09:28:10.595Z Has data issue: false hasContentIssue false

Chapter 42 - Cold-Water Corals

from II - Marine Ecosystems and Habitats

Published online by Cambridge University Press:  18 May 2017

United Nations
Affiliation:
Division for Ocean Affairs and the Law of the Sea, Office of Legal Affairs
Get access
Type
Chapter
Information
The First Global Integrated Marine Assessment
World Ocean Assessment I
, pp. 803 - 816
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addamo, A.M., Reimer, J.D., Taviani, M., Freiwald, A., and Machordom, A. (2012). Desmophyllum dianthus (Esper, 1794) in the Scleractinian Phylogeny and Its Intraspecific Diversity. Plos One 7, e50215.CrossRef
Adkins, J.F., Cheng, H., Boyle, E.A., Druffel, E.R.M., and Edwards, R.L. (1998). Deep-sea coral evidence for rapid change in ventilation of the deep North Atlantic 15,400 year ago. Science 280, 725–728.CrossRefGoogle Scholar
Albright, R. (2011). Reviewing the effects of ocean acidification on sexual reproduction and early life history stages of reef-building corals. Journal of Marine Biology (2011), ID 473615. doi:10.1155/2011/473615.CrossRefGoogle Scholar
Althaus, F., Williams, A., Schlacher, T.A., Kloser, R.J., Green, M.A., Barker, B.A., Bax, N.J., Brodie, P. and Schlacher-Hoenlinger, M.A. (2009). Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. Marine Ecology Progress Series 397, 279-294.CrossRefGoogle Scholar
Andrews, A.H., Cordes, E.E., Mahoney, M.M., Munk, K., Coale, K.H., Cailliet, G.M., Heifetz, J. (2002). Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska. Hydrobiologia 471, 101-110.CrossRefGoogle Scholar
Arantes, R.C.M., Castro, C.B., Pires, D.O., and Seoane, J.C.S. (2009). Depth and water mass zonation and species associations of cold-water octocoral and stony coral communities in the southwestern Atlantic. Marine Ecology Progress Series 397, 71-79.CrossRefGoogle Scholar
Arrieta, J., Arnaud-Haond, S., and Duarte, C.M. (2010). What lies underneath: Conserving the Ocean's Genetic Resources. Proceedings of the National Academy of Sciences 107, 18318-18324.CrossRefGoogle Scholar
Baco, A.R., Rowden, A.|A., Levin, L.|A., Smith, C.|R., and Bowden, D.|A. (2010). Initial characterization of cold seep faunal communities on the New Zealand Hikurangi margin. Marine Geology, 272(1), 251-259.CrossRefGoogle Scholar
Baillon, S., Hamel, J.F., Wareham, V.E., and Mercier, A. (2012). Deep cold-water corals as nurseries for fish larvae. Frontiers in Ecology and the Environment; doi:10.1890/120022.CrossRef
Becheler, R. (2013). Feedbacks between genetic diversity and demographic stability in clonal organisms, Ifremer, Département Environnement Profond. IUEM: Institut Universitaire Européen de la Mer, Brest.
Boschen, R.E., Rowden, A.A., Clark, M.R., Barton, S.J., Pallentin, A., and Gardner, J.P.A. (2015). Megabenthic asssemblage structure on three New Zealand seamounts: implications for seafloor massive sulfide mining. Marine Ecology Progress Series 523, 1-14.Google Scholar
Bostock, H.C., Tracey, D.|M., Currie, K.I., Dunbar, G.B., Handler, M.R., Fletcher, S.E.M., Smith, A.M., and Williams, M.J. (2015). The carbonate mineralogy and distribution of habitat-forming deep-sea corals in the southwest Pacific region. Deep Sea Research Part I: Oceanographic Research Papers, 100, 88-104.CrossRefGoogle Scholar
Brooke, S. and Young, C.M. (2009). In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Marine Ecology Progress Series 397, 153-161. Brooke, S. and Järnegren, J. (2013) Reproductive periodicity of the deep-water scleractinian coral, Lophelia pertusa from the Trondheim Fjord, Norway. Marine Biology 160: 139-153.Google Scholar
Brooke, S. and Ross, S.W. (2014). First observations of the cold-water coral Lophelia pertusa in mid-Atlantic canyons of the USA. Deep-Sea Research II 104, 245-251.CrossRefGoogle Scholar
Bruckner, A.W.(2002). Life-Saving Products from Coral Reefs Issues in Science and Technology online.
Buhl-Mortensen, L., Olafsdottir, S.H., Buhl-Mortensen, P., Burgos, J.M., and Ragnarsson, S.A. (2014). Distribution of nine cold-water coral species (Scleractinia and Gorgonacea) in the cold temperate North Atlantic in light of bathymetry and hydrography. Hydrobiologia. DOI: 10.1007/s10750-014-2116-x.CrossRef
Cairns, S. (2007). Deep-water corals: an overview with special reference to diversity and distribution of deep-water Scleractinia. Bulletin of Marine Science 81, 311-322.Google Scholar
Carranza, A., Recio, A.M., Kitahara, M., Scarabino, F., Ortega, L., López, G., Franco-Fraguas, P., De Mello, C., Acosta, J., Fontan, A. (2012). Deep-water coral reefs from the Uruguayan outer shelf and slope. Marine Biodiversity 42, 411–414.CrossRefGoogle Scholar
Clark, M.R. and A.A., Rowden (2009). Effect of deepwater trawling on the macro-invertebrate assemblages of seamounts on the Chatham Rise, New Zealand. Deep Sea Research I 56, 1540-1544.CrossRefGoogle Scholar
Clark, M.R. and Tittensor, D.P. (2010). An index to assess the risk to stony corals from bottom trawling on seamounts. Marine Ecology 31, 200-211.CrossRefGoogle Scholar
Colman, J.G., Gordon, D.M., Lane, A.P., Forde, M.J., and Fitzpatrick, J.J. (2005). Carbonate mounds off Mauritania, Northwest Africa: status of deep-water corals and implications for management of fishing and oil exploration activities. In: Freiwald, A., Roberts, J.M. (eds.) Cold-water corals and ecosystems. Springer, Heidelberg, pp 417-441.CrossRef
Continental Shelf Associates, Inc. (2006). Effects of Oil and Gas Exploration and Development at Selected Continental Slope Sites in the Gulf of Mexico. Volume I: Executive Summary. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2006-044. 45 pp.
Cordes, E.E., McGinley, M.P., Podowski, E.L., Becker, E.L., Lessard-Pilon, S., Viada, S.T., and Fisher, C.R. (2008). Coral communities of the deep Gulf of Mexico. Deep-Sea Research I 55, 777-787.CrossRefGoogle Scholar
Cordes, E.E., Cunha, M.M., Galeron, J., Mora, C., Olu-Le Roy, K., Sibuet, M., Van Gaever, S., Vanreusel, A., and Levin, L. (2010). The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity. Marine Ecology 31: 51-65.Google Scholar
Correa, T.B.S., Eberli, G.P., Grasmueck, M., Reed, J.K., and Correa, A.M.S. (2012). Genesis and morphology of cold-water coral ridges in a unidirectional current regime. Marine Geology 326-328, 14-27.CrossRefGoogle Scholar
Costello, M.J., McCrea, M., Freiwald, A., Lundälv, T., Jonsson, L., Bett, B.J., van Weering, T.C.E., de Haas, H., Roberts, J.M., and Allen, D. (2005). Role of cold-water Lophelia pertusa coral reefs as fish habitat in the NE Atlantic. In: Freiwald, A., Roberts, J.M. (eds.). Cold-water Corals and Ecosystems. Berlin, Germany, Springer, 771-805. 1243 pp.CrossRef
Dahl, M.P., Pereyra, R.T., Lundalv, T., and Andre, C. (2012). Fine-scale spatial genetic structure and clonal distribution of the cold-water coral Lophelia pertusa. Coral Reefs 31, 1135–1148.CrossRefGoogle Scholar
Danovaro, R., Dell'Anno, A., and Pusceddu, A. (2004). Biodiversity response to climate change in a warm deep sea. Ecology Letters, 7(9), 821-828.CrossRefGoogle Scholar
Davies, A.J., Duineveld, G.C.A., Lavaleye, M.S.S., Bergman, M.J.N., Van Haren, H. and Roberts, J.M. (2009). Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef complex. Limnology and Oceanography 54, 620-629.CrossRefGoogle Scholar
Davies, A.J., Duineveld, G.C.A., van Weering, T.C.E., Mienis, F., Quattrini, A.M., Seim, H.E., Bane, J.M. and Ross, S.W. (2010). Short-term environmental variability in cold-water coral habitat at Viosca Knoll, Gulf of Mexico. Deep-Sea Research I 57, 199-212.CrossRefGoogle Scholar
Davies, A.J. and Guinotte, J.M. (2011). Global habitat suitability for framework-forming cold-water corals. PLos ONE 6: e18483.Google Scholar
de Groot, R.S., Wilson, M.A., Roelof, M.J. and Boumans, R.M.J. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics 41 393–408.CrossRefGoogle Scholar
de la Calle, F. (2009). Marine Genetic Resources: A Source of New Drugs - The Experience of the Biotechnology Sector. International Journal of Marine and Coastal Law 12, 209-220.CrossRefGoogle Scholar
De Mol, B., Van Rensbergen, P., Pillen, S., Van Herreweghe, K., Van Rooij, D., McDonnell, A., Huvenne, V., Ivanov, M., Swennen, R. and Henriet, J.P. (2002). Large deepwater coral banks in the Porcupine Basin, southwest of Ireland. Marine Geology 188, 193-231.CrossRefGoogle Scholar
De Mol, B., Henriet, J.P. and Canals, M. (2005). Development of coral banks in Porcupine Seabight: do they have Mediterranean ancestors? In: Freiwald, A. and Roberts, J.M., (eds). Cold-Water Corals and Ecosystems. Erlangen Earth Conference Series, Springer. pp 515-533.
De Mol, B., Amblas, D., Alvarez, G., Busquets, P., Calafat, A., Canals, M., Duran, R., Lavoie, C., Acosta, J. and Munoz, A. (2012). Cold-water coral distribution in an erosional environment: the Strait of Gibraltar Gateway. In: Harris, PT, Baker, EK (eds.) Seafloor Geomorphology as Benthic Habitat. Elsevier, Amsterdam, pp 635-643.
De Mol, L., Van Rooij, D., Pirlet, H., Greinert, J., Frank, N., Quemmerais, F. and Henriet, J.P. (2011). Cold-water coral habitats in the Penmarc'h and Guilvinec canyons (Bay of Biscay): Deep-water versus shallow-water settings. Marine Geology 282, 40-52.CrossRefGoogle Scholar
Dodds, L.A., Roberts, J.M., Taylor, A.C., Marubini, F. (2007). Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. Journal of Experimental Marine Biology and Ecology 349, 205-214.CrossRefGoogle Scholar
Doney, S.C., Fabry, V.|J., Feely, R.A.|J. Kleypas, J.A. (2009). Ocean acidification: The other CO2 problem. Annual Review of Marine Science 1, 169-192.CrossRefGoogle Scholar
Dullo, W.C., Flögel, S., Rüggeberg, A. (2008). Cold-water coral growth in relation to the hydrography of the Celtic and Nordic European continental margin. Marine Ecology Progress Series 371, 165-176.CrossRefGoogle Scholar
Fabri, M.C., Pedel, L., Beuck, L., Galgani, F., Hebbeln, D., Freiwald, A. (2014). Megafauna of vulnerable marine ecosystems in French Mediterranean submarine canyons: Spatial distribution and anthropogenic impacts. Deep-Sea Research II 104, 184-207.CrossRefGoogle Scholar
Falkowski, P.G., Barber, R.T., & Smetacek, V. (1998). Biogeochemical controls and feedbacks on ocean primary production. Science, 281(5374), 200-206.Google Scholar
Findlay, H.S., Wicks, L., Navas, J.M., Hennige, S., Huvenne, V., Woodward, E.M.S., Roberts, J.M. (2013). Tidal downwelling and implications for the carbon biogeochemistry of cold-water corals in relation to future ocean acidification and warming. Global Change Biology 19, 2708-2719.CrossRefGoogle Scholar
Findlay, H.S., Hennige, S.J., Wicks, L.C., Navas, J.M., Woodward, E.M.S., Roberts, J.M. (2014). Fine-scale nutrient and carbonate system dynamics around cold-water coral reefs in the northeast Atlantic. Nature Scientific Reports 4: 3671.Google Scholar
Fisher, C.R., Hsing, P.Y., Kaiser, C., Yoerger, D., Roberts, H.H., Shedd, W., Cordes, E.E., Shank, T.S., Berlet, S.P., Saunders, M., Larcom, E.A., Brooks, J. (2014). Footprint of Deepwater Horizon blowout impact to deep-water coral communities. Proceedings of the National Academy of Sciences 111, 11744-11749.CrossRefGoogle Scholar
Foley, N.S., van Rensburg, T.M., Armstrong, C.W. (2010). The Ecological and Economic Value of Deep Water Corals. (Review paper) Ocean and Coastal Management 53, 313-326.CrossRefGoogle Scholar
Food and Agriculture Organization of the United Nations. (2009). International Guidelines for the Management of Deep-sea Fisheries in the High Seas. Rome, FAO. 2009. 73 pp.
Flögel, S., Dullo, W.C., Pfannkuche, O., Kiriakoulakis, K., Rüggeberg, A. (2014). Geochemical and physical constraints for the occurrence of living cold-water corals. Deep-Sea Research II 99, 19-26.CrossRefGoogle Scholar
Form, A.U., Riebesell, U. (2012). Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Global Change Biology 18, 843-853.CrossRefGoogle Scholar
Fossa, J.H., Mortensen, P.B., Furevik, D.M. (2002). The deep-water coral Lophelia pertusa in Norwegian waters: distribution and fishery impacts. Hydrobiologia 471, 1-12.Google Scholar
Frank, N., Ricard, E., Lutringer-Paquet, A., van der Land, C., Colin, C., Blamart, D., Foubert, A., Van Rooij, D., Henriet, J.-P., de Haas, H., van Weering, T. (2009). The Holocene occurrence of cold water corals in the NE Atlantic: Implications for coral carbonate mound evolution. Marine Geology 266, 129-142.CrossRefGoogle Scholar
Freiwald, A., Rogers, A., Hall-Spencer, J. (2005). Global distribution of cold-water corals (version 2). Cambridge (UK): UNEP World Conservation Monitoring Centre.
Freiwald, A., Beuck, L., Rueggeberg, A., Taviani, M., Hebbeln, D. (2009). The white coral community in the Central Mediterranean Sea Revealed by ROV Surveys. Oceanography 22, 58-74.CrossRefGoogle Scholar
Georgian, S.E., Shedd, W., Cordes, E.E. (2014). High resolution ecological niche modelling of the cold-water coral Lophelia pertusa in the Gulf of Mexico. Marine Ecology Progress Series 506, 145-161.CrossRefGoogle Scholar
Gori, A., Orejas, C., Madurell, T., Bramanti, L., Martins, M., Quintanilla, E., Marti-Puig, P., Lo Iacono, C., Puig, P., Requena, S., Greenacre, M., Gili, J.M. (2013). Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean). Biogeosciences 10, 2049-2060.CrossRefGoogle Scholar
Grehan, A.J., Unnithan, V., Roy, K.O.L., Opderbecke, J. (2005). Fishing impacts on Irish deepwater coral reefs: Making a case for coral conservation. In: Benthic Habitats and the Effects of Fishing (eds. Barnes, BW, Thomas, JP), pp. 819-832.
Guinotte, J.M., Orr, J., Cairns, S., Freiwald, A., Morgan, L., George, R. (2006). Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Frontiers in Ecology and the Environment, 4, 141-146.Google Scholar
Guppy, M., Withers, P. (1999). Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biological Reviews of the Cambridge Philosophical Society 74: 1-40.Google Scholar
Hall–Spencer, J., Allain, V., Jan Helge Fosså, J.H. (2002). Trawling damage to Northeast Atlantic ancient coral reefs. Proceedings of the Royal Society of London B 269, 507-51.CrossRefGoogle Scholar
Harris, P.T., MacMillan-Lawler, M., Rupp, J., Baker, E.K. (2014). Geomorphology of the oceans. Marine Geology 352, 4-24.CrossRefGoogle Scholar
Harris, P.T., Whiteway, T. (2011). Global distribution of large submarine canyons: geomorphic differences between active and passive continental margins. Marine Geology 285, 69–86.CrossRefGoogle Scholar
Hebbeln, D., Wienberg, C., Wintersteller, P., Freiwald, A., Becker, M., Beuck, L., Dullo, C., Eberli, G.P., Glogowski, S., Matos, L., Forster, N., Reyes-Bonilla, H., Taviani, M. (2014). Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico. Biogeosciences 11, 1799-1815.CrossRefGoogle Scholar
Heifetz, J., R.P., Stone, and S.K., Shotwell (2009). Damage and disturbance to coral and sponge habitat of the Aleutian Archipelago. Marine Ecology Progress Series 397, 295-303.CrossRefGoogle Scholar
Henry, L.A., Roberts, J.M. (2007). Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep-Sea Research I 54, 654–672.CrossRefGoogle Scholar
Henry, L.A., Navas, J.M., Hennige, S.J., Wicks, L., Vad, J., Roberts, J.M. (2013). Coldwater coral reef habitats benefit recreationally valuable sharks. Biological Conservation 161, 67-70.CrossRefGoogle Scholar
Henry, L.A., Frank, N., Hebbeln, D., Wienberg, C., Robinson, L., van de Flierdt, T., Dahl, M., Douarin, M., Morrison, C.L., Lopez Correa, M., Rogers, A.D., Ruckelshausen, M., Roberts, J.M. (2014). Global ocean conveyor lowers extinction risk in the deep sea. Deep-Sea Research Part I-Oceanographic Research Papers 88, 8-16.CrossRefGoogle Scholar
Hogg, M.M., O.S., Tendal, K.W., Conway, S.A., Pomponi, R.W.M., Van Soest, J., Gutt, M., Krautter, J.M., Roberts (2010). Deep-sea sponge grounds: Reservoirs of biodiversity. UNEP-WCMC Biodiversity Series No. 32. UNEP-WCMC, Cambridge, UK.
Hourigan, T.F. (2009). Managing fishery impacts on deep-water coral ecosystems of the USA: emerging best practices. Marine Ecology Progress Series 397, 333-340.CrossRefGoogle Scholar
Hovland, M. (2005). Pockmark-associated coral reefs at the Kristin field off Mid- Norway. In: Cold-Water Corals and Ecosystems, Erlangen Earth Conference Series, pp 623-632.CrossRef
Hsing, P.Y., Fu, B., Larcom, E.A., Berlet, S.P., Shank, T.M., Govindarajan, A.F., Lukasiewicz, A.J., Dixon, P.M., Fisher, C.R. (2013). Evidence of lasting impact of the Deepwater Horizon oil spill on a deep Gulf of Mexico coral community. Elementa. 1: 000012.Google Scholar
Husebo, A., Nottestad, L., Fossa, J.H., Furevik, D.M., Jorgensen, S.B. (2002). Distribution and abundance of fish in deep-sea coral habitats. Hydrobiologia 471, 91-99.CrossRefGoogle Scholar
Huvenne, V.A., Tyler, P.A., Masson, D.G., Fisher, E.H., Hauton, C., Huhnerbach, V., Le Bas, T.P., Wolff, G.A. (2011). A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyon. PloS one 6, e28755.CrossRefGoogle Scholar
Kiriakoulakis, K., Freiwald, A., Fisher, E. and Wolff, G.A. (2007). Organic matter quality and supply to deep-water coral/mound systems of the NW European continental margin. International Journal of Earth Sciences, 96, 159-170.CrossRefGoogle Scholar
Kitahara, M.V. (2009). A pesca demersal de profundidade eos bancos de corais azooxantelados do sul do Brasil. Biota Neotropica 9, 35-43.CrossRefGoogle Scholar
Koslow, J.A., Gowlett-Holmes, K., Lowry, J.K., O'Haram, T., Poore, G.C.B., Williams, A. (2001). Seamount benthic macrofauna off southern Tasmania: community structure and impacts of trawling. Marine Ecology Progress Series 213, 111-125.CrossRefGoogle Scholar
Larcom, E.A., McKeana, D.L., Brooks, J.M., Fisher, C.R. (2014). Growth rates, densities, and distribution of Lophelia pertusa on artificial structures in the Gulf of Mexico. Deep-Sea Research I 85, 101-109.CrossRefGoogle Scholar
Lartaud, F., Pareige, S., de Rafelis, M., Feuillassier, L., Bideau, M., Peru, E., De la Vega, E., Nedoncelle, K., Romans, P., Le Bris, N. (2014). Temporal changes in the growth of two Mediterranean cold-water coral species, in situ and in aquaria. Deep-Sea Research Part II-Topical Studies in Oceanography 99, 64-70.CrossRefGoogle Scholar
Le Goff-Vitry, M.C., Rogers, A.D., Baglow, D. (2004). A deep-sea slant on the molecular phylogeny of the Scleractinia. Molecular Phylogenetics and Evolution 30, 167-177.CrossRefGoogle Scholar
Le Quere, C., Raupach, M.R., Canadell, J.G., et al. (2009). Trends in the sources and sinks of carbon dioxide. Nature Geoscience 2: 831-836.Google Scholar
Lunden, J.J., Georgian, S.E., Cordes, E.E. (2013). Aragonite saturation states at coldwater coral reefs structured by Lophelia pertusa in the northern Gulf of Mexico. Limnology and Oceanography 58, 354-362.CrossRefGoogle Scholar
Lunden, J.J., McNicholl, C.G., Sears, C.R., Morrison, C.L., Cordes, E.E. (2014). Sensitivity of the deep-sea coral Lophelia pertusa to global climate change and ocean acidification varies by individual genotype in the Gulf of Mexico. Frontiers in Marine Science, Vol. 1: Article 78.Google Scholar
Maier, C., Watremez, P., Taviani, M., Weinbauer, M.G. J.P., Gattuso (2012). Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proceedings of the Royal Society of London B 279, 1716-1723.CrossRefGoogle Scholar
Maynou, F., Cartes, J.E. (2012). Effects of trawling on fish and invertebrates from deep-sea coral fades of Isidella elongata in the western Mediterranean. Journal of the Marine Biological Association of the United Kingdom 92, 1501-1507.CrossRefGoogle Scholar
McCulloch, M., Trotter, J., Montagna, P., Falter, J., Dunbar, R., Freiwald, A., Foersterra, N., Lopez Correa, M., Maier, C., Ruggeberg, A., Taviani, M. (2012). Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation. Geochimica et Cosmochimica Acta 87, 21-34.CrossRefGoogle Scholar
Mienis, F., de Stigter, H., White, M., Duineveld, G.C.A., de Haas, H., van Weering, T. (2007). Hydrodynamic controls on cold-water coral growth and carbonatemound development at the SW and SE Rockall Trough Margin, NE Atlantic Ocean. Deep-Sea Research I 54, 1655-1674.CrossRefGoogle Scholar
Mienis, F., Duineveld, G.C.A., Davies, A.J., Ross, S.W., Seim, H., Bane, J., van Weering, T.C.E. (2012). The influence of near-bed hydrodynamic conditions on cold-water corals in the Viosca Knoll area, Gulf of Mexico. Deep-Sea Research I 60: 32-45.Google Scholar
Miller, K.J., Rowden, A.A., Williams, A., Häussermann, V. (2011). Out of their depth? Isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change. Plos One 6, e19004.CrossRefGoogle Scholar
Moberg, F., Folke, C. (1999). Ecological goods and services of coral reef ecosystems. Ecological Economics 29, 215–233.CrossRefGoogle Scholar
Molinski, T.F., Dalisay, D.S., Lievens, S.L., Saludes, J.P. (2009). Drug development from marine natural products. Nature Reviews Drug Discovery 8, 69-85.CrossRefGoogle Scholar
Morrison, C.L., Ross, S.W., Nizinski, M.S., Brooke, S., Jaernegren, J., Waller, R.G., Johnson, R.L., King, T.L. (2011). Genetic discontinuity among regional populations of Lophelia pertusa in the North Atlantic Ocean. Conservation Genetics 12, 713-729.CrossRefGoogle Scholar
Mortensen, P.B., Hovland, M., Brattegard, T., Farestveit, R. (1995). Deep water bioherms of the scleractinian coral Lophelia pertusa (L.) at 641N on the Norwegian shelf: structure and associated megafauna. Sarsia 80, 145–158.Google Scholar
Mortensen, P.B., M.T., Hovland, J.H., Fossã & D.M., Furevik (2001). Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. Journal of the Marine Biological Association of the UK 81, 581-597.CrossRefGoogle Scholar
Mortensen, P.B., Buhl-Mortensen, L. (2005). Deep-water corals and their habitats in The Gully, a submarine canyon off Atlantic Canada. In: Freiwald, A., Roberts, J.M. (eds.) Cold-water corals and ecosystems. Springer, Heidelberg. pp 247-277.
Mortensen, P.B., Buhl-Mortensen, L., Gebruk, A.V., Krylova, E.M. (2008). Occurrence of deep-water corals on the Mid-Atlantic Ridge based on MAR-ECO data. Deep-Sea Research II 55, 142-152.CrossRefGoogle Scholar
Naumann, M.S., Orejas, C., Ferrier-Pages, C. (2013). High thermal tolerance of two Mediterranean cold-water coral species maintained in aquaria. Coral Reefs 32, 749-754.CrossRefGoogle Scholar
Naumann, M.S., Orejas, C., Ferrier-Pagès, C. (2014). Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep Sea Research Part II 99, 36–41.CrossRefGoogle Scholar
Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R.M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R.G., Plattner, G.K., Rodgers, K.B., Sabine, C.L., Sarmiento, J.L., Schlitzer, R., Slater, R.D., Totterdell, I.J., Weirig, M.F., Yamanaka, Y. and Yool, A. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437, 681-686.CrossRefGoogle Scholar
Pires, D.O. (2007). The azooxanthellate coral fauna of Brazil. In: George, R.Y. and S.D., Cairns, (eds.). Conservation and adaptive management of seamount and deep-sea coral ecosystems. Rosenstiel School of Marine and Atmospheric Science, University of Miami. pp 265-272.
Probert, K., Knight, D.G.M., Grove, S.L. (1997). Benthic invertebrate bycatch from a deep-water trawl fishery, Chatham Rise, New Zealand. Aquatic Conservation: Marine and Freshwater Ecosystems 27-40.
Prouty, N.G., Roark, E.B., Koenig, A., Demopoulos, A.W., Batista, F.C., Kocar, B.D., Selby, D., McCarthy, M.D., Mienis, F. (2014). Deep-sea coral record of human impact on watershed quality in the Mississippi River Basin. Global Biogeochemical Cycles 28, 29-43.CrossRefGoogle Scholar
Quattrini, A.M., Etnoyer, P.J., Doughty, C.L., English, L., Falco, R., Remon, N., Rittinghouse, M., Cordes, E.E. (2014). A phylogenetic approach to octocoral community structure in the deep Gulf of Mexico. Deep-Sea Research II. 99, 92-102.CrossRefGoogle Scholar
Qurban, M.A., Krishnakumar, P.K., Joydas, T.V., Manikandan, K.P., Ashraf, T.T.M., Quadri, S.I., Wafar, M., Qasem, A., Cairns, S.D. (2014). In-situ observation of deep water corals in the northern Red Sea waters of Saudi Arabia. Deep-Sea Research I 89, 35-43.CrossRefGoogle Scholar
Ramirez-Llodra, E., Brandt, A., Danovaro, R., De Mol, B., Escobar, E., German, C.R., Levin, L.A., Martínez-Arbízu, P., Menot, L., Buhl-Mortensen, P., Narayanaswamy, B.E., Smith, C.R., Tittensor, D.P., Tyler, P.A., Vanreusel, A., Vecchione, M. (2010). Deep, diverse and definitely different: unique attributes of the world's largest ecosystem. Biogeosciences 7, 2851-2899.CrossRefGoogle Scholar
Ramirez-Llodra, E., Tyler, P.A., Baker, M.C., Bergstad, O.A., Clark, M.R., Escobar, E., Levin, L.A., Menot, L., Rowden, A.A., Smith, C.R., Van Dover, C.L. (2011). Man and the last great wilderness: human impact on the deep sea. PlosONE 6(8), e22588. Doi: 10.1271/journal.pone.022588.CrossRefGoogle Scholar
Reed, J.K. (2002). Deep-water Oculina coral reefs of Florida: biology, impacts, and management. Hydrobiologia 471, 43-55.CrossRefGoogle Scholar
Reed, J.K., Weaver, D.C., Pomponi, S.A. (2006). Habitat and fauna of deep-water Lophelia pertusa coral reefs off the southeastern US: Blake Plateau, Straits of Florida, and Gulf of Mexico. Bulletin of Marine Science 78, 343–375.Google Scholar
Rengstorf, A.M., Yesson, C., Brown, C., Grehan, A.J. (2013). High-resolution habitat suitability modelling can improve conservation of vulnerable marine ecosystems in the deep sea. Journal of Biogeography 40, 1702-1714.CrossRefGoogle Scholar
Reveillaud, J., Freiwald, A., Van Rooij, D., Le Guilloux, E., Altuna, A., Foubert, A., Vanreusel, A., Olu-Le Roy, K., Henriet, J.-P. (2008). The distribution of scleractinian corals in the Bay of Biscay, NE Atlantic. Facies 54, 317-331.CrossRefGoogle Scholar
Rixen, M., Beckers, J.M., Levitus, S., Antonov, J., Boyer, T., Maillard, C., Fichaut, M., Balopoulos, E., Iona, S., Dooley, H., Garcia, M.J., Manca, B., Giorgetti, A., Manzella, g., Mikhailov, N., Pinardi, N., Zavatarelli, M. (2005). The Western Mediterranean deep water: A proxy for climate change. Geophysical Research Letters 32, L12608.CrossRefGoogle Scholar
Roark, E.B., Guilderson, T.P., Dunbar, R.B., Fallon, S.J., Mucciarone, D.A. (2009). Extreme longevity in proteinaceous deep-sea corals. Proceedings of the National Academy of Sciences 106(13), 5204-5208.CrossRefGoogle Scholar
Roberts, M., Harvey, S.M., Lamont, P.A., Gage, J.D. (2000). Humphery Seabed photography, environmental assessment and evidence for deep-water trawling on the continental margin west of the Hebrides. Hydrobiologia 441, 173-183.CrossRefGoogle Scholar
Roberts, J.M., Wheeler, A.J., Freiwald, A. (2006). Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312, 543-547.CrossRefGoogle Scholar
Roberts, J.M., Henry, L.A., Long, D., Hartley, J.P. (2008). Cold-water coral reef frameworks, megafaunal communities and evidence for coral carbonate mounds on the Hatton Bank, north east Atlantic. Facies 54, 297-316.CrossRefGoogle Scholar
Roberts, J.M., Wheeler, A.J., Freiwald, A., Cairns, S.D. (2009). Cold-water Corals: The Biology and Geology of Deep-sea Coral Habitats. Cambridge: Cambridge University Press.CrossRef
Rocha, J., Peixe, L., Gomes, N.C.M., Calado, R. (2011). Cnidarians as a Source of New Marine Bioactive Compounds—An Overview of the Last Decade and Future Steps for Bioprospecting. Marine Drugs 9, 1860-1886.CrossRefGoogle Scholar
Roder, C., Berumen, M.L., Bouwmeester, J., Papathanassiou, E., Al-Suwailem, A., Voolstra, C.R. (2013). First biological measurements of deep-sea corals from the Red Sea. Scientific Reports 3, 2801.CrossRefGoogle Scholar
Rogers, A.D., Baco, A., Griffiths, H., Hart, T., & Hall-Spencer, J.M. (2007). Corals on seamounts. In: Seamounts: ecology, fisheries and conservation, 141-69.CrossRef
Ross, S.W., Quattrini, A.M. (2009). Deep-sea reef fish assemblage patterns on the Blake Plateau (Western North Atlantic Ocean). Marine Ecology-an Evolutionary Perspective 30, 74-92.CrossRefGoogle Scholar
Ross, R.E., Howell, K.L. (2013). Use of predictive habitat modelling to assess the distribution and extent of the current protection of ‘listed’ deep-sea habitats. Diversity and Distributions 19, 433-445.CrossRefGoogle Scholar
Rowden, A.A., Schlacher, T.A., Williams, A., Clark, M.R., Stewart, R., Althaus, F., Bowden, D.A., Consalvey, M., Robinson, W., Dowdney, J. (2010). A test of the seamount oasis hypothesis: seamounts support higher epibenthic megaufaunal biomass than adjacent slopes. Marine Ecology 31, 95-106.CrossRefGoogle Scholar
Sánchez, F., González-Pola, C., Druet, M., García-Alegre, A., Acosta, J., Cristobo, J., Parra, S., Ríos, P., Altuna, Á., Gómez-Ballesteros, M., Muñoz-Recio, A., Rivera, J., Díaz del Río, G., (2014). Habitat characterization of deep-water coral reefs in La Gaviera Canyon (Avilés Canyon System, Cantabrian Sea). Deep-Sea Research II 106, 118-140.CrossRefGoogle Scholar
Stetson, T.R., Squires, D.F., Pratt, R.M. (1962). Coral banks occurring in deep water on the Blake Plateau. American Museum Novitates 2114, 1–39.Google Scholar
Stone, R.P. (2006). Coral habitat in the Aleutian Islands of Alaska: depth distribution, fine-scale species associations, and fisheries interactions. Coral Reefs 25, 229-238.CrossRefGoogle Scholar
Sumida, P.Y.G., Yoshinagaa, M.Y., Madureirab, L.A.S.P., Hovland, M. (2004). Seabed pockmarks associated with deepwater corals off SE Brazilian continental slope, Santos Basin. Marine Geology 207, 159–167.CrossRefGoogle Scholar
Thoma, J.N., Pante, E., Brugler, M.R., France, S.C. (2009) Deep-sea octocorals and antipatharians show no evidence of seamount-scale endemism in the NW Atlantic. Marine Ecology Progress Series 397, 25-35.CrossRefGoogle Scholar
Thresher, R.E., Tilbrook, B., Fallon, S., Wilson, N.C., Adkins, J. (2011). Effects of chronic low carbonate saturation levels on the distribution, growth and skeletal chemistry of deep-sea corals and other seamount megabenthos. Marine Ecology Progress Series 442, 87-99.CrossRefGoogle Scholar
Tilman, D., Lehman, C.L., Thomson, K.T. (1997). Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences US 94, 1857-1861.CrossRefGoogle Scholar
Tittensor, D.P., Baco, A.R., Hall-Spencer, J.M., Orr, J.C., Rogers, A.D. (2010). Seamounts as refugia from ocean acidification for cold-water stony corals. Marine Ecologyan Evolutionary Perspective 31, 212-225.CrossRefGoogle Scholar
Tracey, D.M., Rowden, A.A., Mackay, K.A., Compton, T. (2011). Habitat-forming coldwater corals show affinity for seamounts in the New Zealand region. Marine Ecology Progress Series 430, 1-22.Google Scholar
van der Land, C., Eisele, M., Mienis, F., De Haas, H., Hebbeln, D., Reijmer, J.J.G., Van Weering, T.C.E. (2014). Carbonate mound development in contrasting settings on the Irish margin. Deep-Sea Research II 99, 297-326.CrossRefGoogle Scholar
van Oevelen, D., Duineveld, G., Lavaleye, M., Mienis, F., Soetaert, K., Heip, C.H.R. (2009). The cold-water coral community as a hot spot for carbon cycling on continental margins: A food-web analysis from Rockall Bank (northeast Atlantic). Limnology and Oceanography 54(6), 1829-1844.CrossRefGoogle Scholar
Viana, A.R., Faugères, J.C., Kowsmann, R.O., Lima, J.A.M., Caddah, L.F.G., Rizzo, J.G. (1998). Hydrology, morphology and sedimentology of the Campos continental margin, offshore Brazil. Sedimentary Geology 115, 133-157.CrossRefGoogle Scholar
Watling, L. and P.J., Auster (2005). Distribution of deepwater alcyonacea off the northeast coast of the United States. p. 279-296. In: A., Freiwald and J.M., Roberts (eds.) Cold-water Corals and Ecosystems, Springer-Verlag, Berlin Heidelberg.
Watling, L., France, S.C., Pante, E. & Simpson, A. (2011). Biology of deep-water octocorals. Advances in Marine Biology, 60, 41–122.http://dx.doi.org/10.1016/B978-0-12-385529-9.00002-0.CrossRefGoogle Scholar
White, H.K., Hsing, P.Y., Cho, W., Shank, T.M., Cordes, E.E., Quattrini, A.M., Nelson, R.K., Camilli, R., Demopoulos, A., German, C.R., Brooks, J.M., Roberts, H.H., Shedd, W., Reddy, C.M., Fisher, C.R. (2012)a. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico. Proceedings of the National Academy of Sciences 109, 20303-20308.Google Scholar
White, M., Dorschel, B. (2010). The importance of the permanent thermocline to the cold water coral carbonate mound distribution in the NE Atlantic. Earth and Planetary Science Letters 296, 395-402.CrossRefGoogle Scholar
White, M., Wolff, G.A., Lundalv, T., et al. (2012)b. Cold-water coral ecosystem (Tisler Reef, Norwegian Shelf) may be a hotspot for carbon cycling. Marine Ecology Progress Series 465, 11-23.Google Scholar
Williams, B., Risk, M.J., Ross, S.W., Sulak, K.J. (2006). Deepwater Antipatharians: proxies of environmental change. Geology 34, 773–776.CrossRefGoogle Scholar
Wilson, J.B. (1979). The distribution of the coral Lophelia pertusa (L.) [L. prolifera (Pallas)] in the north-east Atlantic. Journal of the Marine Biological Association of the United Kingdom 59, 149-164.Google Scholar
Yesson, C., Taylor, M.L., Tittensor, D.P., Davies, A.J., Guinotte, J., Baco, A., Black, J., Hall-Spencer, J.M., Rogers, A.D. (2012). Global habitat suitability of cold-water octocorals. Journal of Biogeography 39, 1278-1292.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Cold-Water Corals
  • Edited by United Nations
  • Book: The First Global Integrated Marine Assessment
  • Online publication: 18 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781108186148.052
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Cold-Water Corals
  • Edited by United Nations
  • Book: The First Global Integrated Marine Assessment
  • Online publication: 18 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781108186148.052
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Cold-Water Corals
  • Edited by United Nations
  • Book: The First Global Integrated Marine Assessment
  • Online publication: 18 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781108186148.052
Available formats
×