Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T23:00:22.322Z Has data issue: false hasContentIssue false

Division 36.G - Arctic Ocean

from Chapter 36 - Overview of Marine Biological Diversity

Published online by Cambridge University Press:  18 May 2017

United Nations
Affiliation:
Division for Ocean Affairs and the Law of the Sea, Office of Legal Affairs
Get access

Summary

Introduction

State

The Central Arctic Ocean and the marginal seas such as the Chukchi, East Siberian, Laptev, Kara, White, Greenland, Beaufort, and Bering Seas, Baffin Bay and the Canadian Archipelago (Figure 36G.1) are among the least-known basins and bodies of water in the world ocean, because of their remoteness, hostile weather, and the multi-year (i.e., perennial) or seasonal ice cover. Even the well-studied Barents and Norwegian Seas are partly ice covered during winter and information during this period is sparse or lacking. The Arctic has warmed at twice the global rate, with sea-ice loss accelerating (Figure 36G.2, ACIA, 2004; Stroeve et al., 2012, Chapter 46 in this report), especially along the coasts of Russia, Alaska, and the Canadian Archipelago (Post et al., 2013). Changes in ice cover, ocean warming, altered salt stratification, alterations in water circulation and fronts, and shifts in advection patterns show that oceans within the Arctic are subjected to significant change, and may face even more change in future (Wassmann, 2011 and references within). The Central Arctic Ocean and the marginal seas are home to a diverse array of algae and animals, some iconic (e.g., polar bear), some obscure, and many yet to be discovered. Physical characteristics of the Arctic, important for structuring biodiversity, include extreme seasonality resulting in short growing seasons and annual to multi-annual ice cover. The Central Arctic Ocean has a deep central basin (>4000 m depth) surrounded by the most extensive shelves of all the world's oceans, and is characterized by extensive (albeit declining) ice cover for much of the year. This offers a vast number of different habitats created by the shape of the seabed, latitude, history of glaciations, proximity to the coastline and rivers, oceanic currents, and both the seabed and the ice as a substrate. Barriers for dispersal, such as the ice plug in the Canadian High Arctic, effectively separate stocks of some marine mammals (Dyke et al., 1996). Polynyas, which are open water areas surrounded by ice, provide important foraging and refuge areas and contribute to Arctic biodiversity. Differences in ice cover, mixing between warm- and cold-water currents, or currents with different nutrient content, create a mosaic of nutrient-poor areas which is reflected in species diversity (ABA, 2014, Figure 36G.3).

Type
Chapter
Information
The First Global Integrated Marine Assessment
World Ocean Assessment I
, pp. 705 - 728
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, A.J., Mackenzie, F.T. (2012). Revisiting four scientific debates in ocean acidification research. Biogeosciences 9: 893–905.Google Scholar
Andersson, A.J., Gledhill, D. (2013). Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annual Reviews of Marine Science 5, 321–48.Google Scholar
ABA (2014). Arctic Biodiversity Assessment, full Scientific Report. The Conservation of Arctic Flora and Fauna (CAFF). 673 pp. http://www.arcticbiodiversity.is/the-report
ACIA (2004). Impacts of a Warming Arctic. Cambridge University Press. p 140 http://www.amap.no/arctic-climate-impact-assessment-acia
AMAP (2009). Oil and gas activities in the Arctic: effects and potential effects. Arctic Monitoring and Assessment Program, Oslo.
AMAP (2011). Mercury in the Arctic. Arctic Monitoring and Assessment Program, Oslo.
AMSA (2009). Arctic Marine Shipping Assessment 2009 Report. Arctic Council.
AMSA IIc ((2013). AMAP/CAFF/SDWG Identification of Arctic marine areas of heightened ecological and cultural significance: Arctic Marine Shipping Assessment. Oslo. 114 pp.
Archambault, P., Snelgrove, P.V.R., Fisher, J.A.D., Gagnon, J.-M., Garbary, D.J., et al. (2010). From Sea to Sea: Canada's Three Oceans of Biodiversity. PLoS ONE 5(8, e12182).Google Scholar
Barry, T., Price, C. (2012). The Arctic Species Trend Index 2011. Key findings from an in-depth look at marine species and development of spatial analysis techniques. CAFF Assessment Series No. 9.Google Scholar
Bluhm, B.A., Gebruk, A.V., Gradinger, R., Hopcroft, R.R., Huettmann, F., Kosobokova, K.N., Sirenko, B.I. and Weslawski, J.M. (2011). Arctic marine biodiversity: An update of species richness and examples of biodiversity change. Oceanography 24(3):232–248, http://dx.doi.org/10.5670/ oceanog.2011.75.Google Scholar
Boertmann, D., Mosbech, A., 2011. Eastern Baffin Bay- A strategic environmental impact assessment of hydrocarbon activities. Scientific Report from Danish Centre for Environment and Energy, No 9. Aarhus University.
CAFF (2013). Arctic Biodiversity Assessment: Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri. http://arcticlcc.org/assets/resources/ABA2013Science.pdf
Christiansen, J.S., Mecklenburg, C.W., Karamushko, O.V. (2014). Arctic marine fishes and their fisheries in light of global change. Global Change Biology 20, 352–359.Google Scholar
Darnis, G., Robert, D., Pomerleau, C. et al. (2012). Current state and trends in Canadian Arctic marine ecosystems: II. Heterotrophic food web, pelagic-benthic coupling, and biodiversity. Climate Change 115, 179-205.Google Scholar
Dyke, A.S., Hooper, J., Savelle, J.M. (1996). A history of sea ice in the Canadian Arctic Archipelago based on postglacial remains of the bowhead whale (Balaena mysticetus). Arctic 49, 235–255.Google Scholar
Fischbach, A.S. et al. (2009). Enumeration of Pacific walrus carcasses on the beaches of the Chukchi Sea in Alaska following a mortality event, September 2009 (USGS, Washington, DC).
Fuller, S.D., Murillo Perez, F.J., Wareham, V., Kenchington, E. (2008). Vulnerable Marine Ecosystems dominated by deep-water corals and sponges in the NAFO Conventional Area. NAFO Scientific Council Research Document 08/22, N5524, 24p.Google Scholar
Grebmeier, J.M., Barry, J.P. (2007). Benthic processes in polar polynyas. Smith, W.O. and Barber, D.G. (Eds.) Polynas: Windows to the World.262-290.
IUCN (2013). The IUCN Red List of Threatened Species. Version 2013.2. http://www.iucnredlist.org. Downloaded on 21 November 2013.
Ji, R.B., Jin, M.|B. and Varpe. (2013). Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Global Change Biology 19, 734-741.Google Scholar
Jørgensen, L.L., Planque, B., Thangstad, T.H., Certain, G. (2015). Vulnerability of megabenthic species to trawling in the Barents Sea. ICES Journal of Marine Research, doi: 10.1093/icesjms/fsv107.
Jørgensen, O.A., Tendal, O.S., Arboe, N.H. (2013). Preliminary mapping of the distribution of corals observed off West Greenland as inferred from bottom trawl surveys 2010-2012. Scientific Council Meeting, June 2013. NAFO SCR Doc. 13/007, Serial No. N6156
Kelly, B.P., Whiteley, A., Tallmon, D. (2010). The Arctic melting pot. Nature 468, 891.Google Scholar
Kinnard, C., Zdanowicz, C.M., Fisher, D.A., Isaksson, E., Vernal, A. de, Thompson, L.G. (2011). Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature, 479 (7374), 509-512.Google Scholar
NASA/Goddard Scientific Visualization Studio, (2014). “Arctic sea ice hit its annual minimum on Sept. 17, 2014”. Digital image taken from: NASA News Release 2014 Arctic Sea Ice Minimum Sixth Lowest on Record. NASA, http://svs. gsfc.nasa.gov/cgi-bin/details.cgi?aid=4215 accessed 21/94/15.
OBIS (2015). Pan-Arctic map showing the number of species in a gridded view of hexagonal cells [Map] (Available: Ocean Biogeographic Information System. Intergovernmental Oceanographic Commission of UNESCO. http://www.iobis.org. Accessed: 2015-04-21).
Piepenburg, D., Archambault, P., Ambrose, W.|G. Jr., Blanchard, A., Bluhm, B.|A., Carroll, M.|L., Conlan, K., Cusson, M., Feder, H.|M., Grebmeier, J.|M., Jewett, S.|C., Lévesque, M., Petryashev, V.V., Sejr, M.|K., Sirenko, B., Włodarska-Kowalczuk, M. (2011). Towards a pan-Arctic inventory of the species diversity of the macro- and megabenthic fauna of the Arctic shelf seas. Marine Biodiversity 41, 51-70.Google Scholar
Puig, P., Canals, M., Company, J.B., Martín, J., Amblas, D., Lastras, G., Palanques, A., Calafat, A.M. (2012). Ploughing the deep sea floor. Nature 489, 286-289.Google Scholar
Post, E., Bhatt, U.S., Bitz, C.M., Brodie, J.F., Fulton, T.L., Hebblewhite, M., Kerby, J., Kutz, S.J., Stirling, I., Walker, D.A. (2013). Ecological consequences of sea-ice decline. Science 341, 519-524.Google Scholar
Renaud, P.E., Webb, T.J., Bjørgesæter, A., Karakassis, I. and others. (2009). Continental-scale patterns in benthic invertebrate diversity: insights from the MacroBen database. Marine Ecology Progress Series 382, 239−252.Google Scholar
Lynghammar, A., Christiansen, J.S., Mecklenburg, C.W., Karamushko, O.V., Møller, P.R., Gallucci, V.F. (2013). Species richness and distribution of chondrichthyan fishes in the Arctic Ocean and adjacent seas. Biodiversity, 14, 57-66.Google Scholar
Stroeve, J.C., Serreze, M.C., Holland, M.M., Kay, J.E., Malanik, J., Barrett, A.P. (2012). The Arctic's rapidly shrinking sea ice cover: a research synthesis. Climatic Change 110, 1005–1027.Google Scholar
Søreide, J.E., Leu, E., Berge, J., Graeve, M., Falk-Petersen, S. (2010). Timing of blooms, algal food quality and Calanus glacialisreproduction and growth in a changing Arctic. 11, 3154 – 3163.
Tendal, O.S., Jørgensbye, M.I.Ø., Kenchington, E., Yashayev, I., Best, M. (2013) Greenlands first living deep-water coral reef. ICES Insight 50:6 ppGoogle Scholar
Klitgaard, A.B., Tendal, O.S. (2004) Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Progress in oceanography 61:57-98Google Scholar
Wassmann, P. (2011). Arctic marine ecosystems in an era of rapid climate change. Progress in Oceanography 90, 1-4. Primary producersGoogle Scholar
Abelmann, A. (1992). Diatom assemblages in Arctic sea ice - indicator for ice drift pathways. Deep-Sea Research 39, 525-538.Google Scholar
Adl, S.M., Simpson, A.G.B., Lane, C.E., et al. (2012). The revised classification of Eukaryotes. Journal of Eukaryotic Microbiology, 59, 429-493.Google Scholar
Apollonio, S. (1965). Chlorophyll in arctic sea ice. Arctic, 18, 118-122.Google Scholar
Bluhm, B.A., Gebruk, A.V., Gradinger, R., Hopcroft, R.R., Huettmann, F., Kosobokova, K.N., Sirenko, B.I., Weslawski, J.M. (2011). Arctic marine biodiversity: An update of species richness and examples of biodiversity change. Oceanography 24, 232-240.Google Scholar
Campana, G.L., Zacher, K., Fricke, A., Molis, M., Wulff, A., Quartino, M.L., Wiencke, C. (2009). Drivers of colonization and succession in polar benthic macro- and microalgal communities. Botanica Marina 52, 655-667.Google Scholar
Carmack, E.C., Swift, J.H. (1990). Some aspects of the large-scale physical oceanography of the Arctic Ocean influencing biological distribution, in Medlin, K., Priddle, J. (Eds.): Polar marine diatoms. British Antarctic Survey, Cambridge, England, pp. 35-46.
Cleve, P.T. (1873). On diatoms from the Arctic Sea. Bihang till Kungleg Svenska Vetenskaps- Akademiens Handlingar 1, 1-28.
Cota, G.F., Legendre, L., Gosselin, M., Ingram, R.G. (1991). Ecology of bottom ice algae:, I. Environmental controls and variability. Journal of Marine Systems 2, 257-277.Google Scholar
Daniëls, F.J.A., Gillespie, L.J., Poulin, M., Afonina, O.M., Alsos, I.G., Bültmann, H., Ickert-Bond, S., Konstantinova, N.A., Lovejoy, C., Väre, H., Westergaard, K.B. (2013). Chapter 9. Plants, in: Meltofte, H. (ed.) 2013. Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri, pp. 311-353.
Degerlund, M., Eilertsen, H.C. (2009). Main species characteristics of phytoplankton spring blooms in NE Atlantic and Arctic Waters (68-80° N). Estuaries and coasts 33, 242-269.Google Scholar
De Sève, M.A., Dunbar, M.J. (1990). Structure and composition of ice algal assemblages from the Gulf of St. Lawrence, Magdalen Islands Area. Canadian Journal of Fisheries and Aquatic Sciences 47, 780-788.Google Scholar
Diaz-Pulido, G., McCook, L. (2008), ‘Macroalgae (Seaweeds),’ in Chin., A. (ed) The State of the Great Barrier Reef On-line, Great Barrier Reef Marine Park Authority, Townsville. http://www.gbrmpa.gov.au/corp_site/info_services/publications/sotr/downloads/SORR_Macroalgae.pdf. Viewed on (25.01.14)
Dunbar, M.J., Acreman, J. (1980). Standing crops and species composition of diatoms in sea ice from Robeson Channel to the Gulf of St. Lawrence. Ophelia 19, 61-72.Google Scholar
Ehrenberg, C.G. (1841). Einen Nachtrag zu dem Vortrage über Verbreitung und Einfluβ des mikroskopischen Lebens in Süd- und Nord-Amerika. D., Akad.Wiss., Berlin, Monatsber, pp. 202-207.
Fricke, A., Molis, M., Wiencke, C., Valdivia, N., Chapman, A.S. (2008). Natural succession of macroalgal-dominated epibenthic assemblages at different water depths and after transplantation from deep to shallow water on Spitsbergen. Polar Biology 31, 1191-1203.Google Scholar
Gosselin, M., Levasseur, M., Wheeler, P.A., Horner, R.A., Booth, B. (1997). New measurements of phytoplankton and ice algae production in the Arctic Ocean. Deep- Sea Research II 44, 1623-1644.Google Scholar
Gradinger, R. (1999). Vertical fine structure of the biomass and composition of algal communities in Arctic pack ice. Marine Biology 133, 745-754.Google Scholar
Grainger, E.H. (1977). The annual nutrient cycle in sea-ice, in: Dunbar, M.J. (ed.): Polar Oceans. Arctic Institute of North America, Calgary, pp. 285-299.
Gutt, J. (2001). On the direct impact of ice on marine benthic communities, a review. Polar Biology, 24, 553-564.Google Scholar
Harrison, W.G., Børsheim, K.Y., Li, W.K.W., Maillet, G.L., Pepin, P., Sakshaug, E., Skogen, M., Yeats, P.A. (2013). Phytoplankton production and growth regulation in the Subarctic North Atlantic: A Comparative study of the Labrador Sea-Labrador/ Newfoundland shelves and Barents/Norwegian/Greenland seas and shelves. Progress in Oceanography 114, 26-45.Google Scholar
Hasle, G.R., Syvertsen, E.E. (1996). Marine diatoms, in: Thomas, C.R. (ed.): Identifying marine diatoms and dinoflagellates. Academic Press, Inc., San Diego, California, pp. 5-385.
Hegseth, E.N., Sundfjord, A. (2008). Intrusion and blooming of Atlantic phytoplankton species in the high Arctic. Journal of Marine Systems 74, 108-119.Google Scholar
Horner, R. 1985. Ecology of sea ice microalgae, in Horner, R. (ed.): Sea ice biota, CRC Press, Florida, pp. 83-103.
Horner, R., Ackley, S.F., Dieckmann, G.S., Gulliksen, B., Hoshiai, T., Legendre, L., Melnikov, I.|A., Reeburgh, W.S., Spindler, M., Sullivan, C.W. (1992). Ecology of sea ice biota. 1. Habitat, terminology, and methodology. Polar Biology 12, 417-427.Google Scholar
Horner, R., Schrader, G.C. (1982). Relative contributions of ice algae, phytoplankton and benthic microalgae to primary production in nearshore regions of Beaufort Sea. Arctic 35, 485-503.Google Scholar
Horner, R., Syvertsen, E.E., Thomas, D.P., Lange, C. (1988). Proposed terminology and reporting units for sea ice algal assemblages. Polar Biology 8, 249-253.Google Scholar
Hsiao, S.I.C. (1980). Community structure and standing stock of sea ice microalgae in the Canadian Arctic. Arctic 33, 768–793.Google Scholar
Joo, H.M., Lee, S.H., Jung, S.W., Dahms, H.-U., Lee, J.H. (2012). Latitudal variation of phytoplankton communities in the western Arctic Ocean. Deep-Sea Research II 81-84, 3-17.Google Scholar
Jueterbock, A., Tyberghein, L., Verbruggen, H., Coyer, J.A., Olsen, J.L., Hoarau, G. (2013). Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecology and Evolution 3, 1356-1373.Google Scholar
Katsuki, K., Takahashi, K., Onodera, J., Jordan, R.W., Suto, I. (2009). Living diatoms in the vicinity of the North Pole, summer 2004. Micropalentology 55, 137-170.Google Scholar
Kilias, E., Wolf, C., Nöthig, E.-M., Peeken, I., Metfies, K. (2013). Protist distribution in the western Fram Strait in summer 2010, based on 454-pyrosequencing of 18S rDNA. Journal of Phycology 49, 996-1010.Google Scholar
Kjellmann, F.R. (1883). The algae of the Arctic Sea: a survey of the species together with an exposition of the general characters and development of the flora. Kungleg Svenska Vetenskaps-Akademiens Handlingar 20(5), 1-351. 31 plates.Google Scholar
Kraberg, A.C., Druzhkova, E., Heim, B., Loeder, M.J.G., Wiltshire, K.H. (2013). Phytoplankton community structure in the Lena Delta (Siberia, Russia) in relation to hydrography. Biogeosciences 10, 7263-7277.Google Scholar
Krembs, C., Gradinger, R., Spindler, M. (2002). Implication of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice. Journal of Experimental Marine Biology and Ecology 243, 55-80.Google Scholar
Li, W.K.W., McLaughlin, F.A., Loveloy, C., Carmack, E.C. (2009). Smallest algae thrive as the Arctic Ocean freshens. Science 326, 539-539.Google Scholar
Lovejoy, C., Legendre, L., Martineau, M.-J., Bâcle, J., von Quillfeldt, C.H. (2002). Distribution of phytoplankton and other protists in the North Water Polynya (Arctic). Deep-Sea Research II 49, 5027-5047.Google Scholar
Lovejoy, C., Potvin, M. (2011). Microbial eukaryotic distribution in a dynamic Beaufort Sea and the Arctic Ocean. Journal of Plankton Research 33, 431-444.Google Scholar
Lüning, K., (1990). Seaweeds. Their environment, biography, and ecophysiology. John Wiley&Sons, Inc., New York.
Meguro, H., Ito, K., Fukushima, H. (1967). Ice flora (bottom type): a mechanism of primary production in polar seas and the growth of diatoms in sea ice. Arctic 20, 114-133.
Melnikov, I.A. (1997). The Arctic Sea ice ecosystem. Gordon and Branch Science Publisher, Amsterdam.
Melnikov, I.A., Kolosova, E.G., Welch, H.E., Zhitina, L.S. (2002). Sea ice biological communities and nutrient dynamics in the Canada Basin of the Arctic Ocean. Deep Sea Research I, 49, 1623–1649.Google Scholar
Mueter, F.J., Reist, J.D., Majewski, A.R., Sawatzky, C.D., Christiansen, J.S., Hedges, K.J., et al.(2013). Marine fishes of the Arctic., In Arctic Report Card: Update for 2013:Tracking Recent Environmental Changes. Available online at: http://www.arctic.noaa.gov/reportcard/marine_fish.html.
Niemi, A., Michel, C., Hille, K., Poulin, M. (2011). Protist assemblages in winter sea ice: setting the stage for the spring ice algal bloom. Polar Biology 34, 1803-1817.Google Scholar
Pedersen, P.M. (2011). Grønlands havalger. Forlaget Epsilon.dk., Denmark.
Poulin, M., Daugbjerg, N., Gradinger, R., Ilyash, L., Ratkova, T., von Quillfeldt, C.H. (2010). The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: A first-attempt assessment Marine Biodiversity. Marine Biodiversity 41, 13-28.Google Scholar
Rat'kova, T.N., Wassmann, P. (2002). Seasonal variation and spatial distribution of phyto-and protozooplankton in the central Barents Sea. Journal of Marine Systems 38, 47-75.Google Scholar
Rey, F. (1986). Planteplankton-artssammensetning i Barentshavet i januar 1985, in Hassel, A., Loeng, H. and Skjoldal, H.R. (Eds.): Marinøkologiske undersøkelser i Barentshavet i januar 1985. Report number FO 8604, Havforskningsinstituttet i Bergen, Appendix B, 3 pp.
Robineau, B., Legendre, L., Kishino, M., Kudoh, S. (1997). Horizontal heterogeneity of microalgae biomass in the first-year ice of Saroma-Ko Lagoon (Hokaido, Japan). Journal of Marine Systems 11, 81-91.Google Scholar
Rosenvinge, L.K. (1898). Deuxième mémoire sur les algues marines du Groenland. Meddelser om Grønland 20, 1-125.Google Scholar
Sagen, H., Dalpadado, P. (2004). Emiliania huxleyi-oppblomstringen i Barentshavet sommeren 2003 observert ved hjelp av satellitt. Fisken og havet, særnummer 2, 96-97.Google Scholar
Sakshaug, E. (2004). Primary and secondary production in the Arctic Sea, in Stein, R., Macdonald, R.W. (Eds): The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp. 57-81.
Schandelmeier, L., Alexander, V. (1981). An analysis of the influence of ice on spring phytoplankton population structure in the southeast Bering Sea. Limnology and Oceanography 26, 935-943.Google Scholar
Sørensen, N., Daugbjerg, N., Gabrielsen, T.M. (2012). Molecular diversity and temporal variation of picoeukaryotes in two Arctic fjords, Svalbard. Polar Biology 35, 519-533.Google Scholar
Sukhanova, I.N., Flint, M.V., Pautova, L.A., Stockwell, D.A., Grebmeier, J.M., Sergeeva, V.M. (2009). Phytoplankton of the western Arctic in the spring and summer of 2002: Structure and seasonal changes. Deep-Sea Research II 56, 1223-1236.Google Scholar
Syvertsen, E.E. (1991). Ice algae in the Barents Sea: types of assemblages, origin fate and role in the ice-edge phytoplankton bloom. Polar Research 10, 277–288.Google Scholar
Terrado, R., Scarcella, K., Thaler, M., Vincent, W.F., Lovejoy, C. (2012). Small phytoplankton in Arctic seas: vulnerability to climate change. Biodiversity, doi:10.108 0/14888386.2012.704839.
Tonkes, H. (2012). Phytoplankton composition of central Arctic Ocean in summer 2011: with special emphasis on pico- and nanoplankton. Major thesis, Wageningen University.
Tremblay, J.-E., Robert, D., Varela, D., Lovejoy, C., Darnis, G., Nelson, R.J., Sastri, A. (2012). Current state and trends in Canadian Arctic marine ecosystems: I Primary production. Climate Change, doi: 10.1007/s10584-012-0496-3.
von Quillfeldt, C.H. (1996). Ice algae and phytoplankton in north Norwegian and arctic waters: species composition, succession and distribution. Ph D Thesis, University of Tromsø.
von Quillfeldt, C.H. (1997). Distribution of diatoms in the Northeast Water Polynya, Greenland. Journal of Marine Systems 10, 211-240.Google Scholar
von Quillfeldt, C.H. (2000). Common diatom species in arctic spring blooms: their distribution and abundance. Botanica Marina 43, 499-516.Google Scholar
von Quillfeldt, C.H., Ambrose, W.G., Clough, L.M. (2003). High number of diatom species in first year ice from the Chukchi Sea. Polar Biology 26, 806-818.Google Scholar
Vørs, N., 1993. Heterotrophic amoebae, flagellates and heliozoan from Arctic marine waters (North West Territories, Canada and West Greenland). Polar Biology 13, 113–126.Google Scholar
Wassmann, P., Reigstad, M., Haug, T. Rudels, B., Carroll, M.L., Hop, H., Gabrielsen, G.W., Falk-Petersen, S., Denisenko, S.G., Arashkevich, E., Slagstad, D., Pavlova, O. (2006). Food webs and carbon flux in the Barents Sea. Progress in Oceanography. 71, 232-287.Google Scholar
Wulff, A., Iken, K., Quartino, L.M., Al-Handal, A., Wiencke, C., Clayton, M.N. (2011). Biodiversity, biography and zonation of marine benthic micro-and macroalgae in the Arctic and the Antarctic, in: Wiencke, C. (ed.) Biology of polar benthic algae. De Gruyter, Berlin, pp.23-52.
Zacher, K., Rautenberger, R., Hanelt, D., Wulff, A., Wiencke, C. (2011). The abiotic environment of polar marine benthic algae, in: Wiencke, C. (ed.) Biology of polar benthic algae. De Gruyter, Berlin, pp. 9-21.
Zheng, S., Wang, G., Zhang, F., Cai, M., He, J. (2011). Dominant diatom species in the Canada Basin in summer 2003, a reported serious melting season. Polar Record 47, 244-261. ZooplanktonGoogle Scholar
Deibel, D., Daly, K.L. (2007). Zooplankton processes in Arctic and Antarctic polynas. In: Smith, W.O. and, D.G. Barber (Eds.) Polynas: Windows to the World. Elsevier. pp. 271-332.
Gradinger, R., Blum, B.A., Hopcroft, R.R., Gebruk, A.V., Kosobokova, K., Sirenko, B., Weslawski, J.M. (2010). Marine life in the Arctic. In: McIntyre, A.D. (ed.) Life in the World's Oceans. Blackwell Publishing, Ltd. pp. 183-202.
Hirche, H.-J., Kosobokova, K.N. (2011). Winter studies of zooplankton in Arctic Seas: the Stofjord (Svalbard) and adjacent ice-covered Barents Sea. Marine Biology 158, 2359-2376.Google Scholar
Hop, H., Mundy, C.H., Gosselin, M., Rossnagel, A.L., Barber, D.G. (2011). Zooplankton boom and ice amphipod bust below melting sea ice in the Amundsen Gulf, Arctic Canada. Polar Biology 34, 1947-1958.Google Scholar
Hopcroft, R.R., Kosobokova, K.N., Pinchuk, A.I. (2010). Zooplankton community patterns in the Chukchi Sea during summer 2004. Deep-Sea Research II 57, 27-39.Google Scholar
Kosobokova, K.N., Hopcroft, R.R., Hirche, H.-J. (2011). Patterns of zooplankton diversity through the depths of the Arctic's central basins. Marine Biodiversity 41, 29-50.Google Scholar
Kraft, A., Nöthig, E.M., Bauerfeind, E., Wildish, D.J., Pohle, G.W., Bathmann, U.V., Beszczynska-Möller, A,. Klages, M. (2013). First evidence of reproductive success in a southern invader indicates possible community shifts among Arctic zooplankton. Marine Ecology Progress Series 493, 291-296.Google Scholar
Longhurst, A.R. (2007). Ecological Geography of the Sea. Academic Press, London.
Longhurst, A.R., Harrison, W.G. (1989). The biological pump: profiles of plankton production and consumption in the upper ocean. Progress in Oceanography 22, 47-123.Google Scholar
Rabindranath, A., Danse, M., Falk-Petersen, S., Wold, A., Wallace, M.I., Berge, J., Brierly, A.S. (2011). Seasonal and diel vertical migration of zooplankton in the High Arctic during the autumnal midnight sun of 2008. Marine Biodiversity 41, 365-382.
Raskoff, K., Hopcroft, R.R., Kosobokova, K.N., Purcell, J.E.,Youngbluth, M. (2010). Jellies under ice: ROV observations from the Arctic 2005 hidden ocean expedition. Deep-Sea Research II 57, 111–126.Google Scholar
Stammerjohn, S.E., Massom, R., Rind, D., Martinson, D.G. (2012). Regions of rapid sea ice change: an inter-hemispheric seasonal comparison. Geophysical Research Letters 39:L06501, doi:10.1029/2012GL050874.Google Scholar
Walkusz, W., Paulic, J.E., Kwasniewski, S., Williams, W.J., Wong, S., Pabst, M.H. (2010). Distribution, diversity and biomass of summer zooplankton from the coastal Canadian Beaufort Sea. Polar Biology 33, 321-335. BenthosGoogle Scholar
Anderson, J.T. and Gregory, R.S. (2000). Factors regulating survival of northern cod (NAFO 2J3KL) during their first three years of life. ICES Journal of Marine Science 57:349-359.Google Scholar
Auster, P. (1998). A conceptual model of the impacts of fishing gear on the integrity of fish habitat. Conservation Biology 1 2:1198-1203.Google Scholar
Bluhm, B.A., Ambrose, W.G., Bergmann, M., Clough, L.M., Gebruk, A.V., Hasemann, C., Iken, K., Klages, M., MacDonald, I.R., Renaud, P.E., Schewe, I., Soltwedel, T., Wlodarska-Kowalczuk, M. (2011a). Diversity of the arctic deep-sea benthos. Marine Biodiversity 41:87–107. doi: 10.1007/s12526-010-0078-4Google Scholar
Bluhm, B.A., Gradinger, R., Hopcroft, R.R. (2011b). Editorial - Arctic Ocean Diversity: synthesis. Marine Biodiversity 41:1–4. doi: 10.1007/s12526-010-0080-x
Boetius, A., Albrecht, S., Bakker, K., Bienhold, C., Felden, J., Fernández-Méndez, M., Hendricks, S., Katlein, C., Lalande, C., Krumpen, T., Nicolaus, M., Peeken, I., Rabe, B., Rogacheva, A., Rybakova, E., Somavilla, R., Wenzhöfer, F., Polarstern, R.V. (2013) Export of Algal Biomass from the Melting Arctic Sea Ice. Science 22 Vol. 339 no. 6126 pp. 1430-1432. DOI: 10.1126/science.1231346.Google Scholar
Collie, J., Escanero, G. and Valentine, P.C. (1997). Effects of bottom fishing on the benthic megafauna of Georges Bank. Marine Ecology Progress 155: 159-172.Google Scholar
Collie, J.S., Hall, S.J., Kaiser, M.J., Poiner, I.R. (2000). A quantitative analysis of fishing impacts on shelf-sea benthos. Journal of Animal Ecology 69: 785-798.Google Scholar
FAO (2009). International Guidelines for the Management of Deep-sea Fisheries in the High Seas. Rome, 73p.
Hall-Spencer, J.M. and Moore, P.G. (2000). Scallop dredging has profound long-term impacts on maerl habitat. ICES Journal of Marine Science 57: 1407-1415.Google Scholar
Jones, J.B. (1992). Environmental impact of trawling on the seabed: a review. New Zealand Journal of Marine and Freshwater Research 26: 59-67.Google Scholar
Kaiser, M.J., Rogers, S.I., and Ellis, J. (1999). Importance of habitat complexity for demersal fish assemblages. American Fisheries Society Symposium 22:212-223.Google Scholar
Kortsch, S., Primicerio, R., Beuchel, F., Renaud, P.E., Rodrigues, J., Jørgen Lønne, O., Gulliksen, B. (2012). Climate-driven regime shifts in Arctic marine benthos. Proceedings of the National Academy of Sciences 109:14052–14057, doi: 10.1073/ pnas.1207509109.Google Scholar
Lindholm, J.B., Auster, P.J., Ruth, M., and Kaufman, L. (2001). Modeling the effects of fishing and implications for the design of marine protected areas: juvenile fish responses to variations in seafloor habitat. Conservation Biology 15:424-437.Google Scholar
Linehan, J.E. (2001). Predation risk of age-0 cod (Gadus) relative to depth and substrate in coastal waters. Journal of Experimental Marine Biology and Ecology 261:25-44.Google Scholar
Lindholm, J.B., Auster, P.J., and Kaufman, L.S. (1999). Habitat-mediated survivorship of juvenile (0-year) Atlantic cod Gadus morhua. Marine Ecology Progress Series 180:247-255.Google Scholar
Link, J.S., Yemane, D., Shannon, L.J., Coll, M., Shin, Y.J., Hill, L., Borges, M.F., (2010). Relating marine ecosystem indicators to fishing and environmental drivers: an elucidation of contrasting responses. ICES Journal of Marine Science 67: 787-795.Google Scholar
Moritz, C., Gravel, D., Savard, L., McKindsey, C.W., Brêthes, J.-C., Archambault, P. (2015). No more detectable fishing effect on Northern Gulf of St. Lawrence benthic invertebrates. ICES Journal of Marine Science, doi: 10.1093/icesjms/fsv124.
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., Torres, F., (1998). Fishing down marine food webs. Science 279: 860-863.Google Scholar
Piepenburg, D., Archambault, P., Ambrose, W.G., Blanchard, A.L., Bluhm, B.A., Carroll, M.L., Conlan, K.E., Cusson, M., Feder, H.M., Grebmeier, J.M., Jewett, S.C., Lévesque, M., Petryashev, V.V., Sejr, M.K., Sirenko, B.I., Wlodarska-Kowalczuk, M. (2011). Towards a pan-Arctic inventory of the species diversity of the macro- and megabenthic fauna of the Arctic shelf seas. Marine Biodiversity 41:51–70. doi: 10.1007/s12526-010-0059-7.Google Scholar
Snelgrove, P.V.R. (2010). Discoveries of the Census of Marine Life: Making Ocean Life Count. Cambridge University Press.
Stoner, A.W. and Titgen, R.H. (2003). Biological structures and bottom type influence habitat choice made by Alaska flatfishes. Journal of Experimental Marine Biology and Ecology 292 : 43-59.Google Scholar
Thrush, S.F., Hewitt, J., Cummings, V.J., and Dayton, P.K. (1995). The impact of habitat disturbance by scallop dredging on marine benthic communities: What can be predicted from the results of experiments? Marine Ecology Progress Series. 129: 141-150.Google Scholar
Thrush, S.F., Hewitt, J.E., Cumming, V.J., Dayton, P.K., Cryer, M., Turner, S.J., Funnell, G.A., Budd, R., Milburn, C.J. and Wilkinson, M.R. (1998). Disturbance of the marine benthic habitat by commercial fishing: impacts at the scale of the fishery. Ecological Applications 8 866-879.Google Scholar
Thrush, S.F., Schultz, D., Hewitt, J.E. and Talley, D. (2002). Habitat structure in softsediment environments and abundance of juvenile snapper Pagrus auratus. Marine Ecology Progress Series. 245 273-280.Google Scholar
Tillin, H.M., Hiddink, J.G., Jennings, S., Kaiser, M.J. (2006). Chronic bottom trawling alters the functional composition of benthic invertebrate communities on a seabasin scale. Marine Ecology Progress Series 318: 31-45.Google Scholar
Thurstan, R.H., Brockington, S., Roberts, C.M. (2010). The effects of 118 years of industrial fishing on UK bottom trawl fisheries. Nature Communications 1: 10.1038/ncomms1013.Google Scholar
Tupper, M. and Boutillier, R.G. (1995a). Size and priority at settlement determine growth and competitive success of newly settled Atlantic cod. Marine Ecology Progress Series 118 295-300.Google Scholar
Tupper, M. and Boutillier, R.G. (1995b). Effects of habitat on settlement, growth and postsettlement survival of Atlantic cod (Gadus mothua). Canadian Journal of Fisheries and Aquatic Sciences 52 1834-1841.Google Scholar
Wassmann, P., Duarte, C., Agustí, S. (2011) Footprints of climate change in the Arctic Marine Ecosystem. Global Change Biology 17:1235–1249. doi: 10.1111/j.1365- 2486.2010.02311.x.Google Scholar
Watling, L. and Norse, E.A. (1998). Disturbance of the sea bed by mobile fishing gear: a comparison to forest clearcutting. Conservation Biology 12: 1180-1197.Google Scholar
Wilson, W.J., Ormseth, O.A. (2009). A new management plan for the Arctic waters of the United States. Fisheries 34:555–558.Google Scholar
Zhou, S., Smith, A.D.M., Punt, A.E., Richardson, A.J., Gibbs, M., Fulton, E.A., Pascoe, S., Bulman, C., Bayliss, P., Sainsbury, K. (2010). Ecosystem-based fisheries management requires a change to the selective fishing philosophy. Proceedings of the National Academy of Sciences of the United States of America 107: 9485-9489. Nekton (including demersal and holopelagic vertebrates and invertebrates).
Anderson, O.F., Clark, M.R. (2003) Analysis of bycatch in the fishery for orange roughy, Hoplostethus atlanticus, on the South Tasman Rise. Marine&Freshwater Research 54: 643–652.Google Scholar
Andriashev, A.P., Mukhamediarov, B.F., Pavshtiks, E.A. (1980) On dense concentrations of cryopelagic fishes Boreogadus saidaand Arctogadus glacialisin the near-pole areas of Arctic. In: Vinogradov ME, Melnikov IA (Eds.) Biology of the Central Arctic Basin. Moscow, Nauka Publishing, p 196–211. (in Russian).
Atlas of Russian Freshwater fishes. (2002). Reshetnikov, Yu., S. (ed.) Moscow, Nauka publishing. V1. 379 pp V.2 253 pp. (in Russian).
Auel, H. and Hagen, W. (2002). Mesozooplankton community structure, abundance and biomass in the central Arctic Ocean. Marine Biology. 140:1013-1021.Google Scholar
Baker, K.D., Devine, J.A., Haedrich, R.L. (2009). Deep-sea fishes in Canada's Atlantic: population declines and predicted recovery times. Environmental Biology of Fishes 85: 79-88.Google Scholar
Byrkjedal, I., Rees, D.J., Christiansen, J.S., Fevolden, S.-E. (2008). The taxonomic status of Theragra finnmarchicaKoefoed, 1956 (Teleostei: Gadidae): perspectives from morphological and molecular data. Journal of Fish Biology 73:1183–1200.Google Scholar
Chernova, N.V. (2011). Distribution patterns and chorological analysis of fish fauna of the Arctic region. Journal of Ichthyology 51(10), p 825-924.Google Scholar
Christiansen, J.S., Reise, J.D. and 33 others (2013). Fishes. In: Arctic Biodiversity Assessment, Conservation of Arctic Flora and Fauna (CAFF).
Christiansen, J.S., Fevolden, E., Byrkjedal, I. (2005). The occurrence of Theragra finnmarchicaKoefoed, 1956 (Teleostei, Gadidae), 1932–2004. Journal of Fish Biology 66:1193–1197.Google Scholar
Christiansen, J.S., Mecklenburg, C.W., Karamushko, O.V. (2014) Arctic marine fishes and their fisheries in light of global change. Global Change Biology 20, 352–359.Google Scholar
Coad, B.W. and Reist, J.D. (2004). Annotated list of Arctic marine fishes of Canada. Canadian Manuscript Report of Fisheries and Aquatic Sciences 2674, iv+112 p.Google Scholar
Dolgov, A.V., Karsakov, A.L. (2011). Species-specific habitat conditions and possible changes in the distribution of fishes in the Barents Sea under climate change. In:T., Haug,A., Dolgov,K., Drevetnyak,I., Røttingen,K., Sunnanå and O., Titov (Eds.) Climate change and effects on the Barents Sea marine living resources. 15th Russian-Norwegian Symposium Longyearbyen, 7-8.September 2011.Google Scholar
Gardiner, K. and Dick, T.A. (2010). Arctic cephalopod distributions and their associated predators. Polar Research 29:209-227.Google Scholar
Golikov, A.V., Sabirov, R.M., Lubin, P.A. and Jorgensen, L.L. (2012). Changes in distribution and range structure of Arctic cephalopods due to climatic changes of the last decades. Biodiversity 14: 28-35.
Haedrich, R.L. and Gagnon, J.-M. (1991). Rock wall fauna in a deep Newfoundland fjord. Continental Shelf Research 11: 1199-1208.Google Scholar
Hamilton, L.C., Brown, B.C. and Rasmussen, R.O. (2003). West Greenland's cod-toshrimp transition: local dimensions of climatic change. Arctic. 56:271-282.
Hardie, D.C., and Hutchings, J.A. (2011). The ecology of Atlantic cod (Gadus morhua) in Canadian Arctic lakes. Arctic 64: 137-150.
Hollowed, A.B., Planque, B. and Loeng, H. (2013). Potential movement of fish and shellfish stocks from the sub-Arctic to the Arctic Ocean. Fisheries Oceanography, 22(5), 355-370.Google Scholar
Karamushko, O.V. (2012): Structure of ichthyofauna in the Arctic seas off Russia. Berichte zur Polar- und Meeresforschung. Reports on Polar and Marine Research. Arctic Marine Biology, 129-136.
Kearley, W. (2012). Here's the catch: the fish we harvest from the northwest Atlantic. Boulder Publications, Portugal Cove-St Phillip's, Newfoundland&Labrador. 263 pp.
Koslow, J.A., Boehlert, G.W., Gordon, J.D.M., Haedrich, R.L., Lorance, P., and Parin, N. (2000). Continental slope and deep-sea fisheries: implications for a fragile ecosystem. ICES Journal of Marine Science, 57: 548–557.Google Scholar
Lynghammar, A., J.S. Christiansen, C.W. Mecklenburg, O.V. Karamushko, P.R. Møller, and V.F., Gallucci (2013): Species richness and distribution of chrondrichthyan fishes in the Arctic Ocean and adjacent seas. Biodiversity, 14, 57-66.
Mecklenburg, C.W., Møller, P.R. and Steinke, D. (2011): Biodiversity of arctic marine fishes: taxonomy and zoogeography. Marine Biodiversity, 41, 109-140.
Melnikov, I.A., Chernova, N.V. (2013) Characteristics of under-ice concentrations of polar cod Boreogadus saida (Gadidae) in the Central Arctic basin. Journal of Ichthyology 53(1), p 22-30.Google Scholar
Mueter, F.J., Reist, J.D., Majewski, A.R., Swatzky, C.D., Christiansen, J.S., Hedges, K.J., Coad, B.W., Karamushko, O.V., Lauth, R.R., Lynghammar, A., MacPhee, S.A., Mecklenburg, C.W. (2013). Marine fishes of the Arctic. Arctic Report Card: update for 2013, tracking recent environmental changes. US NOAA, http://www.arctic.noaa.gov/reportcard/marine_fish.html. Dec 6, 2013.
Nesis, K.N. (2001). West-Arctic and East-Arctic distributional ranges of cephalopods. Sarsia 86:1-11.
Privalikhin, A.M., Norvillo, G.V. (2010) On the finding of a rare species—Norwegian pollock Theragra finnmarchicaKoefoed, 1956 (Gadidae)—in the Barents Sea. Journal of Ichthyology 50:143–147.Google Scholar
Rice, J. (2006). Impacts of mobile bottom gears on seafloor habitats, species, and communities: a review and synthesis of selected international reviews. DFO CSAS Research Document 2006/057, Ottawa, Canada, iii+35 p.
Roberts, C.M. (2002). Deep impact: the rising toll of fishing in the deep sea. Trends in Ecology and Evolution 5: 242-245.Google Scholar
Standal, D. (2003). Fishing the last frontier—controversies in the regulations of shrimp trawling in the high Arctic. Marine Policy 27:375-388.Google Scholar
Tsinovsky, V.D., Melnikov, I.A. (1980) On occurrence of Liparis koefoedi(Liparidae, Osteichtyes) in the waters of the Central Arctic Basin. In: Vinogradov, M.E., Melnikov, I.A. (Eds.) Biology of the Central Arctic Basin. Moscow, Nauka Publishing, p 211-214 (In Russian).
Ursvik, A., Breines, R., Christiansen, J.S., Fevolden, S.-E., Coucheron, D.H., Johansen, S.D. (2007) A mitogenomic approach to the taxonomy of pollocks: Theragra chalcogramma and T. finnmarchicarepresent one single species. BMC Evolutionary Biology 7:8686. Marine birdsGoogle Scholar
Anker-Nilssen, T., Bakken, V., Strøm, H., Golovkin, A.N., Bianki, V.V., Tatarinkova, I.P. (2000). The status of marine birds breeding in the Barents Sea region. Norsk Polarinstitutt, Norway.
Bakken, V., Pokrovskaya, I.V. (2000). Thick-billed Murre, in: Anker-Nilssen, T., Bakken, V., Strøm, H., Golovkin, A.N., Bianki, V.V., Tatarinkova, I.P. (Eds.), The status of marine birds breeding in the Barents Sea region. Norsk Polarinstitutt, Tromsø, Norway, pp. 119-124.
Barrett, R.T., Lorentsen, S.H., Anker-Nilsson, T. (2006). The status of breeding seabirds in mainland Norway. Atlantic Seabirds 8, 97-126.Google Scholar
Bédard, J., Nadeau, A., Giroux, J.-F., Savard, J.-P. (2008). Eiderdown: Characteristics and harvesting procedures. Société Duvetnor Ltée and Canadian Wildlife Service, Environment Canada, Québec.
Boertmann, D. (2008). The Lesser Black-backed Gull, Larus fuscus, in Greenland. Arctic 61, 129-133.
Braune, B.M., Donaldson, G.M., Hobson, K.A. (2001). Contaminant residues in seabird eggs from the Canadian Arctic. Part I. Temporal trends 1975-1998. Environmental Pollution 114, 39-54.Google Scholar
Braune, B.M., Mallory, M.L., Gilchrist, H.G. (2006). Elevated mercury levels in a declining population of ivory gulls in the Canadian Arctic. Marine Pollution Bulletin 52, 978-982.Google Scholar
Bustnes, J.O., Tertitski, G.M. (2000). Common eider Somateria mollissima, in: Anker-Nilssen, T., Bakken, V., Strøm, H., Golovkin, A.N., Bianki, V.V., Tatarinkova, I.P. (Eds.), The status of marine birds breeding in the Barents Sea region. Norsk Polarinstitutt, Tromsø, Norway, pp. 46-50.
Bustnes, J.O., Erikstad, K.E., Skaare, J.U., Bakken, V., Mehlum, F. (2003). Ecological effects of organochlorine pollutants in the Arctic: a study of the glaucous gull. Ecological Applications 13, 504–15.Google Scholar
Bustnes, J.O., Hanssen, S.A., Folstad, I., Erikstad, K.E., Hasselquist, D., Skaare, J.U. (2004). Immune function and organochlorine pollutants in arctic breeding glaucous gulls. Archives of Environmental Contamination and Toxicology 47, 530-541.Google Scholar
Buttler, E.I. (2009). Avian cholera among arctic breeding common eiders: temporal dynamics and the role of handling stress in reproduction and survival. M.Sc. Thesis, Department of Biology, Carleton University, Carleton.
Cairns, D.K., Gaston, A.J., Heutemann, F. (2008). Endothermy, ectothermy and the global structure of marine vertebrate communities. Marine Ecology Progress Series 356, 239-250.Google Scholar
Chaulk, K.G., Robertson, G.J., Montevecchi, W.A. (2004). Breeding range update for three seabird species in Labrador. Northeastern Naturalist 11, 479-485.
Chaulk, K.G., Robertson, G.J., Collins, B.T., Montevecchi, W.A., Turner, B.C. (2005). Evidence of recent population increases in Common Eiders breeding in Labrador. Journal of Wildlife Management 69, 805-809.Google Scholar
Clark, R.B. (1984). Impact of oil pollution on seabirds. Environmental Pollution, Series A. Ecological and Biological 33, 1-22.Google Scholar
Durant, J.M., Anker-Nilssen, T., Hjermann, D.O., Stenseth, N.C. (2004). Regime shifts in the breeding of an Atlantic puffin population. Ecology Letters 7, 388-394.Google Scholar
Durant, J.M., Anker-Nilssen, T., Stenseth, N.C., 2006. Ocean climate prior to breeding affects the duration of the nestling period in the Atlantic puffin. Biology Letters 2: 628-631.Google Scholar
Environment Canada (2010). Recovery Strategy for the Ivory Gull (Pagophila eburnea) in Canada [draft]. Species at Risk Act Recovery Strategy Series. Environment Canada, Ottawa.
Evans, P.G.H., Kampp, K. (1991). Recent changes in thick-billed murre populations in West Greenland. Canadian Wildlife Service Occasional Papers 69, 7-14.Google Scholar
Gabrielsen, G.W., Skaare, J.U., Polder, A., Bakken, V. (1995). Chlorinated hydrocarbons in glaucous gulls (Larus hyperboreus) in the southern part of Svalbard. Science of the Total Environment 160/161, 337-346.Google Scholar
Ganter, B., Gaston, A.J. (2013). Birds, in: Meltofte, H. (Ed.), Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity conservation. Conservation of Arctic Flora and fauna, Akureyri, pp. 142-180.
Garðarsson, A. (2006). Nýlegar breytingar á fjölda íslenskra bjargfugla[Recent changes in cliff-breeding seabirds in Iceland]. Bliki 27, 13-22.
Garðarsson, A., Guðmundsson, G.A., Lilliendahl, K., Vigfúsdóttir, F. (2009). Status of cliff-breeding seabirds in Iceland in 2005-08. Poster for Seabird group Conference, Brugges, March 2009.
Gaston, A.J. (2004). Seabirds: a Natural History. Yale University Press, New Haven.
Gaston, A.J., Elliott, K.H. (2013). Effects of climate-induced changes in parasitism, predation and predator-predator interactions on reproduction and survival of an Arctic marine bird. Arctic 66, 43-51.
Gaston, A.J., Gilchrist, H.G., Mallory, M.L. and Smith, P.A. (2009). Changes in seasonal events, peak food availability and consequent breeding adjustment in a marine bird: a case of progressive mismatching. The Condor 111: 111-119.Google Scholar
Gaston, A.J., Hipfner, J.M., Campbell, D. (2002). Heat and mosquitoes cause breeding failures and adult mortality in an Arctic-nesting seabird. Ibis 144, 185-191.Google Scholar
Gilchrist, H.G., Strøm, H., Gavrilo, M.V., Mosbech, A. (2008). International ivory gull conservation strategy and action plan. CAFF Technical Report no. 18.Google Scholar
Gilg, O., Boertmann, D., Merkel, F., Aebischer, A., Sabard, B. (2009b). Status of the endangered ivory gull, Pagophila eburnea, in Greenland. Polar Biology 32, 1275- 1286.Google Scholar
Gilliland, S., Gilchrist, H.G., Rockwell, R.F., Robertson, G.J., Savard, J.-P., Merkel, F.R., Mosbech, A. (2009). Evaluating the sustainability of harvest among Northern Common Eiders in Greenland and Canada. Wildlife Biology 15, 24-36.Google Scholar
Helgason, L.B., Barrett, R., Lie, E., Polder, A., Skaare, J.U., Gabrielsen, G.W. (2008). Levels and temporal trends (1983-2003) of persistent organic pollutants (POPs) and mercury (Hg) in seabird eggs from Northern Norway. Environmental Pollution 155, 190-198.Google Scholar
Hjort, C., Gudmundsson, G.A., Elander, M. (1997). Ross's Gulls in the Central Arctic Ocean. Arctic 50, 289-292.
Irons, D.B., Anker-Nilssen, T., Gaston, A.J., et al. (2008). Magnitude of climate shift determines direction of circumpolar seabird population trends. Global Change Biology 14: 1455-1463.Google Scholar
IUCN (2012). IUCN Red List of Threatened Species. www.iucnredlist.org/apps/redlist [accessed 12 February 2014].
Iverson, S.A., Gilchrist, H.G., Smith, P.A., Gaston, A.J., Forbes, M.R. (2014). Longer ice-free seasons increase the risk of nest depredation by polar bears for colonial breeding birds in the Canadian Arctic. Proceedings of the Royal Society B 281, http://dx.doi.org/10.1098/rspb.2013.3128.Google Scholar
Labansen, A.L., Merkel, F., Boertmann, D., Nyeland, J. (2010). Status of the blacklegged kittiwake (Rissa tridactyla) breeding population in Greenland, 2008. Polar Research 29, 391-403.Google Scholar
Letcher, R.J., Bustnes, J.O., Dietz, R., Jenssen, B.M., Jørgensen, E.H., Sonne, C. et al. (2010). Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. Science of the Total Environment 15, 2995-3043.Google Scholar
Kampp, K., Nettleship, D.N., Evans, P.G.H. (1994): Thick-billed Murres of Greenland: status and prospects. In:D.N., Nettleship,J., Burger & M., Gochfeld (eds.). Seabird on islands: threats, case studies and action plans, pp. 133-154. BirdLife Conservation Series No. 1.Google Scholar
Krasnov, Y.V., Lorentsen, S.-H. (2000). The great skua Catharacta skua. In:, T. Anker-Nilssen, V. Bakken, H. Strøm, A.N. Golovkin, V.V. Bianki & I.P., Tatarinkova (eds.). The status of marine birds breeding in the Barents Sea region, pp. 79-81. Norsk Polarinstitutt, Tromsø.Google Scholar
Meltofte, H., Barry, T., Berteau, D., et al. (2013). Synthesis: implications for conservation, in: Meltofte, H. (Ed.), Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity conservation. Conservation of Arctic Flora and fauna, Akureyri, pp. 21-65.
Merkel, F.R. (2004a). Evidence of population decline in Common Eiders breeding in western Greenland. Arctic 57, 27-36.
Merkel, F.R. (2004b). Impact of hunting and gillnet fishery on wintering eiders in Nuuk, Southwest Greenland. Waterbirds 27, 469-479.Google Scholar
Merkel, F.R. (2010). Evidence of recent population recovery in common eiders breeding in western Greenland. Journal of Wildlife Management 74, 1869-1874.Google Scholar
Merkel, F.R. (2011). Gillnet bycatch of seabirds in Southwest Greenland, 2003-2008. Technical Report No. 85, Pinngortitaleriffik, Greenland Institute of Natural Resources.Google Scholar
Merkel, F.R., Barry, T. (Eds.) (2008). Seabird harvest in the Arctic. Circumpolar Seabird Group (CBird), CAFF Technical Report No. 16.Google Scholar
Miljeteig, C., Strøm, H., Gavrilo, M.V., Volkov, A., Jenssen, B.M., Gabrielsen, G.W. (2009). High Levels of Contaminants in Ivory Gull Pagophila eburnea eggs from the Russian and Norwegian Arctic. Environmental Science and Technology 43, 5521-5528.Google Scholar
Moline, M.A., Karnovsky, N.J., Brown, Z., Divoky, G.J., Frazer, T.K., Jacoby, C.A. et al. (2008). High latitude changes in ice dynamics and their impact on polar marine ecosystems. Annals of the New York Academy of Science. 1134, 267-313.Google Scholar
Newton, I. (2007). The migration ecology of birds. Academic Press, London.
Robertson, G.J. & Gilchrist, H.G. (1998). Evidence of population declines among Common Eiders breeding in the Belcher Islands, Northwest Territories. Arctic 51, 378-385.
Sagerup, K., Helgason, L.B., Polder, A., Strøm, H., Josefsen, T.D., Skåre, J.U., Gabrielsen, G.W. (2009). Persistent organic pollutants and mercury in dead and dying glaucous gulls (Larus hyperboreus) at Bjørnøya (Svalbard). Science of the Total Environment 407, 6009-6016.Google Scholar
Sandvik, H., Erikstad, K.E., Barrett, R.T., Yoccoz, N.G. (2005). The effect of climate on adult survival in five species of North Atlantic seabirds. Journal of Animal Ecology 74, 817-831.Google Scholar
Stenhouse, I.J., Robertson, G.J., Gilchrist, H.G. (2004). Recoveries and survival rate of Ivory gulls banded in Nunavut. Waterbirds 27, 486-492.Google Scholar
Suydam, R.S., Dickson, D.L., Fadely, J.B.& Quakenbush, L.T. (2000). Population declines of King and Common Eiders of the Beaufort Sea. The Condor 102, 219-222.Google Scholar
Tasker, M.L., Camphuysen, C.J., Cooper, J., Garthe, S., Montevecchi, W.A., Blaber, S.J. (2000). The impacts of fishing on marine birds. ICES Journal of Marine Science 57, 531-547.Google Scholar
White, C.R., Boertmann, D., Grémillet, D., Butler, P.J., Green, J.A., Martin, G.R. (2011). The relationship between sea surface temperature and population change of Great Cormorants Phalacrocorax carbobreeding near Disko Bay, Greenland. International Journal of Avian Science, DOI: 10.1111/j.1474-919X.2010.01068.x
Winker, K., Gibson, D.D., Sowls, A.L., Lawhead, B.E., Martin, P.D., Hoberg, E.P., Causey, D. (2002). The birds of St. Matthew Island, Bering Sea. Wilson Bulletin 114, 491-509. Marine MammalsGoogle Scholar
Arrigo, K.R. and van Dijken, G.L. (2011). Secular trends in Arctic Ocean net primary production. Journal of Geophysical Research: Oceans (1978–2012), 116 (C9).Google Scholar
Bluhm, B.A. and Gradinger, R. (2008). Regional variability in food availability for Arctic marine mammals. Ecological Applications, 18(sp2), S77-S96.Google Scholar
Burdin, A., Filatova, O.&Hoyt, E. (2009). Marine mammals of Russia: a guidebook. Kirov, Moscow.
Chernook, V.I. and Boltnev, A.I. (2008). Regular instrumental aerial surveys detect a sharp drop in the birthrates of the harp seal in the White Sea. Marine Mammals of the Holarctic 4: 100-104.Google Scholar
Estes, J.A., Tinker, M.T., Doroff, A.M. and Burn, D.M. (2005), Continuing sea otter population declines in the Aleutian Archipelago. Marine Mammal Science, 21: 169–172.Google Scholar
Fay, F.H., Eberhardt, L.L., Kelly, B.P., Burns, J.J. and Quakenbush, L.T. (1997). Status of the Pacific walrus population,1950-1989. Marine Mammal Science 13: 537-565.Google Scholar
Ferguson, S.H. and Young, B.G. (2011). Aerial survey estimates of hauled-out ringed seal (Pusa hispida) density in western Hudson Bay, June 2009 and 2010. Science Advisory Report2011/029, Department of Fisheries and Oceans Canada, Ottawa.
Garlich-Miller, J.L., MacCracken, J.G., Snyder, J., Meehan, R., Myers, M.J., Wilder, J.M., Lance, E. and Matz, A. (2011). Status review of the Pacific walrus (Odobenus rosmarus divergens).Marine Mammals Management, United States Fish and Wildlife Service, Anchorage.
George, J.C., Zeh, J., Suydam, R. and Clark, C. (2004). Abundance and population trend (1978-2001) of western Arctic bowhead whales surveyed near Barrow, Alaska. Marine Mammal Science 20: 755-773.Google Scholar
Gosselin, J.F., Lesage, V. and Hammill, M.O. (2009). Abundance indices of beluga in James Bay, eastern Hudson Bay and Ungava Bay in 2008. Research Document 2009/006. Science Advisory Secretariat, Department of Fisheries and Oceans Canada, Ottawa.
Hammill, M.O. and Stenson, G.B. (2007). Application of the precautionary approach and conservation reference points to the management of Atlantic seals. ICES Journal of Marine Sciences 64: 701-706.Google Scholar
Heide-Jørgensen, M.P., Laidre, K.L., Burt, M.L., Borchers, D.L., Hansen, R.G., Rasmussen, M. and Fossette, S. (2010). Abundance of narwhals (Monodon monoceros) in Greenland. Journal of Mammalogy 91(5): 1135-1151.Google Scholar
Hobbs, R.C., Sims, C.L. and Shelden, K.E.W. (2012). Estimated abundance of belugas in Cook Inlet, Alaska, from aerial surveys conducted in June 2012. NMFS, NMML Unpublished Report. 7 pp.
ICES (2008). Report of the Joint ICES/NAFO Working Group on Harp and Hooded Seals, 27-30.August 2008,Tromsø, Norway.ICES Report CM 2008/ACOM 17, International Council for the Exploration of the Sea (ICES), Copenhagen.
Lydersen, C., Aars, J. and Kovacs, K.M. (2008). Estimating the number of walruses in Svalbard based on aerial surveys and behavioural data from satellite telemetry. Arctic 61: 119-128.
Mahoney Barbara, A. and Shelden Kim, E.W. (2000). Harvest History of Belugas, Delphinapterus leucas, in Cook Inlet, Alaska. Marine Fisheries Review, 62(3), pp. 124-133.Google Scholar
Norstrom, R.J. and Muir, D.C.G. (1994) Chlorinated hydrocarbon contaminants in arctic marine mammals. The Science of the Total Environment 154:107-128.Google Scholar
Obbard, M.E., Thiemann, G.W., Peacock, E. and DeBruyn, T.D. (eds.) (2010). Proceedings of the 15th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, 29 June-3 July 2009, Copenhagen, Denmark. Occasional PaperNo. 43 of the IUCN Species Survival Commission, IUCN, Gland.
Øigård, T.A., Haug, T. and Nilssen, K.T. (2010). Estimation of pup production of hooded seals and harp seals in the Greenland Sea in 2007: Reducing uncertainty using generalized additive models. Journal of the Northwest Atlantic Fishery Science. 42: 103-123.Google Scholar
Richard, P.R., Laake, J.L., Hobbs, R.C., Heide-Jørgensen, M.P., Asselin, N.C. and Cleator, H. (2010). Baffin Bay narwhal population distribution and numbers: aerial surveys in the Canadian High Arctic,2002-2004 Arctic 63: 85-99.
Ross, W.G. (1993). Commercial whaling in the North Atlantic sector. pp. 511-61. In: Burns, J.J. Montague, J.J. and Cowles, C.J. (eds.) Special Publication. No. 2. The Bowhead Whale. 1st. Edn. Society of Marine Mammalogy, Lawrence, KS. 787 pp.
Stroeve, J.C., Serreze, M.C., Holland, M.M., Kay, J.E., Malanik, J. and Barrett, A.P. (2012). The Arctic's rapidly shrinking sea ice cover: a research synthesis. Climatic Change 110: 1005-1027.Google Scholar
Wang, M. and Overland, J.E. (2012). A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophysical Research Letters 39: L18501. doi:10.1029/2012GK052868Google Scholar
Wiig, Ø., Bachmann, L., Heide-Jørgensen, M.P., Lindqvist, C., Laidre, K.L., Postma, L., Dueck, L., Palsbøll, P.J., Bachmann, L. (2011). Recaptures of genotyped bowhead whales (Balaena mysticetus) in eastern Canada and west Greenland. Endangered Species Research 14: 235-242.Google Scholar
Witting, L. and Born, E. (2005). An assessment of Greenland walrus populations. ICES Journal of Marine Sciences 62: 266-285. Socioeconomic AspectsGoogle Scholar
Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-being: Synthesis. Washington, DC, Millennium Ecosystem Assessment, Island Press.
UK National Ecosystem Assessment (2011). The UK National Ecosystem Assessment: Synthesis of the Key Findings. UNEP-WCMC, Cambridge.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Arctic Ocean
  • Edited by United Nations
  • Book: The First Global Integrated Marine Assessment
  • Online publication: 18 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781108186148.045
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Arctic Ocean
  • Edited by United Nations
  • Book: The First Global Integrated Marine Assessment
  • Online publication: 18 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781108186148.045
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Arctic Ocean
  • Edited by United Nations
  • Book: The First Global Integrated Marine Assessment
  • Online publication: 18 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781108186148.045
Available formats
×