Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T00:57:28.934Z Has data issue: false hasContentIssue false

Chapter 13.2 - Fetal infections

Clinical management

from Section 2 - Fetal disease

Published online by Cambridge University Press:  05 February 2013

Mark D. Kilby
Affiliation:
Department of Fetal Medicine, University of Birmingham
Anthony Johnson
Affiliation:
Baylor College of Medicine, Texas
Dick Oepkes
Affiliation:
Department of Obstetrics, Leiden University Medical Center
Get access

Summary

Introduction

This chapter focuses upon pathogenic organisms that may be responsible for fetal infection during pregnancy and may have significant effects on outcome. Many infections have associated serious consequences including fetal/perinatal mortality and significant morbidity. Each of the pathogenic organisms will be discussed in turn and specific risks and morbidity outlined.

Introduction

Parvovirus B19 was discovered by chance in 1975 during a systematic search of hepatitis B surface antigen (HBsAg) in sera from blood donors. The name of B19 refers to the number of blood bag in which the virus was discovered. It was not until 1984 that its responsibility in the occurrence of fetal hydrops was proven.

Parvovirus B19 belongs to the Parvoviridae family. This is a naked virus whose genome is linear single-stranded DNA-like. Parvovirus nucleotide variability is low (<1%). After penetration through the respiratory tract, the virus replicates in the nasopharynx, viremia occurs and then a non-specific febrile syndrome appears eight days after primary infection. IgM are present and an antigen–antibody complex is formed causing the rash that appears approximately three weeks after infection in infected children. Therefore, the patient is no longer contagious because the virus is not present in the nasopharynx.

Type
Chapter
Information
Fetal Therapy
Scientific Basis and Critical Appraisal of Clinical Benefits
, pp. 208 - 237
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, KE, Green, SW, Antunez de Mayolo, J, et al. Congenital anaemia after transplacental B19 parvovirus infection. Lancet 1994;343(8902):895–6.Google Scholar
Harger, JH, Adler, SP, Koch, WC, Harger, GF. Prospective evaluation of 618 pregnant women exposed to parvovirus B19: risks and symptoms. Obstet Gynecol 1998;91(3):413–20.Google Scholar
Jensen, IP, Thorsen, P, Jeune, B, Møller, BR, Vestergaard, BF. An epidemic of parvovirus B19 in a population of 3,596 pregnant women: a study of sociodemographic and medical risk factors. BJOG 2000;107(5):637–43.Google Scholar
Bell, LM, Naides, SJ, Stoffman, P, Hodinka, RL, Plotkin, SA. Human parvovirus B19 infection among hospital staff members after contact with infected patients. N Engl J Med 1989;321(8):485–91.Google Scholar
Gillespie, SM, Cartter, ML, Asch, S, et al. Occupational risk of human parvovirus B19 infection for school and day-care personnel during an outbreak of erythema infectiosum. JAMA 1990;263(15):2061–5.Google Scholar
Cartter, ML, Farley, TA, Rosengren, S, et al. Occupational risk factors for infection with parvovirus B19 among pregnant women. J Infect Dis 1991;163(2):282–5.Google Scholar
Gratacos, E, Torres, PJ, Vidal, J, et al. The incidence of human parvovirus B19 infection during pregnancy and its impact on perinatal outcome. J Infect Dis 1995;171(5):1360–3.Google Scholar
Valeur-Jensen, AK, Pedersen, CB, Westergaard, T, et al. Risk factors for parvovirus B19 infection in pregnancy. JAMA 1999;281(12):1099–105.Google Scholar
Prospective study of human parvovirus (B19) infection in pregnancy. Public Health Laboratory Service Working Party on Fifth Disease. BMJ 1990;300(6733):1166–70.Google Scholar
Enders, M, Weidner, A, Zoellner, I, Searle, K, Enders, G. Fetal morbidity and mortality after acute human parvovirus B19 infection in pregnancy: prospective evaluation of 1018 cases. Prenat Diagn 2004;24(7):513–18.Google Scholar
Miller, E, Fairley, CK, Cohen, BJ, Seng, C. Immediate and long term outcome of human parvovirus B19 infection in pregnancy. Br J Obstet Gynaecol 1998;105(2):174–8.Google Scholar
Tolfvenstam, T, Papadogiannakis, N, Norbeck, O, Petersson, K, Broliden, K. Frequency of human parvovirus B19 infection in intrauterine fetal death. Lancet 2001;357(9267):1494–7.Google Scholar
Nyman, M, Skjoldebrand-Sparre, L, Broliden, K. Non-hydropic intrauterine fetal death more than 5 months after primary parvovirus B19 infection. J Perinat Med 2005;33(2):176–8.Google Scholar
Koch, WC, Harger, JH, Barnstein, B, Adler, SP. Serologic and virologic evidence for frequent intrauterine transmission of human parvovirus B19 with a primary maternal infection during pregnancy. Pediatr Infect Dis J 1998;17(6):489–94.Google Scholar
Rogers, BB, Mak, SK, Dailey, JV, Saller, DN Jr, Buffone GJ. Detection of parvovirus B19 DNA in amniotic fluid by PCR DNA amplification. Biotechniques 1993;15(3):406–8, 410.Google Scholar
Brandenburg, H, Los, FJ, Cohen-Overbeek, TE. A case of early intrauterine parvovirus B19 infection. Prenat Diagn 1996;16(1):75–7.Google Scholar
Petrikovsky, BM, Baker, D, Schneider, E. Fetal hydrops secondary to human parvovirus infection in early pregnancy. Prenat Diagn 1996;16(4):342–4.Google Scholar
de Krijger, RR, van Elsacker-Niele, AM, Mulder-Stapel, A, et al. Detection of parvovirus B19 infection in first and second trimester fetal loss. Pediatr Pathol Lab Med 1998;18(1):23–34.Google Scholar
Sifakis, S, Ergazaki, M, Sourvinos, G, et al. Evaluation of Parvo B19, CMV and HPV viruses in human aborted material using the polymerase chain reaction technique. Eur J Obstet Gynecol Reprod Biol 1998;76(2):169–73.Google Scholar
Nyman, M, Tolfvenstam, T, Petersson, K et al. Detection of human parvovirus B19 infection in first-trimester fetal loss. Obstet Gynecol 2002;99(5 Pt 1):795–8.Google Scholar
Rogers, BB, Over, CE. Parvovirus B19 in fetal hydrops. Hum Pathol 1999;30(2):247.Google Scholar
von Kaisenberg, CS, Bender, G, Scheewe, J, et al. A case of fetal parvovirus B19 myocarditis, terminal cardiac heart failure, and perinatal heart transplantation. Fetal Diagn Ther 2001;16(6):427–32.Google Scholar
Hartwig, NG, Vermeij-Keers, C, Versteeg, J The anterior eye segment in virus induced primary congenital aphakia. Acta Morphol Neerl Scand 1988;26(4):283–92.Google Scholar
Hartwig, NG, Vermeij-Keers, C, Van Elsacker-Neelie, AM, Fleuren, GJ. Embryonic malformations in a case of intrauterine parvovirus B19 infection. Teratology 1989;39(3):295–302.Google Scholar
Bloom, MC, Rolland, M, Bernard, JD, et al. Maternofetal infection by parvovirus associated with antenatal meconium peritonitis. Arch Fr Pediatr 1990;47(6):437–9.Google Scholar
Katz, VL, McCoy, MC, Kuller, JA, Hansen, WF. An association between fetal parvovirus B19 infection and fetal anomalies: a report of two cases. Am J Perinatol 1996;13(1):43–5.Google Scholar
Brochot, C, Collinet, , Provost, N, Subtil, D. Mirror syndrome due to parvovirus B19 hydrops complicated by severe maternal pulmonary effusion. Prenat Diagn 2006;26(2):179–80.Google Scholar
Carbillon, L, Oury, JF, Guerin, JM, Azancot, A, Blot, P. Clinical biological features of Ballantyne syndrome and the role of placental hydrops. Obstet Gynecol Surv 1997;52(5):310–14.Google Scholar
Fairley, CK, Smoleniec, JS, Caul, OE, Miller, E. Observational study of effect of intrauterine transfusions on outcome of fetal hydrops after parvovirus B19 infection. Lancet 1995;346(8986):1335–7.Google Scholar
Rodis, JF, Rodner, C, Hansen, AA, et al. Long-term outcome of children following maternal human parvovirus B19 infection. Obstet Gynecol 1998;91(1):125–8.Google Scholar
Anand, A, Gray, ES, Brown, T, Clewley, JP, Cohen, BJ. Human parvovirus infection in pregnancy and hydrops fetalis. N Engl J Med 1987;316(4):183–6.Google Scholar
Carrington, D, Gilmore, DH, Whittle, MJ, et al. Maternal serum alpha-fetoprotein – a marker of fetal aplastic crisis during intrauterine human parvovirus infection. Lancet 1987;1(8530):433–5.Google Scholar
Komischke, K, Searle, K, Enders, G. Maternal serum alpha-fetoprotein and human chorionic gonadotropin in pregnant women with acute parvovirus B19 infection with and without fetal complications. Prenat Diagn 1997;17(11):1039–46.Google Scholar
Dembinski, J, Eis-Hubinger, AM, Maar, J, Schild, R, Bartmann, P. Long term follow up of serostatus after maternofetal parvovirus B19 infection. Arch Dis Child 2003;88(3):219–21.Google Scholar
Nagel, HT, de Haan, TR, Vandenbussche, FP, Oepkes, D, Walther, FJ. Long-term outcome after fetal transfusion for hydrops associated with parvovirus B19 infection. Obstet Gynecol 2007;109(1):42–7.Google Scholar
Pryde, PG, Nugent, CE, Pridjian, G, Barr, M Jr, Faix, RG. Spontaneous resolution of nonimmune hydrops fetalis secondary to human parvovirus B19 infection. Obstet Gynecol 1992;79(5 Pt 2):859–61.Google Scholar
Sheikh, AU, Ernest, JM, O’Shea, M. Long-term outcome in fetal hydrops from parvovirus B19 infection. Am J Obstet Gynecol 1992;167(2):337–41.Google Scholar
Bhal, PS, Davies, NJ, Westmoreland, D, Jones, A. Spontaneous resolution of non-immune hydrops fetalis secondary to transplacental parvovirus B19 infection. Ultrasound Obstet Gynecol 1996;7(1):55–7.Google Scholar
Yamakawa, Y, Oka, H, Hori, S, Arai, T, Izumi, R. Detection of human parvovirus B19 DNA by nested polymerase chain reaction. Obstet Gynecol 1995;86(1):126–9.Google Scholar
Wattre, P, Thirion, V, Bellagra, N, et al. [PCR value in the diagnosis of feto-placental human parvovirus B19 hydrops fetalis: apropos of 10 cases]. Ann Biol Clin (Paris) 1997;55(4):327–31.Google Scholar
Van den Veyver, IB, Ni, J, Bowles, N, et al. Detection of intrauterine viral infection using the polymerase chain reaction. Mol Genet Metab 1998;63(2):85–95.Google Scholar
Wenstrom, KD, Andrews, WW, Bowles, NE, et al. Intrauterine viral infection at the time of second trimester genetic amniocentesis. Obstet Gynecol 1998;92(3):420–4.Google Scholar
Zerbini, M, Musiani, M, Gentilomi, G, et al. Comparative evaluation of virological and serological methods in prenatal diagnosis of parvovirus B19 fetal hydrops. J Clin Microbiol 1996;34(3):603–8.Google Scholar
Mari, G, Deter, RL, Carpenter, RL, et al. Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. Collaborative Group for Doppler Assessment of the Blood Velocity in Anemic Fetuses. N Engl J Med 2000;342(1):9–14.Google Scholar
Mari, G, Detti, L, Oz, U, et al. Accurate prediction of fetal hemoglobin by Doppler ultrasonography. Obstet Gynecol 2002;99(4):589–93.Google Scholar
Delle Chiaie, L, Buck, G, Grab, D, Terinde, R. Prediction of fetal anemia with Doppler measurement of the middle cerebral artery peak systolic velocity in pregnancies complicated by maternal blood group alloimmunization or parvovirus B19 infection. Ultrasound Obstet Gynecol 2001;18(3):232–6.Google Scholar
Salleras, L, Dominguez, A, Vidal, J, et al. Seroepidemiology of varicella-zoster virus infection in Catalonia (Spain). Rationale for universal vaccination programmes. Vaccine 2000;19(2–3):183–8.Google Scholar
Thiry, N, Beutels, P, Shkedy, Z, et al. The seroepidemiology of primary varicella-zoster virus infection in Flanders (Belgium). Eur J Pediatr 2002;161(11):588–93.Google Scholar
Balducci, J, Rodis, JF, Rosengren, S, et al. Pregnancy outcome following first-trimester varicella infection. Obstet Gynecol 1992;79(1):5–6.Google Scholar
Higa, K, Dan, K, Manabe, H. Varicella-zoster virus infections during pregnancy: hypothesis concerning the mechanisms of congenital malformations. Obstet Gynecol 1987;69(2):214–22.Google Scholar
Brazin, SA, Simkovich, JW, Johnson, WT. Herpes zoster during pregnancy. Obstet Gynecol 1979;53(2):175–81.Google Scholar
Grose, C, Itani, O, Weiner, CP. Prenatal diagnosis of fetal infection: advances from amniocentesis to cordocentesis – congenital toxoplasmosis, rubella, cytomegalovirus, varicella virus, parvovirus and human immunodeficiency virus. Pediatr Infect Dis J 1989;8(7):459–68.Google Scholar
Scott, LL, Hollier, LM, Dias, K. Perinatal herpesvirus infections. Herpes simplex, varicella, and cytomegalovirus. Infect Dis Clin North Am 1997;11(1):27–53.Google Scholar
Esmonde, TF, Herdman, G, Anderson, G. Chickenpox pneumonia: an association with pregnancy. Thorax 1989;44(10):812–15.Google Scholar
Haake, DA, Zakowski, PC, Haake, DL, Bryson, YJ. Early treatment with acyclovir for varicella pneumonia in otherwise healthy adults: retrospective controlled study and review. Rev Infect Dis 1990;12(5):788–98.Google Scholar
Haake, D, Kennedy, C, Goetz, MB. Pyelonephritis, rash, and progressive respiratory failure in a pregnant woman. Clin Infect Dis 1992;14(2):599–607.Google Scholar
Harris, RE, Rhoades, ER. Varicella pneumonia complicating pregnancy. Report of a case and review of literature. Obstet Gynecol 1965;25:734–40.Google Scholar
Paryani, SG, Arvin, AM. Intrauterine infection with varicella-zoster virus after maternal varicella. N Engl J Med 1986;314(24):1542–6.Google Scholar
Stagno, S, Whitley, RJ. Herpesvirus infections of pregnancy. Part II: Herpes simplex virus and varicella-zoster virus infections. N Engl J Med 1985;313(21):1327–30.Google Scholar
Morgan-Capner, P, Crowcroft, NS. Guidelines on the management of, and exposure to, rash illness in pregnancy (including consideration of relevant antibody screening programmes in pregnancy). Commun Dis Public Health 2002;5(1):59–71.Google Scholar
Pierre, JC, Senneville, E, Ajana, F, et al. [Varicella in pregnancy after the 20th week of amenorrhea]. J Gynecol Obstet Biol Reprod (Paris) 1992;21(8):935–42.Google Scholar
Ellis, ME, Neal, KR, Webb, AK. Is smoking a risk factor for pneumonia in adults with chickenpox? Br Med J 1987;294(6578):1002.Google Scholar
Zambrano, MA, Martinez, A, Mínquez, JA, Vázquez, F, Palencia, R. Varicella pneumonia complicating pregnancy. Acta Obstet Gynecol Scand 1995;74(4):318–20.Google Scholar
Enders, G, Miller, E, Cradock-Watson, J, Bolley, I, Ridehalgh, M. Consequences of varicella and herpes zoster in pregnancy: prospective study of 1739 cases. Lancet 1994;343(8912):1548–51.Google Scholar
Pastuszak, AL, Levy, M, Schick, B, et al. Outcome after maternal varicella infection in the first 20 weeks of pregnancy. N Engl J Med 1994;330(13):901–5.Google Scholar
Smego, RA Jr, Asperilla, MO. Use of acyclovir for varicella pneumonia during pregnancy. Obstet Gynecol 1991;78(6):1112–16.Google Scholar
Laforet, EG, Lynch, CL Jr. Multiple congenital defects following maternal varicella; report of a case. N Engl J Med 1947;236(15):534–7.Google Scholar
Bai, PV, John, TJ. Congenital skin ulcers following varicella in late pregnancy. J Pediatr 1979;94(1):65–7.Google Scholar
al-Qattan, MM, Thomson, HG. Congenital varicella of the upper limb. A preventable disaster. J Hand Surg Br 1995;20(1):115–17.Google Scholar
Rinvik, R. [Congenital varicella encephalomyelitis in a surviving newborn infant]. Tidsskr Nor Laegeforen 1969;89(9):629–31.Google Scholar
Rinvik, R. Congenital varicella encephalomyelitis in surviving newborn. Am J Dis Child 1969;117(2):231–5.Google Scholar
Savage, MO, Moosa, A, Gordon, R. Maternal varicella infection as a cause of fetal malformations. Lancet 1973;1(7799):352–4.Google Scholar
Frey, HM, Bialkin, G, Gerson, AA. Congenital varicella: case report of a serologically proved long-term survivor. Pediatrics 1977;59(1):110–12.Google Scholar
Scheffer, IE, Baraitser, M, Brett, EM. Severe microcephaly associated with congenital varicella infection. Dev Med Child Neurol 1991;33(10):916–20.Google Scholar
Magliocco, AM, Demetrick, DJ, Sarnat, HB, Hwang, WS. Varicella embryopathy. Arch Pathol Lab Med 1992;116(2):181–6.Google Scholar
Randel, RC, Kearns, DB, Nespeca, MP, Scher, CA, Sawyer, MH. Vocal cord paralysis as a presentation of intrauterine infection with varicella-zoster virus. Pediatrics 1996;97(1):127–8.Google Scholar
Lambert, SR, Taylor, D, Kriss, A, Holzel, H, Heard, S. Ocular manifestations of the congenital varicella syndrome. Arch Ophthalmol 1989;107(1):52–6.Google Scholar
Andreou, A, Basiakos, H., Hatsikoumi, I, Lazarides, A. Fetal varicella syndrome with manifestations limited to the eye. Am J Perinatol 1995;12(5):347–8.Google Scholar
Alkalay, AL, Pomerance, JJ, Rimoin, DL. Fetal varicella syndrome. J Pediatr 1987;111(3):320–3.Google Scholar
Alkalay, A.L, Pomerance, J.J, Yamamura, JM, Sittler, S, Baladi, KS. Visual diagnosis casebook: congenital anomalies associated with maternal varicella infection during early pregnancy. J Perinatol 1987;7(1):69–71.Google Scholar
Mouly, F, Mirlesse, V, Méritet, JF, et al. Prenatal diagnosis of fetal varicella-zoster virus infection with polymerase chain reaction of amniotic fluid in 107 cases. Am J Obstet Gynecol 1997;177(4):894–8.Google Scholar
Lyday, JH. Report of severe herpes zoster in a 13 and one-half-year-old boy whose chickenpox infection may have been acquired in utero. Pediatrics 1972;50(6):930–1.
Lewkonia, IK, Jackson, AA. Infantile herpes zoster after intrauterine exposure to varicella. Br Med J 1973;3(5872):149.Google Scholar
Loras-Duclaux, I, Roy, P, Lachaux, A, et al. [Zona in a 6-month-old infant. Apropos of one case]. Pediatrie 1989;44(8):645–7.Google Scholar
Vachvarichsanong, P. Herpes zoster in a five-month-old infant after intrauterine exposure to varicella. Pediatr Infect Dis J 1991;10(5):412–13.Google Scholar
Preblud, SR. Age-specific risks of varicella complications. Pediatrics 1981;68(1):14–17.Google Scholar
Preblud, SR, Bregman, DJ, Vernon, LL. Deaths from varicella in infants. Pediatr Infect Dis 1985;4(5):503–7.Google Scholar
Meyers, JD. Congenital varicella in term infants: risk reconsidered. J Infect Dis 1974;129(2):215–17.Google Scholar
Miller, E, Cradock-Watson, JE, Ridehalgh, MK. Outcome in newborn babies given anti-varicella-zoster immunoglobulin after perinatal maternal infection with varicella-zoster virus. Lancet 1989;2(8659):371–3.Google Scholar
Pretorius, DH, Hayward, I, Jones, KL, Stamm, E. Sonographic evaluation of pregnancies with maternal varicella infection. J Ultrasound Med 1992;11(9):459–63.Google Scholar
Lecuru, F, Bernard, JP, Parrat, S, Taurelle, R. [Congenital varicella. Problems with prenatal diagnosis after an early, primary maternal infection]. J Gynecol Obstet Biol Reprod (Paris) 1995;24(6):618–21.Google Scholar
Lecuru, F, Bernard, JP, Parrat, S, Taurelle, R. [Varicella in pregnancy]. Presse Med 1995;24(29): 1352–7.Google Scholar
Hofmeyr, GJ, Moolla, S, Lawrie, T. Prenatal sonographic diagnosis of congenital varicella infection – a case report. Prenat Diagn 1996;16(12):1148–51.Google Scholar
Isada, NB, Paar, DP, Johnson, MP, et al. In utero diagnosis of congenital varicella zoster virus infection by chorionic villus sampling and polymerase chain reaction. Am J Obstet Gynecol 1991;165(6 Pt 1):1727–30.Google Scholar
Puchhammer-Stockl, E, Kunz, C, Wagner, G, Enders, G. Detection of varicella zoster virus (VZV) DNA in fetal tissue by polymerase chain reaction. J Perinat Med 1994;22(1):65–9.Google Scholar
Pons, JC, Rozenberg, F, Imbert, MC, et al. Prenatal diagnosis of second-trimester congenital varicella syndrome. Prenat Diagn 1992;12(11): 975–6.Google Scholar
Pons, JC, Vial, P, Imbert, MC, et al. [Prenatal diagnosis of fetal varicella in the second trimester of pregnancy]. J Gynecol Obstet Biol Reprod (Paris) 1995;24(8):829–38.Google Scholar
Nahass, GT, Goldstein, BA, Zhu, WY et al. Comparison of Tzanck smear, viral culture, and DNA diagnostic methods in detection of herpes simplex and varicella-zoster infection. JAMA 1992;268(18):2541–4.Google Scholar
Broussard, RC, Payne, DK, George, RB. Treatment with acyclovir of varicella pneumonia in pregnancy. Chest 1991;99(4):1045–7.Google Scholar
Tan, MP, Koren, G. Chickenpox in pregnancy: revisited. Reprod Toxicol 2006;21(4):410–20.Google Scholar
Wilson, E, Goss, MA, Marin, M, et al. Varicella vaccine exposure during pregnancy: data from 10 years of the pregnancy registry. J Infect Dis 2008;197 Suppl 2:S178–84.Google Scholar
Bohlke, K, Galil, K, Jackson, LA, et al. Postpartum varicella vaccination: is the vaccine virus excreted in breast milk? Obstet Gynecol 2003;102(5 Pt 1):970–7.Google Scholar
Fowler, KB, Stagno, S, Pass, RF, et al. The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med 1992;326(10):663–7.Google Scholar
Stagno, S, Pass, RF, Dworsky, ME, Alford CA, Jr. Maternal cytomegalovirus infection and perinatal transmission. Clin Obstet Gynecol 1982;25(3):563–76.Google Scholar
Stagno, S, Pass, RF, Cloud, G, et al. Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, and clinical outcome. JAMA 1986;256(14):1904–8.Google Scholar
Yow, MD, Williamson, DW, Leeds, LJ, et al. Epidemiologic characteristics of cytomegalovirus infection in mothers and their infants. Am J Obstet Gynecol 1988;158(5):1189–95.Google Scholar
Stagno, S, Reynolds, DW, Huang, ES, et al. Congenital cytomegalovirus infection. N Engl J Med 1977;296(22):1254–8.Google Scholar
Schopfer, K, Lauber, E, Krech, U. Congenital cytomegalovirus infection in newborn infants of mothers infected before pregnancy. Arch Dis Child 1978;53(7):536–9.Google Scholar
Boppana, SB, Rivera, LB, Fowler, KB, Mach, M, Britt, WJ. Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N Engl J Med 2001;344(18):1366–71.Google Scholar
Revello, MG, Genini, E, Gorini, G, et al. Comparative evaluation of eight commercial human cytomegalovirus IgG avidity assays. J Clin Virol 2010;48(4):255–9.Google Scholar
Liesnard, C, Donner, C, Brancart, F, et al. Prenatal diagnosis of congenital cytomegalovirus infection: prospective study of 237 pregnancies at risk. Obstet Gynecol 2000;95(6 Pt 1):881–8.Google Scholar
Guerra, B, Lazzarotto, T, Quarta, S, et al. Prenatal diagnosis of symptomatic congenital cytomegalovirus infection. Am J Obstet Gynecol 2000;183(2):476–82.Google Scholar
Lazzarotto, T, Varani, S, Guerra, B, et al. Prenatal indicators of congenital cytomegalovirus infection. J Pediatr 2000;137(1):90–5.Google Scholar
Enders, G, Bader, U, Lindemann, L, Schalasta, G, Daiminger, A. Prenatal diagnosis of congenital cytomegalovirus infection in 189 pregnancies with known outcome. Prenat Diagn 2001;21(5):362–77.Google Scholar
Revello, MG, Gerna, G. Diagnosis and management of human cytomegalovirus infection in the mother, fetus, and newborn infant. Clin Microbiol Rev 2002;15(4):680–715.Google Scholar
Revello, MG, Zavattoni, M, Furione, M, Baldanti, F, Gerna, G. Quantification of human cytomegalovirus DNA in amniotic fluid of mothers of congenitally infected fetuses. J Clin Microbiol 1999;37(10):3350–2.Google Scholar
Revello, MG, Zavattoni, M, Sarasini, A, et al. Human cytomegalovirus in blood of immunocompetent persons during primary infection: prognosis implications for pregnancy. J Infect Dis 1998;177(5):1170–5.Google Scholar
Ducroux, A, Cherid, S, Benachi, A, Ville, Y, Leruez-Ville, M. Evaluation of new commercial real-time PCR quantification assay for prenatal diagnosis of cytomegalovirus congenital infection. J Clin Microbiol 2008;46(6):2078–80.Google Scholar
Revello, MG, Furione, M, Zavattoni, M, et al. Human cytomegalovirus (HCMV) DNAemia in the mother at amniocentesis as a risk factor for iatrogenic HCMV infection of the fetus. J Infect Dis 2008;197(4):593–6.Google Scholar
Boppana, SB, Pass, RF, Britt, WJ, Stagno, S, Alford, CA. Symptomatic congenital cytomegalovirus infection: neonatal morbidity and mortality. Pediatr Infect Dis J 1992;11(2):93–9.Google Scholar
Weller, TH, Hanshaw, JB. Virologic and clinical observations on cytomegalic inclusion disease. N Engl J Med 1962;266:1233–44.Google Scholar
Stagno, S, Brasfield, DM, Brown, MB, et al. Infant pneumonitis associated with cytomegalovirus, Chlamydia, Pneumocystis, and Ureaplasma: a prospective study. Pediatrics 1981;68(3):322–9.Google Scholar
Stagno, S, Pass, RF, Thomas, JP, Navia, JM, Dworsky, ME. Defects of tooth structure in congenital cytomegalovirus infection. Pediatrics 1982;69(5):646–8.Google Scholar
Anderson, KS, Amos, CS, Boppana, S, Pass, R. Ocular abnormalities in congenital cytomegalovirus infection. J Am Optom Assoc 1996;67(5):273–8.Google Scholar
Fowler, KB, Boppana, SB. Congenital cytomegalovirus (CMV) infection and hearing deficit. J Clin Virol 2006;35(2):226–31.Google Scholar
Barbi, M, Binda, S, Caroppo, S, et al. A wider role for congenital cytomegalovirus infection in sensorineural hearing loss. Pediatr Infect Dis J 2003;22(1):39–42.Google Scholar
Barbi, M, Binda, S, Caroppo, S, Primache, V. Neonatal screening for congenital cytomegalovirus infection and hearing loss. J Clin Virol 2006;35(2):206–9.Google Scholar
Pass, RF. Congenital cytomegalovirus infection and hearing loss. Herpes 2005;12(2):50–5.Google Scholar
Barbi, M, Binda, S, Caroppo, S, Primache, V. Neonatal screening for congenital cytomegalovirus infection and hearing loss. J Clin Virol 2006;35(2):206–9.Google Scholar
Binda, S, Caroppo, S, Dido, P, et al. Modification of CMV DNA detection from dried blood spots for diagnosing congenital CMV infection. J Clin Virol 2004;30(3):276–9.Google Scholar
Leruez-Ville, M, Vauloup-Fellous, C, Couderc, S, et al. Prospective identification of congenital cytomegalovirus infection in newborns using real-time polymerase chain reaction assays in dried blood spots. Clin Infect Dis 2011;52(5):575–81.Google Scholar
Boppana, SB, Polis, MA, Kramer, AA, Britt, WJ, Koenig, S. Virus-specific antibody responses to human cytomegalovirus (HCMV) in human immunodeficiency virus type 1-infected persons with HCMV retinitis. J Infect Dis 1995;171(1):182–5.Google Scholar
Fowler, KB, Stagno, S, Pass, RF. Maternal immunity and prevention of congenital cytomegalovirus infection. JAMA 2003;289(8):1008–11.Google Scholar
Rousseau, T, Douvier, S, Reynaud, I, et al. Severe fetal cytomegalic inclusion disease after documented maternal reactivation of cytomegalovirus infection during pregnancy. Pren Diagn 2000;20(4):333–6.Google Scholar
Pass, RF, Fowler, KB, Boppana, SB, Britt, WJ, Stagno, S. Congenital cytomegalovirus infection following first trimester maternal infection: symptoms at birth and outcome. J Clin Virol 2006;35(2):216–20.Google Scholar
Ahlfors, K, Forsgren, M, Ivarsson, SA, Harris, S, Svanberg, L. Congenital cytomegalovirus infection: on the relation between type and time of maternal infection and infant’s symptoms. Scand J Infect Dis 1983;15(2):129–38.Google Scholar
Daiminger, A, Bader, U, Enders, G. Pre- and periconceptional primary cytomegalovirus infection: risk of vertical transmission and congenital disease. BJOG 2005;112(2):166–72.Google Scholar
Revello, MG, Zavattoni, M, Furione, M, et al. Diagnosis and outcome of preconceptional and periconceptional primary human cytomegalovirus infections. J Infect Dis 2002;186(4):553–7.Google Scholar
Revello, MG, Zavattoni, M, Furione, M, Fabbri, E, Gerna, G. Preconceptional primary human cytomegalovirus infection and risk of congenital infection. J Infect Dis 2006;193(6):783–7.Google Scholar
Hadar, E, Yogev, Y, Melamed, N, et al. Periconceptional cytomegalovirus infection: pregnancy outcome and rate of vertical transmission. Pren Diag 2010;30(12–13):1213–16.Google Scholar
Gindes, L, Teperberg-Oikawa, M, Sherman, D, Pardo, J, Rahav, G. Congenital cytomegalovirus infection following primary maternal infection in the third trimester. BJOG 2008;115(7):830–5.Google Scholar
Bodeus, M, Hubinont, C, Goubau, P. Increased risk of cytomegalovirus transmission in utero during late gestation. Obstet Gynecol 1999;93(5 Pt 1):658–60.Google Scholar
Steinlin, MI, Nadal, D, Eich, GF, Martin, E, Boltshauser, EJ. Late intrauterine Cytomegalovirus infection: clinical and neuroimaging findings. Pediatr Neurol 1996;15(3):249–53.Google Scholar
Guerra, B, Simonazzi, G, Puccetti, C, et al. Ultrasound prediction of symptomatic congenital cytomegalovirus infection. Am J Obstet Gynecol 2008;198(4):380e1–7.Google Scholar
Malinger, G, Lev, D, Lerman-Sagie, T. Imaging of fetal cytomegalovirus infection. Fetal Diagn Ther 2011;29(2):117–26.
Nigro, G, La Torre, R, Sali, E, et al. Intraventricular haemorrhage in a fetus with cerebral cytomegalovirus infection. Prenat Diagn 2002;22(7):558–61.Google Scholar
Picone, O, Vauloup-Fellous, C, Cordier, AG, et al. Late onset of ultrasound abnormalities in a case of periconceptional congenital cytomegalovirus infection. Ultrasound Obstet Gynecol 2008;31(4):481–3.Google Scholar
Barkovich, AJ, Lindan, CE. Congenital cytomegalovirus infection of the brain: imaging analysis and embryologic considerations. AJNR Am J Neuroradiol 1994;15(4):703–15.Google Scholar
Soussotte, C, Maugey-Laulom, B, Carles, D, Diard, F. Contribution of transvaginal ultrasonography and fetal cerebral MRI in a case of congenital cytomegalovirus infection. Fetal Diagn Ther 2000;15(4):219–23.Google Scholar
Malinger, G, Lev, D, Zahalka, N, et al. Fetal cytomegalovirus infection of the brain: the spectrum of sonographic findings. AJNR Am J Neuroradiol 2003;24(1):28–32.Google Scholar
Garel, C, Chantrel, E, Brisse, H, et al. Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. AJNR Am J Neuroradiol 2001;22(1):184–9.Google Scholar
Benoist, G, Salomon, LJ, Mohlo, M, et al. Cytomegalovirus-related fetal brain lesions: comparison between targeted ultrasound examination and magnetic resonance imaging. Ultrasound Obstet Gynecol 2008;32(7):900–5.Google Scholar
Picone, O, Simon, I, Benachi, A, Brunelle, F, Sonigo, P. Comparison between ultrasound and magnetic resonance imaging in assessment of fetal cytomegalovirus infection. Prenatal Diagn 2008;28(8):753–8.Google Scholar
Rivera, LB, Boppana, SB, Fowler, KB, et al. Predictors of hearing loss in children with symptomatic congenital cytomegalovirus infection. Pediatrics 2002;110(4):762–7.Google Scholar
Gouarin, S, Gault, E, Vabret, A, et al. Real-time PCR quantification of human cytomegalovirus DNA in amniotic fluid samples from mothers with primary infection. J Clin Microbiol 2002;40(5):1767–72.Google Scholar
Picone, O, Costa, JM, Leruez-Ville, M, et al. Cytomegalovirus (CMV) glycoprotein B genotype and CMV DNA load in the amniotic fluid of infected fetuses. Prenat Diagn 2004;24(12):1001–6.Google Scholar
Goegebuer, T, Van Meensel, B, Beuselinck, K, et al. Clinical predictive value of real-time PCR quantification of human cytomegalovirus DNA in amniotic fluid samples. J Clin Microbiol 2009;47(3):660–5.Google Scholar
Lanari, M, Lazzarotto, T, Venturi, V, et al. Neonatal cytomegalovirus blood load and risk of sequelae in symptomatic and asymptomatic congenitally infected newborns. Pediatrics 2006;117(1):e76–83.Google Scholar
Revello, MG, Zavattoni, M, Baldanti, F, et al. Diagnostic and prognostic value of human cytomegalovirus load and IgM antibody in blood of congenitally infected newborns. J Clin Virol 1999;14(1):57–66.Google Scholar
Benoist, G, Salomon, LJ, Jacquemard, F, Daffos, F, Ville, Y. The prognostic value of ultrasound abnormalities and biological parameters in blood of fetuses infected with cytomegalovirus. BJOG 2008;115(7):823–9.Google Scholar
Fabbri, E, Revello, M, Furione, M, et al. Prognostic markers of symptomatic congenital human cytomegalovirus infection in fetal blood. BJOG 2011;118(4):448–56.Google Scholar
Boppana, SB, Fowler, KB, Vaid, Y, et al. Neuroradiographic findings in the newborn period and long-term outcome in children with symptomatic congenital cytomegalovirus infection. Pediatrics 1997;99(3):409–14.Google Scholar
Duchatel, F, Oury, JF, Mennesson, B, Muray, JM. Complications of diagnostic ultrasound-guided percutaneous umbilical blood sampling: analysis of a series of 341 cases and review of the literature. Eur J Obstet Gynecol Reprod Biol 1993;52(2):95–104.Google Scholar
Nigro, G, Adler, SP, La Torre, R, Best, AM. Passive immunization during pregnancy for congenital cytomegalovirus infection. N Engl J Med 2005;353(13):1350–62.Google Scholar
Jacquemard, F, Yamamoto, M, Costa, JM, et al. Maternal administration of valaciclovir in symptomatic intrauterine cytomegalovirus infection. BJOG 2007;114(9):1113–21.
Malinger, G, Ben-Sira, L, Lev, D, et al. Fetal brain imaging: a comparison between magnetic resonance imaging and dedicated neurosonography. Ultrasound Obstet Gynecol 2004;23(4):333–40.Google Scholar
Malinger, G, Kidron, D, Schreiber, L, et al. Prenatal diagnosis of malformations of cortical development by dedicated neurosonography. Ultrasound Obstet Gynecol 2007;29(2):178–91.Google Scholar
Malinger, G, Lev, D, Lerman-Sagie, T. Is fetal magnetic resonance imaging superior to neurosonography for detection of brain anomalies? Ultrasound Obstet Gynecol 2002;20(4):317–21.Google Scholar
Malinger, G, Lev, D, Lerman-Sagie, T. Normal and abnormal fetal brain development during the third trimester as demonstrated by neurosonography. Eur J Radiol 2006;57(2):226–32.Google Scholar
Salomon, LJ, Garel, C. Magnetic resonance imaging examination of the fetal brain. Ultrasound Obstet Gynecol 2007;30(7):1019–32.Google Scholar
Pons, JC, Sigrand, C, Grangeot-Keros, L, Frydman, R, Thulliez, P. [Congenital toxoplasmosis: transmission to the fetus of a pre-pregnancy maternal infection]. Presse Med 1995;24(3):179–82.Google Scholar
Desmonts, G, Couvreur, J, Thulliez, P. [Congenital toxoplasmosis. 5 cases of mother-to-child transmission of pre-pregnancy infection]. Presse Med 1990;19(31):1445–9.Google Scholar
Jenum, PA, Kapperud, G, Stray-Pedersen, B, et al. Prevalence of Toxoplasma gondii specific immunoglobulin G antibodies among pregnant women in Norway. Epidemiol Infect 1998;120(1):87–92.Google Scholar
Allain, JP, Palmer, CR, Pearson, G. Epidemiological study of latent and recent infection by Toxoplasma gondii in pregnant women from a regional population in the U.K. J Infect 1998;36(2):189–96.Google Scholar
Valcavi, PP, Natali, A, Soliani, L, et al. Prevalence of anti-Toxoplasma gondii antibodies in the population of the area of Parma (Italy). Eur J Epidemiol 1995;11(3):333–7.Google Scholar
Ljungstrom, I, Gille, E, Nokes, J, Linder, E, Forsgren, M. Seroepidemiology of Toxoplasma gondii among pregnant women in different parts of Sweden. Eur J Epidemiol 1995;11(2):149–56.Google Scholar
Ades, AE, Nokes, DJ. Modeling age- and time-specific incidence from seroprevalence:toxoplasmosis. Am J Epidemiol 1993;137(9):1022–34.Google Scholar
Gilbert, RE, Tookey, PA, Cubitt, WD, et al. Prevalence of toxoplasma IgG among pregnant women in west London according to country of birth and ethnic group. BMJ 1993;306(6871):185.Google Scholar
Dannemann, BR, Vaughan, WC, Thulliez, P, Remington, JS. Differential agglutination test for diagnosis of recently acquired infection with Toxoplasma gondii. J Clin Microbiol 1990;28(9):1928–33.Google Scholar
Thulliez, P, Remington, JS, Santoro, F, et al. [A new agglutination reaction for the diagnosis of the developmental stage of acquired toxoplasmosis]. Pathol Biol (Paris) 1986;34(3):173–7.Google Scholar
Stepick-Biek, P, Thulliez, P, Araujo, FG, Remington, JS. IgA antibodies for diagnosis of acute congenital and acquired toxoplasmosis. J Infect Dis 1990;162(1):270–3.Google Scholar
Naot, Y, Desmonts, G, Remington, JS. IgM enzyme-linked immunosorbent assay test for the diagnosis of congenital Toxoplasma infection. J Pediatr 1981;98(1):32–6.Google Scholar
Jenum, PA, Stray-Pedersen, B, Gundersen, AG. Improved diagnosis of primary Toxoplasma gondii infection in early pregnancy by determination of antitoxoplasma immunoglobulin G avidity. J Clin Microbiol 1997;35(8):1972–7.Google Scholar
Lappalainen, M, Koskela, P, Koskiniemi, M, et al. Toxoplasmosis acquired during pregnancy: improved serodiagnosis based on avidity of IgG. J Infect Dis 1993;167(3):691–7.Google Scholar
Desmonts, G, Couvreur, J. Congenital toxoplasmosis. A prospective study of 378 pregnancies. N Engl J Med 1974;290(20):1110–16.Google Scholar
Daffos, F, Forestier, F, Capella-Pavlovsky, M, et al. Prenatal management of 746 pregnancies at risk for congenital toxoplasmosis. N Engl J Med 1988;318(5):271–5.Google Scholar
Desmonts, G, Couvreur, J. [Natural history of congenital toxoplasmosis]. Ann Pediatr (Paris) 1984;31(10):799–802.Google Scholar
Velin, P, Dupont, D, Barbot, D, et al. [Double mother-fetus HIV-1 and toxoplasma contamination]. Presse Med 1991;20(20):960.Google Scholar
Marty, P, Le Fichoux, Y, Deville, A, Forest, H. [Congenital toxoplasmosis and preconceptional maternal ganglionic toxoplasmosis]. Presse Med 1991;20(8):387.Google Scholar
Couvreur, J. [Problems of congenital toxoplasmosis. Evolution over four decades]. Presse Med 1999;28(14):753–7.Google Scholar
Lebas, F, Ducrocq, S, Mucignat, V, et al. [Congenital toxoplasmosis: a new case of infection during pregnancy in a previously immunized and immunocompetent woman]. Arch Pediatr 2004;11(8):926–8.Google Scholar
Hennequin, C, Dureau, P, N’Guyen, L, et al. Congenital toxoplasmosis acquired from an immune woman. Pediatr Infect Dis J 1997;16(1):75–7.Google Scholar
Gavinet, MF, Robert, F, Firtion, G, et al. Congenital toxoplasmosis due to maternal reinfection during pregnancy. J Clin Microbiol 1997;35(5):1276–7.Google Scholar
Fortier, B, Ajana, F, Pinto de Sousa, MI, Aissi, E, Camus, D. [Prevention and treatment of materno-fetal toxoplasmosis]. Presse Med 1991;20(29):1374–83.Google Scholar
Thiebaut, R, Leproust, S, Chene, G, Gilbert, R. Effectiveness of prenatal treatment for congenital toxoplasmosis: a meta-analysis of individual patients’ data. Lancet 2007;369(9556):115–22.Google Scholar
Mombro, M, Perathoner, C, Leone, A, et al. Congenital toxoplasmosis: 10-year follow up. Eur J Pediatr 1995;154(8):635–9.Google Scholar
Fortier, B, Coignard-Chatain, C, Dao, A, et al. [Study of developing clinical outbreak and serological rebounds in children with congenital toxoplasmosis and follow-up during the first 2 years of life]. Arch Pediatr 1997;4(10):940–6.Google Scholar
Pratlong, F, Boulot, P, Villena, I, et al. Antenatal diagnosis of congenital toxoplasmosis: evaluation of the biological parameters in a cohort of 286 patients. Br J Obstet Gynaecol 1996;103(6):552–7.Google Scholar
Pinon, JM, Chemla, C, Villena, I, et al. Early neonatal diagnosis of congenital toxoplasmosis: value of comparative enzyme-linked immunofiltration assay immunological profiles and anti-Toxoplasma gondii immunoglobulin M (IgM) or IgA immunocapture and implications for postnatal therapeutic strategies. J Clin Microbiol 1996;34(3):579–83.Google Scholar
Pratlong, F, Boulot, P, Issert, E, et al. Fetal diagnosis of toxoplasmosis in 190 women infected during pregnancy. Prenat Diagn 1994;14(3):191–8.Google Scholar
Hohlfeld, P, Daffos, F, Costa, JM, et al. Prenatal diagnosis of congenital toxoplasmosis with a polymerase-chain-reaction test on amniotic fluid. N Engl J Med 1994;331(11):695–9.Google Scholar
Desmonts, G, Daffos, F, Forestier, F, et al. Prenatal diagnosis of congenital toxoplasmosis. Lancet 1985;1(8427):500–4.Google Scholar
Rothova, A, Meenken, C, Buitenhuis, HJ, et al. Therapy for ocular toxoplasmosis. Am J Ophthalmol 1993;115(4):517–23.Google Scholar
Lakhanpal, V, Schocket, SS, Nirankari, VS. Clindamycin in the treatment of toxoplasmic retinochoroiditis. Am J Ophthalmol 1983;95(5):605–13.Google Scholar
Berrebi, A, Bardou, M, Bessieres, MH, et al. Outcome for children infected with congenital toxoplasmosis in the first trimester and with normal ultrasound findings: a study of 36 cases. Eur J Obstet Gynecol Reprod Biol 2007;135(1):53–7.Google Scholar
Hohlfeld, P, Daffos, F, Thulliez, P, et al. Fetal toxoplasmosis: outcome of pregnancy and infant follow-up after in utero treatment. J Pediatr 1989;115(5 Pt 1):765–9.Google Scholar
Desmonts, G, Couvreur, J. [Congenital toxoplasmosis. Prospective study of the outcome of pregnancy in 542 women with toxoplasmosis acquired during pregnancy]. Ann Pediatr (Paris) 1984;31(10):805–9.Google Scholar
Wilson, CB, Remington, JS, Stagno, S, Reynolds, DW. Development of adverse sequelae in children born with subclinical congenital Toxoplasma infection. Pediatrics 1980;66(5):767–74.Google Scholar
McAuley, J, Boyer, KM, Patel, D, et al. Early and longitudinal evaluations of treated infants and children and untreated historical patients with congenital toxoplasmosis: the Chicago Collaborative Treatment Trial. Clin Infect Dis 1994;18(1):38–72.Google Scholar
Roizen, N, Swisher, CN, Stein, MA, et al. Neurologic and developmental outcome in treated congenital toxoplasmosis. Pediatrics 1995;95(1):11–20.Google Scholar
Patel, DV, Holfels, EM, Vogel, NP, et al. Resolution of intracranial calcifications in infants with treated congenital toxoplasmosis. Radiology 1996;199(2):433–40.Google Scholar
Peyron, F, Wallon, M, Bernardoux, C. Long-term follow-up of patients with congenital ocular toxoplasmosis. N Engl J Med 1996;334(15):993–4.Google Scholar
Guerina, NG, Hsu, HW, Meissner, HC, et al. Neonatal serologic screening and early treatment for congenital Toxoplasma gondii infection. The New England Regional Toxoplasma Working Group. N Engl J Med 1994;330(26):1858–63.Google Scholar
Koppe, JG, Loewer-Sieger, DH, de Roever-Bonnet, H. Results of 20-year follow-up of congenital toxoplasmosis. Lancet 1986;1(8475):254–6.Google Scholar
Couvreur, J, Desmonts, G, Aron-Rosa, D. [Ocular prognosis in congenital toxoplasmosis: the role of treatment. Preliminary communication]. Ann Pediatr (Paris) 1984;31(10):855–8.Google Scholar
Leport, C, Vilde, JL, Katlama, C, et al. Failure of spiramycin to prevent neurotoxoplasmosis in immunosuppressed patients. JAMA 1986;255(17):2290.Google Scholar
Derouin, F. [New pathogens and mode of action of azithromycin: Toxoplasma gondii]. Pathol Biol (Paris) 1995;43(6):561–4.Google Scholar
Alder, J, Hutch, T, Meulbroek, JA, Clement, JC. Treatment of experimental Toxoplasma gondii infection by clarithromycin-based combination therapy with minocycline or pyrimethamine. J Acquir Immune Defic Syndr 1994;7(11):1141–8.Google Scholar
Cantin, L, Chamberland, S. In vitro evaluation of the activities of azithromycin alone and combined with pyrimethamine against Toxoplasma gondii. Antimicrob Agents Chemother 1993;37(9):1993–6.Google Scholar
Derouin, F, Almadany, R, Chau, F, Rouveix, B, Pocidalo, JJ. Synergistic activity of azithromycin and pyrimethamine or sulfadiazine in acute experimental toxoplasmosis. Antimicrob Agents Chemother 1992;36(5):997–1001.Google Scholar
Araujo, FG, Guptill, DR, Remington, JS. Azithromycin, a macrolide antibiotic with potent activity against Toxoplasma gondii. Antimicrob Agents Chemother 1988;32(5):755–7.Google Scholar
Huskinson-Mark, J, Araujo, FG, Remington, JS. Evaluation of the effect of drugs on the cyst form of Toxoplasma gondii. J Infect Dis 1991;164(1):170–1.Google Scholar
Wallon, M, Liou, C, Garner, P, Peyron, F. Congenital toxoplasmosis: systematic review of evidence of efficacy of treatment in pregnancy. BMJ 1999;318(7197):1511–14.Google Scholar
Foulon, W, Villena, I, Stray-Pedersen, B, et al. Treatment of toxoplasmosis during pregnancy: a multicenter study of impact on fetal transmission and children’s sequelae at age 1 year. Am J Obstet Gynecol 1999;180(2 Pt 1):410–15.Google Scholar
Berrebi, A, Kobuch, WE, Bessieres, MH, et al. Termination of pregnancy for maternal toxoplasmosis. Lancet 1994;344(8914):36–9.Google Scholar
McCabe, R, Remington, JS. Toxoplasmosis: the time has come. N Engl J Med 1988;318(5):313–15.Google Scholar
Foulon, W, Naessens, A, Lauwers, S, De Meuter, F, Amy, JJ. Impact of primary prevention on the incidence of toxoplasmosis during pregnancy. Obstet Gynecol 1988;72(3 Pt 1):363–6.Google Scholar
Buxton, D. Protozoan infections (Toxoplasma gondii, Neospora caninum and Sarcocystis spp.) in sheep and goats: recent advances. Vet Res 1998;29(3–4):289–310.Google Scholar
Wastling, JM, Harkins, D, Buxton, D. Western blot analysis of the IgG response of sheep vaccinated with S48 Toxoplasma gondii (Toxovax). Res Vet Sci 1994;57(3):384–6.Google Scholar
Buxton, D, Thomson, KM, Maley, S, Wright, S, Bos, HJ. Experimental challenge of sheep 18 months after vaccination with a live (S48) Toxoplasma gondii vaccine. Vet Rec 1993;133(13):310–12.Google Scholar
Gregg, NM. Congenital defects associated with maternal rubella. Aust Hosp 1947;14(11):7–9.Google Scholar
Best, JM, Banatvala, JE, Morgan-Capner, P, Miller, E. Fetal infection after maternal reinfection with rubella: criteria for defining reinfection. BMJ 1989;299(6702):773–5.Google Scholar
Miller, E, Cradock-Watson, JE, Pollock, TM. Consequences of confirmed maternal rubella at successive stages of pregnancy. Lancet 1982;2(8302):781–4.Google Scholar
Daffos, F, Forestier, F, Grangeot-Keros, L, et al. Prenatal diagnosis of congenital rubella. Lancet 1984;2(8393):1–3.Google Scholar
Enders, G, Nickerl-Pacher, U, Miller, E, Cradock-Watson, JE. Outcome of confirmed periconceptional maternal rubella. Lancet 1988;1(8600):1445–7.Google Scholar
Lee, JY, Bowden, DS. Rubella virus replication and links to teratogenicity. Clin Microbiol Rev 2000;13(4):571–87.Google Scholar
Munro, ND, Sheppard, S, Smithells, RW, Holzel, H, Jones, G. Temporal relations between maternal rubella and congenital defects. Lancet 1987;2(8552):201–4.Google Scholar
Givens, KT, Lee, DA, Jones, T, Ilstrup, DM. Congenital rubella syndrome: ophthalmic manifestations and associated systemic disorders. Br J Ophthalmol 1993;77(6):358–63Google Scholar
O’Neill, JF. The ocular manifestations of congenital infection: a study of the early effect and long-term outcome of maternally transmitted rubella and toxoplasmosis. Trans Am Ophthalmol Soc 1998;96:813–79.Google Scholar
Forrest, JM, Menser, MA, Harley, JD. Diabetes mellitus and congenital rubella. Pediatrics 1969;44(3):445–7.Google Scholar
Menser, MA, Dods, L, Harley, JD. A twenty-five-year follow-up of congenital rubella. Lancet 1967;2(7530):1347–50.Google Scholar
Forrest, JM, Turnbull, FM, Sholler, GF et al. Gregg’s congenital rubella patients 60 years later. Med J Aust 2002;177(11–12): 664–667.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×