Published online by Cambridge University Press: 23 September 2009
The well known Landau theory of the low-temperature properties of superfluid 4He starts from a weakly interacting gas of phonons and rotons. This theory is very successful but it is essentially phenomenological since it makes no reference to the Bose condensate. The core of this book is a discussion of the modern microscopic theory of Bose-condensed systems based on finite-temperature Green's function techniques (the dielectric formalism). My emphasis is on developing the language and concepts of this formalism in a way that brings out the essential physics. This book is the first general account of the progress made in the last two decades toward understanding the excitations in superfluid 4He specifically within the framework of a Bose-condensed liquid. I hope it will be a guide and stimulus to a new generation of experimentalists and theorists studying superfluid 4He. The book should also be of interest to a much wider audience, since the phenomenon of Bose condensation, with its associated macroscopic quantum effects, plays a central role in modern condensed matter physics (Anderson, 1984).
The goal of this book is two-fold: (a) to summarize the field-theoretic analysis of a Bose-condensed fluid and (b) to use this formalism to understand the nature of the excitations in superfluid 4He. I emphasize how a Bose broken symmetry inevitably leads to certain characteristic features in the structure of various correlation functions, the most spectacular being the phenomenon of superfluidity. A major theme is the way in which a Bose condensate mixes the elementary excitation and density fluctuation spectra.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.