Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T21:25:57.809Z Has data issue: false hasContentIssue false

9 - Nutrient Acquisition by Algae and Aquatic Embryophytes

from Part II - Physiology of Photosynthetic Autotrophs in Present-Day Environments

Published online by Cambridge University Press:  24 October 2024

Mario Giordano
Affiliation:
Università degli Studi di Ancona, Italy
John Beardall
Affiliation:
Monash University, Victoria
John A. Raven
Affiliation:
University of Dundee
Stephen C. Maberly
Affiliation:
UK Centre for Ecology & Hydrology, Lancaster
Get access

Summary

The major essential nutrients, nitrogen and phosphorus, limit primary productivity in many aquatic environments, though in some areas of the ocean (high nutrient low chlorophyll), productivity is limited by the availability of iron or iron and manganese. Planktonic cyanobacteria are major nitrogen fixers in marine and fresh waters; heterocystous cyanobacteria are common in fresh waters and occur as symbionts in marine diatoms. Non-heterocystous marine cyanobacteria occur free-living and as algal symbionts. Nitrogen fixation requires iron and molybdenum, which can be less commonly replaced by vanadium, as well as reductants and ATP. For combined nitrogen, the form assimilated into organic nitrogen is, as for diazotrophs, ammonium, which is taken up by specific transporters. Nitrate influx also involves an energised transporter. Nitrate reductase requires catalytic iron and molybdenum and reductant to produce nitrite; nitrite is reduced to ammonium by nitrite reductase using catalytic iron. Several forms of organic nitrogen can also be taken up and assimilated by algae. Phosphorus is taken up as inorganic phosphate; organic phosphate from the medium is hydrolysed by phosphatases secreted by algae. Aquatic rhizophytic macrophytes with rhizoids or roots in fine-grained substrates acquire various fractions of combined nitrogen and of phosphate from the sediment and from overlying water.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abida, H., Dolch, D.-J., Meï, C. et al. (2015). Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiology 167: 118136.CrossRefGoogle ScholarPubMed
Abreu, M. H., Pereira, R., Buschmann, A. H. et al. (2011). Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. Journal of Experimental Marine Biology and Ecology 407: 190199.CrossRefGoogle Scholar
Aksnes, D. L. & Egge, J. K. (1991). A theoretical model for nutrient uptake in phytoplankton. Marine Ecology Progress Series 70: 6572.CrossRefGoogle Scholar
Adler, P. B., Salguero-Gómez, R., Compagnoni, A. et al. (2014). Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences USA 111: 740745.CrossRefGoogle ScholarPubMed
Ale, M. T., Mikkelsen, J. D. & Meyer, A. S. (2011). Differential growth response of Ulva lactuca to ammonium and nitrate assimilation. Journal of Applied Phycology 23: 345351.CrossRefGoogle Scholar
Alexandre, A., Silva, J. & Santos, R. (2010). Inorganic nitrogen uptake and related enzymatic activity of the seagrass Zostera noltii. Marine Biology 31: 539545.Google Scholar
Alexandre, A., Silva, J., Bouma, T. J. et al. (2011). Inorganic nitrogen uptake kinetics and whole-plant nitrogen budget in the seagrass Zostera noltii. Journal of Experimental Marine Biology and Ecology 401: 712.CrossRefGoogle Scholar
Alexandre, A., Georgiou, D. & Santos, R. (2014). Inorganic nitrogen acquisition by the tropical seagrass Halophila stipulacea. Marine Ecology 35: 387394.CrossRefGoogle Scholar
Alexandre, A. & Santos, R. (2020a). Competition for nitrogen between the seaweed Caulerpa prolifera and the seagrass Cymodocea nodosa. Marine Ecology Progress Series 648: 125134.CrossRefGoogle Scholar
Alexandre, A. & Santos, R. (2020b). High nitrogen and phosphorus acquisition by belowground parts of Caulerpa prolifera (Chlorophyta) contribute to the species’ rapid spread in the Ria Formosa saloon, Southern Portugal. Journal of Phycology 56: 608617.CrossRefGoogle Scholar
Alipanah, L., Rohloff, J., Winge, P. et al. (2015). Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum. Journal of Experimental Botany 66: 62816296.CrossRefGoogle ScholarPubMed
Allen, J. T, Brown, L., Sanders, R. et al. (2005). Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic. Nature 437: 728732.CrossRefGoogle ScholarPubMed
Allen, A. E., Vardi, A. & Bowler, C. (2006). An ecological and evolutionary context for integrated nitrogen metabolism and related signalling pathways in marine diatoms. Current Opinions in Plant Biology 9: 264273.CrossRefGoogle ScholarPubMed
Allen, A. E., Dupont, C. L., Oborník, M. et al. (2011). Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473: 203207.CrossRefGoogle ScholarPubMed
Allen, W. J. & Collinson, I. (2020). Ammonium transporters: A molecular dual carriageway. eLife 9: e61148. https://doi.org/10.7554/eLife.61148CrossRefGoogle ScholarPubMed
Ammerman, J. W. (1991). Role of ecto-phosphohydrolases in phosphorus regeneration in estuarine and coastal ecosystems. In: Chróst, R. J. (ed.) Microbial Enzymes in Aquatic Environments. Springer Verlag, New York, pp. 165186.CrossRefGoogle Scholar
Ammerman, J. W. & Azam, F. (1985). Bacterial 5X-nucleotidase in aquatic ecosystems: A novel mechanism of phosphorus regeneration. Science 227: 13381340.CrossRefGoogle ScholarPubMed
Anbar, A. D. & Knoll, A. H. (2002). Proterozoic ocean chemistry and evolution: A bioinorganic bridge?. Science 297: 11371142.CrossRefGoogle ScholarPubMed
Andresen, E., Edgar, P. & Küpper, H. (2018). Trace metal metabolism in plants. Journal of Experimental Botany 69: 909954.CrossRefGoogle ScholarPubMed
Anderson, S. L. & Burris, J. E. (1987). Role of glutamine synthetase in ammonia assimilation by symbiotic marine dinoflagellates (zooxanthellae). Marine Biology 94: 451458.CrossRefGoogle Scholar
Andrews, M. (1987). Phosphate uptake by the component parts of Chara hispida. British Phycological Journal 22: 4953.CrossRefGoogle Scholar
Andrews, M., Maule, H. G., Raven, J. A. et al. (2005). Extension growth of Impatiens glandulifera at low irradiances: Importance of nitrate and potassium accumulation. Annals of Botany 95: 641658.CrossRefGoogle ScholarPubMed
Andrews, M., Raven, J. A. & Lea, P. J. (2013). Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Annals of Applied Biology 163: 174199.CrossRefGoogle Scholar
Andrews, M. & Raven, J. A. (2022). Root or shoot nitrate assimilation in terrestrial vascular plants – does it matter? Plant and Soil 476: 3162.CrossRefGoogle Scholar
Armbrust, E. V., Berges, J. A., Bowler, C. et al. (2004). The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 306: 7986.CrossRefGoogle ScholarPubMed
Armin, G. & Inomura, K. (2022). Modeling the elemental stoichiometry and silicon accumulation in diatoms. Current Research in Microbial Sciences 3: 100164. https://doi.org/10.1016/j.crmicr.2022.100164.CrossRefGoogle ScholarPubMed
Arrigo, K. R., Dunbar, R. B., Lizotte, M. P. et al. (2002). Taxon-specific differences in C/P and N/P drawdown for phytoplankton in the Ross Sea, Antarctica. Geophysical Research Letters 29: 1938.CrossRefGoogle Scholar
Armin, G. & Inomura, K. (2022). Modeling the elemental stoichiometry and silicon accumulation in diatoms Current Research in Microbial Sciences 3: 100164. https://doi.org/10.1016/j.crmicr.2022.100164.CrossRefGoogle ScholarPubMed
Baines, S. B., Twining, B. S., Brzezinski, M. A. et al. (2012). Significant silicon accumulation by marine picocyanobacteria. Nature Geoscience 5: 886891.CrossRefGoogle Scholar
Baker, D. M., Andras, J. P., Jordá-Garza, A. G. et al. (2013). Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades. The ISME Journal 7: 12481251.CrossRefGoogle Scholar
Balaguer, J., Koch, F., Hassler, C. et al. (2022). Iron and manganese co-limit the growth of two phytoplankton groups dominant at two locations of the Drake Passage. Communications Biology 5: 207. https://doi.org/10.1038/s42003-022-03148-8.CrossRefGoogle ScholarPubMed
Beardall, J., Young, E. & Roberts, S. (2001). Approaches for determining phytoplankton nutrient limitation. Aquatic Science 63: 4469.CrossRefGoogle Scholar
Beardall, J., Allen, D., Bragg, J. et al. (2009). Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytologist 181: 295309.CrossRefGoogle ScholarPubMed
Behrenfeld, M. J. & Milligan, A. J. (2013) Photophysiological expressions of iron stress in phytoplankton. Annual Review of Marine Science 5: 217246.CrossRefGoogle ScholarPubMed
Bender, S. J., Parker, M. S. & Armbrust, E. V. (2012). Coupled effects of light and nitrogen source on the urea cycle and nitrogen metabolism over a diel cycle in the marine diatom Thalassiosira pseudonana. Protist 163: 232251.CrossRefGoogle Scholar
Bender, S. J., Durkin, C. A., Berthiaume, C. T. et al. (2014). Transcriptional responses of three model diatoms to nitrate limitation of growth. Frontiers in Marine Science 1: 3. https://doi.org/10.3389/fmars.2014.00003.CrossRefGoogle Scholar
Benitez-Nelson, C. R. (2000). The biogeochemical cycling of phosphorus in marine systems. Earth Science Reviews 51: 109135.CrossRefGoogle Scholar
Berges, J. (1997). Algal nitrate reductase. European Journal of Phycology 32: 38.CrossRefGoogle Scholar
Berges, J. A. & Mulholland, M. R. (2008). ‘Enzymes and nitrogen cycling’. In: Capone, D. G., Bronk, D. A., Mulholland, M. R. & Carpenter, E. J. (eds.) Nitrogen in the Marine Environment. Elsevier, Amsterdam, pp. 13851445.CrossRefGoogle Scholar
Bergman, B., Sandh, G., Lin, S. et al. (2013). Trichodesmium–a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiology Review 37: 286302.CrossRefGoogle ScholarPubMed
Berman‐Frank, I., Lundgren, P. & Falkowski, P. (2003). Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Research in Microbiology 154: 157164.CrossRefGoogle ScholarPubMed
Berman-Frank, I., Quigg, A., Finkel, Z. V. et al. (2007). Cyanobacterial strategy of nitrogen-fixation influences diazotroph dependence on iron resources. Limnology and Oceanography 52: 22602269.CrossRefGoogle Scholar
Bertilsson, S., Berglund, O., Karl, D. M. et al. (2003). Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea. Limnology and Oceanography 48: 17211731.CrossRefGoogle Scholar
Björkman, K. M. & Karl, D. M. (1994). Bioavailability of inorganic and organic P compounds to natural assemblages of microorganisms in Hawaiian coastal waters. Marine Ecology Progress Series 111: 265273.CrossRefGoogle Scholar
Björkman, K. M. & Karl., D. M. (2005). Presence of dissolved nucleotides in the North Pacific Subtropical Gyre and their role in cycling of dissolved organic phosphorus. Aquatic Microbial Ecology 39: 193203.CrossRefGoogle Scholar
Bowler, C., Allen, A. E., Badger, J. H. et al. (2008). The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456: 239244.CrossRefGoogle ScholarPubMed
Bowler, C., De Martino, A. & Falciatore, A. (2010). Diatom cell division in an environmental context. Current Opinion in Plant Biology 13: 623630.CrossRefGoogle Scholar
Boyd, P. W., Strzepek, R., Fu, F. et al. (2010). Environmental control of open-ocean phytoplankton groups: Now and in the future. Limnology and Oceanography 55: 13531376.CrossRefGoogle Scholar
Box, R. J., Andrews, M. & Raven, J. A. (1984). Intracellular transport and cytoplasmic streaming in Chara hispida. Journal of Experimental Botany 35: 10161021.CrossRefGoogle Scholar
Box, R. J., Boxer, M. & Boxer, D. (1985). Compartmentation of PO4-uptakeand 32P efflux in the rhizoid cells of Chara hispida L. Biochimie und Physiologie der Pflanzen 180: 551555.Google Scholar
Box, R. J. (1986). Quantitative short-term uptake of inorganic phosphate by the Chara hispida rhizoid. Plant Cell and Environment 9: 501506.CrossRefGoogle Scholar
Box, R. J. (1987). The uptake of nitrate and ammonium nitrogen in Chara hispida L.: Contribution of the rhizoid. Plant Cell and Environment 10: 169176.CrossRefGoogle Scholar
Branco, P., Stomp, M., Egas, M. et al. (2010). Evolution of nutrient uptake reveals a trade‐off in the ecological stoichiometry of plant‐herbivore interactions. The American Naturalist 176: E162E176. https://doi.org/10.1086/657036.CrossRefGoogle ScholarPubMed
Brembu, T., Mühlroth, A., Alipanah, L. et al. (2017). The effects of phosphorus limitation on carbon metabolism in diatoms. Philosophical Transactions of the Royal Society B 372: 20160406. https://doi.org/10.1098/rstb.2016.0406.CrossRefGoogle ScholarPubMed
Brewer, P. G. & Goldman, J. C. (1976). Alkalinity changes generated by phytoplankton growth. Limnology and Oceanography 21: 108117.CrossRefGoogle Scholar
Bristow, J. M. & Whitcombe, M. (1971). The role of roots in the nutrition of aquatic vascular plants. American Journal of Botany 58: 813.CrossRefGoogle Scholar
Bristow, L. A., Mohr, W., Ahmerkamp, S. et al. (2017). Nutrients that limit growth in the ocean. Current Biology 27: R431R510.CrossRefGoogle ScholarPubMed
Brodersen, K. E., Koren, K., Moβhanmer, M. et al. (2017). Seagrass-mediated phosphorus and iron solubilisation in tropical sediments. Science and Technology 51: 1415514163.CrossRefGoogle ScholarPubMed
Bromke, M. A., Giavalisco, P., Willmitzer, L. et al. (2013). Metabolic analysis of adaptation to short-term changes in culture conditions of the marine diatom Thalassiosira pseudonana. PLOS ONE 8: e67340. https://doi.org/10.1371/journal.pone.0067340.CrossRefGoogle ScholarPubMed
Bromke, M. A., Sabir, J. S., Alfassi, F. A. et al. (2015). Metabolomic profiling of 13 diatom cultures and their adaptation to nitrate limited growth conditions. PLOS ONE 10: e0138965. https://doi.org/10.1371/journal.pone.0138965.CrossRefGoogle ScholarPubMed
Bronk, D. A., See, J. H., Bradley, P. et al. (2007). DON as a source of bioavailable nitrogen for phytoplankton. Biogeosciences 4: 283296.CrossRefGoogle Scholar
Browning, T. J., Achterberg, E. P., Engel, A. et al. (2021). Manganese co-limitation of phytoplankton growth and major nutrient drawdown in the Southern Ocean. Nature Communications 12: 884.CrossRefGoogle ScholarPubMed
Brzezinski, M. A. (1985). The Si:C:N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables. Journal of Phycology 21: 347357.CrossRefGoogle Scholar
Brzezinski, M. A., Olson, R. & Chisholm, S. (1990). Silicon availability and cell-cycle progression in marine diatoms. Marine Ecology Progress Series 67: 8396.CrossRefGoogle Scholar
Brzezinski, M. A., Krause, J. W., Baines, S. B. et al. (2017). Patterns and regulation of silicon accumulation in Synechococcus spp. Journal of Phycology 53: 746761.CrossRefGoogle ScholarPubMed
Brzezinski, M. A., Closset, I., Jones, J. L. et al. (2021). New constraints on the physical and biological controls on the silicon isotopic composition of the Arctic Ocean. Frontiers in Marine Science 8: 699762. https://doi.org/10.3389/fmars.2021.699762.CrossRefGoogle Scholar
Cáceres, C., Spatharis, S., Kaiserli, E. et al. (2019). Temporal phosphate gradients reveal diverse acclimation responses in phytoplankton phosphate uptake. The ISME Journal 13: 28342845.CrossRefGoogle ScholarPubMed
Callon, O., Bulte, L., Kuras, R. et al. (1993). Extensive accumulation of an extracellular l-amino acid oxidase during gametogenesis of Chlamydomonas reinhardtii. European Journal of Biochemistry 215: 351360.Google Scholar
Capone, D. G., Zehr, J. P., Paerl, H. W. et al. (1997). Trichodesmium, a globally significant marine cyanobacterium. Science 276: 12211229.CrossRefGoogle Scholar
Capone, D. G. (2008). The marine nitrogen cycle. Microbe 3: 186192.Google Scholar
Carpenter, E., Montoya, J., Burns, J. et al. (1999). Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean. Marine Ecology Progress Series 185: 273283.CrossRefGoogle Scholar
Casey, J. R., Lomas, M. W., Michelou, V. K. et al. (2009). Phytoplankton taxon-specific orthophosphate (Pi) and ATP utilization in the western subtropical North Atlantic. Aquatic Microbial Ecology 58: 3144.CrossRefGoogle Scholar
Cedergreen, N. & Madsen, T. V. (2003a). Nitrate reductase activity in roots and shoots of aquatic macrophytes. Aquatic Botany 76: 203212.CrossRefGoogle Scholar
Cedergreen, N. & Madsen, T. V. (2003b). Light regulation of root and leaf NO3 uptake and reduction in the floating macrophyte Lemna minor. New Phytologist 161: 449457.CrossRefGoogle ScholarPubMed
Cembella, A. D., Antia, N. J. & Harrison, P. J. (1982). The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: A multidisciplinary perspective. CRC Critical Reviews in Microbiology 10: 317391.CrossRefGoogle Scholar
Chen, X.-H., Li, Y.-Y., Zhang, H. et al. (2018). Quantitative proteomics reveals common and specific responses of a marine diatom Thalassiosira pseudonana to different macronutrient deficiencies. Frontiers in Microbiology 9: 2761. https://doi.org/10.3389/fmicb.2018.02761.CrossRefGoogle ScholarPubMed
Chisholm, S. W. & Stross, R. G. (1976). Phosphate uptake kinetics in Euglena gracilis (Euglenophyceae) in light-dark cycles. 2. Phased PO4-limited cultures. Journal of Phycology 12: 217222.Google Scholar
Chisholm, J. R. M., Douga, C., Ageron, E. et al. (1996). ‘Roots’ in mixotrophic algae. Nature 381: 382.CrossRefGoogle Scholar
Christiansen, N. H., Andersen, F. Ø. & Jensen, H. S. (2016). Phosphate uptake kinetics for four species of submerged freshwater macrophytes measured by a 33P phosphate radioisotope technique. Aquatic Botany 128: 5867.CrossRefGoogle Scholar
Chung, C. C., Hwang, S. P. L. & Chang, J. (2003). Identification of a high-affinity phosphate transporter gene in a prasinophyte alga, Tetraselmis chui, and its expression under nutrient limitation. Applied Aquatic Botany Environmental Microbiology 69: 754759.CrossRefGoogle Scholar
Cochlan, W. P. & Harrison, P. J. (1991). Uptake of nitrate, ammonium, and urea by nitrogen-starved cultures of Micromonas pusilla (Prasinophyceae): Transient responses. Journal of Phycology 27: 673679.CrossRefGoogle Scholar
Codispoti, L. A. (1989). ‘Phosphorus vs. nitrogen limitation in new and export production’. In: Berger, W. H., Smetacek, V. S. & Wefer, G. (eds.) Productivity of Oceans: Present and Past. Wiley, Chichester, pp. 372394.Google Scholar
Codispoti, L. A. (1995). Is the ocean losing nitrate? Nature 376: 724.CrossRefGoogle Scholar
Cohen, R. A. & Fong, P. (2006). Using opportunistic green macroalgae as indicators of nitrogen supply and sources to estuaries. Ecological Applications 16: 14051420.CrossRefGoogle ScholarPubMed
Collos, Y. & Slawyk, G. (1980). ‘Nitrogen uptake and assimilation by marine phytoplankton’. In: , P. G. Falkowski, (ed.) Primary Productivity in the Sea. Plenum Press, New York, pp. 195211.CrossRefGoogle Scholar
Collos, Y. (1986). Time-lag algal growth dynamics: Biological constraints on primary production in aquatic environments. Marine Ecology Progress Series 33: 193206.CrossRefGoogle Scholar
Conti-Jerpe, I. E., Thompson, P. D., Wong, C. W. M. et al. (2020). Trophic strategy and bleaching resistance in reef-building corals. Science Advances 6: z5443. https://doi.org/10.1126/sciadv.aaz5443.CrossRefGoogle ScholarPubMed
Corbridge, D. E. C. (1990). Phosphorus, Studies in Inorganic Chemistry. Elsevier, Oxford.Google Scholar
Corcoran, A. A. & Boeing, W. J. (2012). Biodiversity increases the productivity and stability of phytoplankton communities. PLOS ONE 7: 19.CrossRefGoogle ScholarPubMed
Cullen, J. J. (2015). Subsurface chlorophyll maximum layers: Enduring enigma or mystery solved? Annual Review of Marine Science 7: 207239.CrossRefGoogle ScholarPubMed
Dagenais-Bellefeuille, S. & Morse, D. (2013). Putting the N in dinoflagellates. Frontiers in Microbiology 4: 369. https://doi.org/10.3389/micb.2013.00369.CrossRefGoogle Scholar
Dagestad, D., Lien, T. & Knutsen, G. (1981). Degradation and compartmentalization of urea in Chlamydomonas reinhardii. Archives of Microbiology 129: 261264.CrossRefGoogle Scholar
D’Elia, C. F., Domotor, S. L. & Webb, K. L. (1983). Nutrient uptake kinetics of freshly isolated zooxanthellae. Marine Biology 75: 157167.CrossRefGoogle Scholar
Denny, P. (1972). Sites of nutrient absorption in aquatic macrophytes. Journal of Ecology 60: 819829.CrossRefGoogle Scholar
Derelle, E., Ferraz, C., Rombautz, S. et al. (2006). Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Sciences USA 103: 1164711652.CrossRefGoogle ScholarPubMed
Deutsch, C. & Weber, T. (2012). Nutrient ratios as a tracer and driver of ocean biogeochemistry. Annual Review of Marine Science 4: 113141.CrossRefGoogle ScholarPubMed
Diaz, J., Ingall, E., Benitez-Nelson, C. et al. (2008). Marine polyphosphate: A key player in geo-logic phosphorus sequestration. Science 320: 652655.CrossRefGoogle Scholar
Dorado, S., Booe, T., Steichen, J. et al. (2015). Towards an understanding of the interactions between freshwater inflows and phytoplankton communities in subtropical estuaries. PLOS ONE 10: e0130931. https://doi.org/10.1371/journal.pone.0130931.CrossRefGoogle Scholar
Donald, K. M., Scanlan, D. J., Carr, N. G. et al. (1997). Comparative phosphorus nutrition of the marine cyanobacterium Synechococcus WH7803 and the marine diatom Thalassiosira weissflogii. Journal of Plankton Research 19: 17931813.CrossRefGoogle Scholar
Dortch, Q., Clayton, J. R., Thoreson, S. S. et al. (1982). Response of marine phytoplankton to nitrogen deficiency: Decreased nitrate uptake vs enhanced ammonium uptake. Marine Biology 70: 1319.CrossRefGoogle Scholar
Dortch, Q., Thompson, P. A. & Harrison, P. J. (1991). Short-term interaction between nitrate and ammonium uptake in Thalassiosira pseudonana: Effect of preconditioning nitrogen source and growth rate. Marine Biology 110: 183193.CrossRefGoogle Scholar
Droop, M. R. (1968). Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. Journal of the Marine Biological Association of the UK 48: 689733.CrossRefGoogle Scholar
Droop, M. R. (1973). Some thoughts on nutrient limitation in algae. Journal of Phycology 9: 264272.CrossRefGoogle Scholar
Droop, M. R. (1979). On the definition of X and Q in the cell quota model. Journal of Experimental Marine Biology and Ecology 39: 203. https://doi.org/10.1016/0022–0981(79)90014–5.CrossRefGoogle Scholar
Du, C., Liang, J. R., Chen, D. D. et al. (2014). iTRAQ-based proteomic analysis of the metabolism mechanism associated with silicon response in the marine diatom Thalassiosira pseudonana. Journal of Proteome Research 13: 720734.CrossRefGoogle Scholar
Duarte, C. M. (1992). Nutrient concentration of aquatic plants: Patterns across species. Limnology and Oceanography 37: 882889.CrossRefGoogle Scholar
Duarte, C. M., Borum, J., Short, F. T. et al. (2008). Seagrass ecosystems: Their global status and prospects. In: Polunin, N. V. C. (ed.) Aquatic ecosystems: Trends and Global Prospects. Cambridge University Press, Cambridge, pp. 281294.CrossRefGoogle Scholar
Duarte, C. M., Marbá, N., Gacia, E. et al. (2010). Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles 24: GB4032. https://doi.org/10.1029/2010GB003793.CrossRefGoogle Scholar
Ducklow, H. W. & Doney, S. C. (2013). What is the metabolic state of the oligotrophic ocean? A debate. Annual Review of Marine Science 5: 525533.CrossRefGoogle ScholarPubMed
Dugdale, R. C. & Goering, J. J. (1967). Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography 12: 196206.CrossRefGoogle Scholar
Duhamel, S., Björkman, K. M. & Karl, D. M. (2012). Light dependence of phosphorus uptake by microorganisms in the subtropical North and South Pacific Ocean. Aquatic Microbial Ecolog 67: 225238.CrossRefGoogle Scholar
Dyhrman, S. T. & Palenik, B. P. (1997). The identification and purification of a cell-surface alkaline phosphatase from the dinoflagellate Prorocentrum minimum (Dinophycaeae). Journal of Phycology 33: 602612.CrossRefGoogle Scholar
Dyhrman, S. T., & Palenik, B. P. (2003). A characterization of ectoenzyme activity and phosphate-regulated proteins in the coccolithophorid Emiliania huxleyi. Journal of Plankton Research 25: 111.CrossRefGoogle Scholar
Dyhrman, S. T., Haley, S. T., Birkeland, S. R. et al. (2006). Long serial analysis of gene expression for gene discovery and transcriptome profiling in the widespread marine coccolithophore Emiliania huxleyi. Applied Environmental Microbiology 72: 252260.CrossRefGoogle ScholarPubMed
Dyhrman, S. T., Ammerman, J. W. & Van Mooy, B. A. (2007). Microbes and the marine phosphorus cycle. Oceanography 20: 110116.CrossRefGoogle Scholar
Dyhrman, S., Benitez-Nelson, C., Orchard, E. et al. (2009). A microbial source of phosphonates in oligotrophic marine systems. Nature Geoscience 2: 696699.CrossRefGoogle Scholar
Dyhrman, S. T., Jenkins, B. D., Rynearson, T. A. et al. (2012). The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLOS ONE 7: e33768.CrossRefGoogle ScholarPubMed
Dyhrman, S. T. (2016). Nutrients and their acquisition: Phosphorus physiology in microalgae. In: Borowitzka, M. A., Beardall, J. & Raven, J. A. (eds.) The Physiology of Microalgae. Springer, Dordrecht, The Netherlands, pp. 155183.CrossRefGoogle Scholar
Edwards, K. F., Thomas, M. K., Klausmeier, C. A. et al. (2012). Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnology and Oceanography 57: 554566.CrossRefGoogle Scholar
Ehrlich, H., Konstantinos, D. D., Pokrovsky, O. S. et al. (2010). Modern views on desilicification: Biosilica and abiotic silica dissolution in natural and artificial environments. Chemical Reviews 110: 46564689.CrossRefGoogle ScholarPubMed
Elser, J. J., Dobberfuhl, D., MacKay, N. A. et al. (1996). Organism size, life history, and N:P stoichiometry: Towards a unified view of cellular and ecosystem processes. BioScience 46: 674684. https://doi.org/10.2307/1312897.CrossRefGoogle Scholar
Elser, J. J., Fagan, W. F., Denno, R. F. et al. (2000). Nutrient constraints in terrestrial and freshwater food webs. Nature 408: 578580.CrossRefGoogle ScholarPubMed
Elser, J. J., Acharya, M., Kyle, J. et al. (2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters 6: 936943.CrossRefGoogle Scholar
Elser, J. J., Bracken, M. E. S., Cleland, E. E. et al. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 18.CrossRefGoogle ScholarPubMed
Eppley, R. W. & Peterson, B. J. (1979). Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282: 677680.CrossRefGoogle Scholar
Falkowski, P. G. & Stone, D. P. (1975). Nitrate uptake in marine phytoplankton: Energy sources and the interaction with carbon fixation. Marine Biology 32: 7784.CrossRefGoogle Scholar
Falkowski, P. G. (1997). Evolution of the nitrogen cycle and its influence on the biological CO2 pump in the ocean. Nature 387: 272275.CrossRefGoogle Scholar
Falkowski, P. G., Barber, R. T. & Smetacek, V. (1998). Biogeochemical controls and feedbacks on ocean primary production. Science 281: 200206.CrossRefGoogle ScholarPubMed
Falkowski, P. G. (2000). Rationalizing elemental ratios in unicellular algae. Journal of Phycology 36: 36.CrossRefGoogle Scholar
Falkowski, P. G., Katz, M. E., Knoll, A. H. et al. (2004). The evolutionary history of eukaryotic phytoplankton. Science 305: 354360. https://doi.org/10.1126/science.1095964.CrossRefGoogle Scholar
Falkowski, P. G. & Raven, J. A. (2007). Aquatic Photosynthesis, 2nd ed. Princeton University Press, Princeton, NJ.CrossRefGoogle Scholar
Ferdie, M. & Fourqurean, J. W. (2004). Responses of seagrass communities to fertilization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment. Limnology and Oceanography 49: 20822094.CrossRefGoogle Scholar
Fernandez, E., Llamas, A. & Galvàn, A. (2009). Nitrogen assimilation and its regulation. In: Stern, D. B. & Harris, E. H. (eds.) The Chlamydomonas Source Book, Vol. 2, 2nd ed. Elsevier, Amsterdam, pp. 69113.CrossRefGoogle Scholar
Field, C. B., Behrenfeld, M. J., Randerson, J. T. et al. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281: 237240.CrossRefGoogle ScholarPubMed
Finkel, Z. V., Beardall, J., Flynn, K. J. et al. (2010). Phytoplankton in a changing world: Cell size and elemental stoichiometry. Journal of Plankton Research 32: 119137.CrossRefGoogle Scholar
Finkel, Z. V., Follows, M. J., Liefer, J. et al. (2016). Phylogenetic diversity in the macromolecular composition of microalgae. PLOS ONE 11: e0155977. https://doi.org/10.1371/journal.pone.0155977.CrossRefGoogle ScholarPubMed
Flores, E. & Herrero, A. (1994). ‘Assimilatory nitrogen metabolism and its regulation’. In: , A. Bryant, (ed.) The Molecular Biology of Cyanobacteria. Kluwer Academic Publications, Dordrecht, pp. 487517.CrossRefGoogle Scholar
Flores, E., Frías, J. E., Rubio, L. M. et al. (2005). Photosynthetic nitrate assimilation in cyanobacteria. Photosynthesis Research 83: 117133.CrossRefGoogle ScholarPubMed
Flynn, K. J. (1998). Estimation of kinetic parameters for the transport of nitrate and ammonium into marine phytoplankton. Marine Ecology Progress Series 169: 1328.CrossRefGoogle Scholar
Flynn, K. J., Raven, J. A., Rees, T. A. K. et al. (2010). Is the growth rate hypothesis applicable to microalgae? Journal of Phycology 46: 112.CrossRefGoogle Scholar
Fong, P., Boyer, K. E. & Zedler, J. B. (1998). Developing an indicator of nutrient enrichment in coastal estuaries and lagoons using tissue nitrogen content of opportunistic alga, Enteromorpha intestinalis (L. Link). Journal of Experimental Marine Biology and Ecology 231: 6370.CrossRefGoogle Scholar
Fourqurean, J. W., Duarte, C. M., Kennedy, H. et al. (2012). Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5: 505509.CrossRefGoogle Scholar
Fowler, D., Coyle, M., Skiba, U. et al. (2013). The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B 368: 20130164. https://doi.org/10.1098/rstb.2013.0164.CrossRefGoogle ScholarPubMed
Fraser, M. W., Gleesons, D. B., Grierson, P. F. et al. (2018). Metagenomic evidence of microbial community responsiveness to phosphorus and salinity gradients ion seagrass sediments. Frontiers in Microbiolog 9: 1703.CrossRefGoogle Scholar
Frausto da Silva, J. J. R. & Williams, R. J. P. (2001). The Biological Chemistry of the Elements: The Inorganic Chemistry of Life. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Freeman, L. A., Corbett, D. R., Fitzgerald, A. et al. (2019). Impacts of urbanization on estuarine ecosystems and water quality. Estuaries and Coasts 42: 18211838.CrossRefGoogle Scholar
Frigeri, L. G., Radabaugh, T. R., Haynes, P. A., et al. (2006). Identification of proteins from a cell wall fraction of the diatom Thalassiosira pseudonana: Insights into silica structure formation. Molecular and Cell Proteomics 5: 182193.CrossRefGoogle ScholarPubMed
Fu, F. X., Zhang, Y. H., Leblanc, K. et al. (2005). The biological and biogeochemical consequences of phosphate scavenging onto phytoplankton cell surfaces. Limnology and Oceanography 50: 14591472.CrossRefGoogle Scholar
Gallon, J. R. (2001). N2 fixation in phototrophs: Adaptation to a specialized way of life. Plant Soil 230: 3948.CrossRefGoogle Scholar
Geider, R. J. & La Roche, J. (2002). Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology 37: 117.CrossRefGoogle Scholar
Glibert, P. M., Wilkerson, F. P., Dugdale, R. C. et al. (2016). Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnology and Oceanography 61: 165197.CrossRefGoogle Scholar
Glibert, P. M. (2019). Phytoplankton in the aqueous ecological theater: Changing conditions, biodiversity, and evolving ecological concepts. Journal of Marine Research 77: 83137.CrossRefGoogle Scholar
Giordano, M. & Raven, J. A. (2014). Nitrogen and sulfur assimilation in plants and algae. Aquatic Botany 118: 4561.CrossRefGoogle Scholar
Goldman, J. C., McCarthy, J. J. & Peavey, D. G. (1979). Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 21102215.CrossRefGoogle Scholar
Goldman, J. C. & Glibert, P. M. (1983). Kinetics of inorganic nitrogen uptake by phytoplankton. In: Carpenter, E. J. & Capone, D. G. (eds.) Nitrogen in the Marine Environment. Academic Press, Cambridge, pp. 233274.CrossRefGoogle Scholar
Gotham, I. J. & Rhee, G. (1981). Comparative kinetic studies of phosphate-limited growth and phosphate uptake in phytoplankton in continuous culture. Journal of Phycology 17: 257265.CrossRefGoogle Scholar
Graziano, L. M., La Roche, J. & Geider, R. J. (1996). Physiological response to phosphorus limitation in batch and steady-state cultures of Dunaliella tertiolecta (Chlorophyta): A unique stress protein as an indicator of phosphate deficiency. Journal of Phycology 32: 825838.CrossRefGoogle Scholar
Grossman, A. & Takahashi, H. (2001). Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annual Review of Plant Physiology and Plant Molecular Biology 52: 163210.CrossRefGoogle ScholarPubMed
Grossman, A. R. & Aksoy, M. (2015). Algae in a phosphorus-limited landscape. Annual Plant Reviews 48: 337374.Google Scholar
Grover, J. P. (1991). Resource competition in a variable environment – Phytoplankton growing according to the variable-internal-stores model. American Naturalist 138: 811835.CrossRefGoogle Scholar
Gruber, N. & Sarmiento, J. L. (1997). Global patterns of marine nitrogen fixation and denitrification. Global Biogeochemical Cycles 11: 235266.CrossRefGoogle Scholar
Gruber, N. & Galloway, J. N. (2008). An Earth system perspective of the global nitrogen cycle. Nature 451: 293296.CrossRefGoogle ScholarPubMed
Guerra, L. T., Levitan, O., Frada, M. J. et al. (2013). Regulatory branch points affecting protein and lipid biosynthesis in the diatom Phaeodactylum tricornutum. Biomass and Bioenergy 59: 306315.CrossRefGoogle Scholar
Gunnersen, J., Yellowlees, D. & Miller, D. J. (1988). The ammonium/methylammonium uptake system of Symbiodinium microadriaticum. Marine Biology 97: 593596.CrossRefGoogle Scholar
Haines, K. C. & Wheeler, P. A. (1978). Ammonium and nitrate uptake by the marine macrophytes Hypnea musciformis (Rhodophyta) and Macrocystis pyrifera (Phaeophyta). Journal of Phycology 14: 319324.CrossRefGoogle Scholar
Hanisak, M. D. & Harlin, M. M. (1978). Uptake of inorganic nitrogen by Codium fragile subsp. tomentosoides (Chlorophyta). Journal of Phycology 14: 450454.CrossRefGoogle Scholar
Harrison, G. I., Harris, L. R. & Irwin, B. D. (1996). The kinetics of nitrogen utilization in the oceanic mixed layer: Nitrate and ammonium interactions at nanomolar concentrations. Limnology and Oceanography 41: 1632.CrossRefGoogle Scholar
Harrison, P. J. & Hurd, C. L. (2001). Nutrient physiology of seaweeds: Application of concepts to aquaculture. Cahiers de Biologie Marine 42: 7182.Google Scholar
Harke, M. J., Juhl, A. R., Haley, S. T. et al. (2017). Conserved transcriptional responses to nutrient stress in bloom-forming algae. Frontiers in Microbiology 8: 1279. https://doi.org/10.3389/fmicb.2017.01279.CrossRefGoogle ScholarPubMed
Healey, P. F. (1979). Short-term responses of nutrient-deficient algae to nutrient addition. Journal of Phycology 15: 289299.Google Scholar
Healey, F. P. (1980). Slope of the Monod equation as an indicator of advantage in nutrient competition. Microbial Ecology 5: 281286.CrossRefGoogle ScholarPubMed
Hecky, R. E. & Kilham, P. (1988). Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnology and Oceanography 33: 796822.Google Scholar
Held, N. A., Webb, E. A., McIlvin, M. M. et al. (2020). Co-occurrence of Fe and P stress in natural populations of the marine diazotroph Trichodesmium. Biogeosciences 17: 25372551.CrossRefGoogle Scholar
Hildebrand, M., Volcani, B. E., Gassmann, W. et al. (1997). A gene family of silicon transporters. Nature 385: 688689.CrossRefGoogle ScholarPubMed
Hildebrand, M., Dahlin, K. & Volcani, B. E. (1998). Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: Sequences, expression analysis, and identification of homologs in other diatoms. Molecular and General Genetics 260: 480486.CrossRefGoogle ScholarPubMed
Ho, T.-Y., Quigg, A., Finkel, Z. V. et al. (2003). On the elemental composition of some marine phytoplankton. Journal of Phycology 39: 115.CrossRefGoogle Scholar
Hockin, N. L., Mock, T., Mulholland, F. et al. (2012). The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiology 158: 299312.CrossRefGoogle ScholarPubMed
Howarth, R. W. Marino, R. & Cole, J. J. (1988). Nitrogen fixation in freshwater, estuarine and marine ecosystems. 2. Biogeochemical controls. Limnology and Oceanography 33: 688701.Google Scholar
Howarth, R. W. & Marino, R. (2006). Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnology and Oceanography 51: 364376.CrossRefGoogle Scholar
Hughes, A. D. & Grottoli, A. G. (2013). Heterotrophic compensation: A possible mechanism for resilience of coral reefs to global warming or a sign of prolonged Stress? PLOS ONE 8: e81172. https://doi.org/10.1371/journal.pone.0081172.CrossRefGoogle ScholarPubMed
Hughes, A. R., Stacowicz, J. J. & Williams, S. L. (2009). Morphological and physiological variation among seagrass (Zostera marina) genotypes. Oecologia 159: 725733.CrossRefGoogle ScholarPubMed
Huppe, H. C. & Turpin, D. H. (1994). Integration of carbon and nitrogen metabolism in plant and algal cells. Annual Review of Plant Physiology and Plant Molecular Biology 45: 577607.CrossRefGoogle Scholar
Hurd, C. L., Harrison, P. J. & Druehl, L. D. (1996). The effect of seawater flow velocity on nutrient uptake by morphologically distinct forms of Macrocystis integrifolia from sheltered and exposed sites. Marine Biology 126: 205214.CrossRefGoogle Scholar
Hurd, C. L., Harrison, P. J., Bischof, K. et al. (2014). Seaweed Ecology and Physiology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Hwang, Y. S., Jung, G. & Jin, E. (2008). Transcriptome analysis of acclimatory responses to thermal stress in Antarctic algae. Biochemical and Biophysical Research Communications 367: 635641.CrossRefGoogle ScholarPubMed
Igarashi, R. & Seefeldt, L. (2003). Nitrogen fixation: The mechanism of the Mo-dependent nitrogenase. Critical Reviews in Biochemistry and Molecular Biology 38: 351384. https://doi.org/10.1080/10409230391036766.CrossRefGoogle ScholarPubMed
Irwin, A. J., Finkel, Z. V., Schofield, O. M. et al. (2006). Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. Journal of Plankton Research 28: 459471.CrossRefGoogle Scholar
Jackson, A. E. & Yellowlees, D. (1990). Phosphate uptake by zooxanthellae isolated from corals. Proceedings of the Royal Society: Biological Sciences 242: 201204.Google Scholar
Jacobson, L. and Halmann, M. (1982). Polyphosphate metabolism in the blue-green alga Microcystis aeruginosa. Journal of Plankton Research 4: 481488.CrossRefGoogle Scholar
Janauer, G. A. (1981a). Distribution of organic and mineral components in leaves of Ranunculus fluitans Lam. Hydrobiologia 80: 193204.CrossRefGoogle Scholar
Janauer, G. A. (1981b). Elodea canadensis and its dormant apices: An investigation of organic and mineral constituents. Aquatic Botany 11: 231243.CrossRefGoogle Scholar
Janauer, G. A. (1981c). Divergence of organic anio and amino compound concentrations in different parts of leaves of Posidonia oceanica (L.) Delile. Biochimie und Physiologie der Pflanzen 176: 314321.CrossRefGoogle Scholar
Jones, G. J. & Morel, F. M. (1988). Plasmalemma redox activity in the diatom Thalassiosira: A possible role for nitrate reductase. Plant Physiology 87: 143147.CrossRefGoogle ScholarPubMed
Kamalanathan, M., Pierangelini, M., Shearman, L. A. et al. (2016). Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. Journal of Applied Phycology 28: 15091520.CrossRefGoogle Scholar
Karl, D. M., Letelier, R., Tupas, L. et al. (1997). The role of nitrogen fixation in biochemical cycling in the subtropical North Pacific Ocean. Nature 388: 533538.CrossRefGoogle Scholar
Karl, D., Michaels, A., Bergman, B. et al. (2002). Dinitrogen fixation in the world’s oceans. Biogeochemistry 57: 4798.CrossRefGoogle Scholar
Karl, D. M. (2014). Microbially mediated transformations of phosphorus in the sea: New views of an old cycle. Annual Review of Marine Science 6: 279337.CrossRefGoogle ScholarPubMed
Kevekordes, K. (2001). Toxicity tests using developmental stages of Hormosira banksii (Phaeophyta) identify ammonium as a damaging component of secondary treated sewage effluent discharged into Bass Strait, Victoria, Australia. Marine Ecology Progress Series 219: 139148.CrossRefGoogle Scholar
Kevekordes, K., Holland, D., Häubner, N. et al. (2006). Inorganic carbon acquisition by eight species of Caulerpa (Caulerpales, Chlorophyta). Phycologia 45: 442448.CrossRefGoogle Scholar
Kirkman, H., Griffiths, F. B. & Parker, R. R. (1979). The release of reactive phosphate by a Posidionia australia seagrass community. Aquatic Botany 6: 329337.CrossRefGoogle Scholar
Klausmeier, C. A., Litchman, E., Daufresne, T. et al. (2004). Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429: 171174.CrossRefGoogle ScholarPubMed
Knight, M., Senior, L., Nancolas, B. et al. (2016). Direct evidence of the molecular basis for biological silicon transport. Nature Communications 7: 11926. https://doi.org/10.1038/ncomms11926.CrossRefGoogle ScholarPubMed
Krumhardt, K. M., Callnan, K., Roache-Johnson, K. et al. (2013). Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus MED4 I: Uptake physiology. Environmental Microbiology 15: 21142128.CrossRefGoogle ScholarPubMed
Kudela, R. M. & Dugdale, R. C. (2000). Nutrient regulation of phytoplankton productivity in Monterey Bay, California. Deep-Sea Research Part II Topical Studies in Oceanography 47: 10231053.CrossRefGoogle Scholar
Lapointe, B. E., Barile, P. J., Littler, M. M. et al. (2005). Macroalgal blooms on southeast Florida coral reefs I. Nutrient stoichiometry of the invasive green alga Codium isthmacladum in the wider Caribbean indicates nutrient enrichment. Harmful Algae 4: 10921105.CrossRefGoogle Scholar
Larkum, A. W. D., Kendrick, G. A., Ralph, P. J. (2018). Seagrasses of Australia: Structure, Ecology and Evolution. Springer, Cham.CrossRefGoogle Scholar
Laws, E. A., Pei, S. F., Bienfang, P. et al. (2011). Phosphate-limited growth and uptake kinetics of the marine prasinophyte Tetraselmis suecia (Kylin) Butcher. Aquaculture 322: 117121.CrossRefGoogle Scholar
Lehninger, A. L., Nelson, D. L. & Cox, M. M. (1993). Principles of Biochemistry. 2nd ed. Worth Publishers, New York.Google Scholar
Levitan, O., Dinamarca, J., Zelzion, E. et al. (2015). Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress. Proceedings of the National Academy of Sciences USA 112: 412417.CrossRefGoogle ScholarPubMed
Liefer, J. D., Garg, A., Fyfe, M. H. et al. (2019). The macromolecular basis of phytoplankton C:N:P under nitrogen starvation. Frontiers in Microbiology 10: 763. https://doi.org/10.3389/fmicb.2019.00763.CrossRefGoogle ScholarPubMed
Lin, S., Zhang, Y., Zhang, H. et al. (2015). The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science 350: 691694.CrossRefGoogle ScholarPubMed
Lin, S., Litaker, R. W. & Sunda, W. G. (2016). Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. Journal of Phycology 52: 1036.CrossRefGoogle ScholarPubMed
Litchman, E., Klausmeier, C. A., Schofield, O. M. et al. (2007). The role of functional traits and trade-offs in structuring phytoplankton communities: Scaling from cellular to ecosystem level. Ecology Letters 10: 11701181.CrossRefGoogle ScholarPubMed
Litchman, E. & Klausmeier, C. A. (2008). Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution, and Systematics 39: 615639.CrossRefGoogle Scholar
Lobus, N. V. & Kulikovskiy, M. S. (2023). The co-evolution aspects of the biogeochemical role of phytoplankton in aquatic ecosystems: A review. Biology 12: 92. https://doi.org/10.3390/biology12010092.CrossRefGoogle ScholarPubMed
Loladze, I. & Elser, J. (2011). The origins of the Redfield nitrogen-to phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecology Letters 14: 244250.CrossRefGoogle Scholar
Lomas, M. W. & Glibert, P. M. (1999). Temperature regulation of nitrate uptake: A novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnology and Oceanography 44: 556572.CrossRefGoogle Scholar
Longworth, J., Wu, D., Huete-Ortega, M. et al. (2016). Proteome response of Phaeodactylum tricornutum, during lipid accumulation induced by nitrogen depletion. Algal Research 18: 213224.CrossRefGoogle ScholarPubMed
Lopez-Ruiz, A., Verbelen, J. P., Roldan, J. M. et al. (1985). Nitrate reductase of green algae is located in the pyrenoid. Plant Physiology 79: 10061010.CrossRefGoogle ScholarPubMed
Luo, Y. W., Doney, S. C., Anderson, L. A. et al. (2012). Database of diazotrophs in global ocean: Abundance, biomass and nitrogen fixation rates. Earth System Science Data 4: 4773.CrossRefGoogle Scholar
Mackay, E. B., Feuchtmayr, H., De Ville, M. M. et al. (2020). Dissolved organic nutrient uptake by riverine phytoplankton varies along a gradient of nutrient enrichment. Science of the Total Environment 722: 137837. https://doi.org/10.1016/j.scitotenv.2020.137837.CrossRefGoogle ScholarPubMed
Mackereth, F. J. (1953). Phosphorus utilization by Asterionella formosa Hass. Journal of Experimental Botany 4: 296313.CrossRefGoogle Scholar
Maloney, B., Iliffe, T. M., Gelwick, F. et al. (2011). Effect of nutrient enrichment on naturally occurring algal species in six cave pools of Bermuda. Phycologia 50: 132143.CrossRefGoogle Scholar
Martin, P., Van Mooy, B. A. S., Heithoff, A. et al. (2011). Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom Thalassiosira pseudonana. ISME Journal 5: 10571060.CrossRefGoogle ScholarPubMed
Martin, R. E. & Quigg, A. (2012). Evolving phytoplankton stoichiometry fueled diversification of the marine biosphere. Geosciences. Special Issue on Paleontology and Geo/Biological Evolution 2: 130146.Google Scholar
Martin, R. E. & Quigg, A. (2013). Tiny plants that once ruled the seas. Scientific American 308: 4045.CrossRefGoogle ScholarPubMed
Martinez-Perez, C., Mohr, W., Loscher, C. R. et al. 2016. The small unicellular diazotrophic symbiont, UCYNA, is a key player in the marine nitrogen cycle. Nature Microbiology 1: 16163.CrossRefGoogle ScholarPubMed
Martiny, A. C., Coleman, M. L. & Chisholm, S. W. (2006). Phosphate acquisition genes in Prochlorococcus ecotypes: Evidence for genome-wide adaptation. Proceedings of the National Academy of Sciences USA 103: 552–12.CrossRefGoogle ScholarPubMed
Martiny, A. C., Kathuria, S. & Berube, P. M. (2009). Widespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes. Proceedings of the National Academy of Sciences USA 106: 1078710792.CrossRefGoogle ScholarPubMed
Martiny, A. C., Vrugt, J. A. & Lomas, M. W. (2014). Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. Scientific Data 1: 140048. https://doi.org/10.1038/sdata.2014.48.CrossRefGoogle ScholarPubMed
McInnes, A. S., Shepard, A. K., Raes, E. J. et al. (2014). Simultaneous quantification of active carbon and nitrogen fixing communities and estimation of rates using fluorescence in situ hybridization and flow cytometry. Applied and Environmental Microbiology 80: 67506759.CrossRefGoogle ScholarPubMed
McKew, B. A., Metodieva, G., Raines, C. A. et al. (2015). Acclimation of Emiliania huxleyi (1516) to nutrient limitation involves precise modification of the proteome to scavenge alternative sources of N and P. Environmental Microbiology 17: 40504062.CrossRefGoogle ScholarPubMed
Mills, M. M., Ridame, C., Davie, M. et al. (2004). Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429: 292294.CrossRefGoogle ScholarPubMed
Mock, T., Samanta, M. P., Iverson, V. et al. (2008). Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses. Proceedings of the National Academy of Sciences USA 105: 15791584.CrossRefGoogle ScholarPubMed
Mock, T. (2021). Silicon drives the evolution of complex crystal morphology in calcifying algae. New Phytologist 231: 18451857.CrossRefGoogle ScholarPubMed
Monod, J. (1942). Recherches sur la croissance des cultures bactériennes, 2nd ed. Hermann, Paris.Google Scholar
Moore, C. M., Mills, M. M., Arrigo, K. R. et al. (2013). Processes and patterns of oceanic nutrient limitation. Nature Geoscience 6: 701710.CrossRefGoogle Scholar
Morel, F. M. M., Hudson, R. J. M. & Price, N. M. (1991). Limitation of productivity by trace metals in the sea. Limnology and Oceanography 36: 17421755.CrossRefGoogle Scholar
Morel, F. M. M. & Price, N. M. (2003). The biogeochemical cycles of trace metals in the oceans. Science 300: 944947.CrossRefGoogle ScholarPubMed
Morey, J. S., Monroe, E. A., Kinney, A. L. et al. (2011). Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition. BMC Genomics 12: 346. https://doi.org/10.1186/1471–2164–12–346.CrossRefGoogle ScholarPubMed
Moseley, J. L., Chang, C.-W. & Grossman., A. R. (2006). Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. Eukaryotic Cell 5: 2644.CrossRefGoogle ScholarPubMed
Mữnoz-Blanco, J., Moyano, E. & Cardenas, J. (1990). Extracellular deamination of amino acids by Chlamydomonas reinhardtii cells. Planta 182: 194198.CrossRefGoogle ScholarPubMed
Nayar, S., Loo, M. G. K., Tanner, J. E. et al. (2018). Nitrogen acquisition and resource allocation strategies in temperate seagrass Zostera nigricaulis: Uptake, assimilation and translocation processes. Scientific Reports 8: 17151.CrossRefGoogle ScholarPubMed
Nelson, D. M., Tréguer, P., Brzezinski, M. A. et al. (1995). Production and dissolution of biogenic silica in the ocean – revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles 9: 359372.CrossRefGoogle Scholar
Navarro, M. T., Prieto, R., Fernandez, E. et al. (1996). Constitutive expression of nitrate reductase changes the regulation of nitrate and nitrite transporters in Chlamydomonas reinhardii. Plant Journal 9: 819827.CrossRefGoogle Scholar
Norici, A., Gerotto, C., Beardall, J. et al. (2022). ‘Environmental variability and its control of productivity’. In: Maberly, S. C. & Gontero, B. (eds.) Blue Planet, Red and Green Photosynthesis: Productivity and Carbon Cycling in Aquatic Ecosystems. ISTE-Wiley, London, pp. 225272.CrossRefGoogle Scholar
Orchard, E. D., Benitez-Nelson, C. R., Pellechia, P. J. et al. (2010). Polyphosphate in Trichodesmium from the low-phosphorus Sargasso Sea. Limnology and Oceanography 55: 21612169.CrossRefGoogle Scholar
Ottosen, L. D. M., Risgaard-Petersen, N. & Nielsen, L. P. (1999). Direct and indirect measurements of nitrification and denitrification in the rhizosphere of aquatic macrophytes. Aquatic Microbiological Ecology 19: 8191.CrossRefGoogle Scholar
Paasche, E. (1973). Silicon and the ecology of marine plankton diatoms. II. Silicate-uptake kinetics in five diatom species. Marine Biology 19: 262269.CrossRefGoogle Scholar
Paerl, H. W., Rudek, J. & Mallin, M. A. (1987). Limitation of N2 fixation in coastal marine waters: Relative importance of molybdenum, iron, phosphorus and organic matter availability. Limnology and Oceanography 32: 525536.CrossRefGoogle Scholar
Palenik, B. (2014). Molecular mechanisms by which marine phytoplankton respond to their dynamic chemical environment. Annual Review of Marine Science 7: 325340.CrossRefGoogle ScholarPubMed
Parslow, J. S., Harrison, P. J. & Thompson, P. A. (1984). Saturated uptake kinetics: Transient response of the marine diatom Thalassiosira pseudonana to ammonium, nitrate, silicate or phosphate starvation. Marine Biology 83: 5159.CrossRefGoogle Scholar
Parsons, T. R., Stephens, K. & Strickland, J. D. H. (1961). On the chemical composition of eleven species of marine phytoplankters. Journal of the Fisheries Research Board of Canada 18: 10011016.CrossRefGoogle Scholar
Pausch, F., Bischof, K. & Trimborn, S. (2019). Iron and manganese co-limit growth of the Southern Ocean diatom Chaetoceros debilis. PLOS ONE 14: e0221959.CrossRefGoogle ScholarPubMed
Pederson, U., Jørgensen, L. B. & Sand-Jensen, K. (1997). Through-flow of water in leaves of a submerged plant is influenced by the apical opening. Planta 202: 4350.CrossRefGoogle Scholar
Perry, M. J. (1972). Alkaline phosphatase activity in subtropical Central North Pacific waters using a sensitive fluorometric method. Marine Biology 15: 113119.CrossRefGoogle Scholar
Phillips, J. C. & Hurd, C. L. (2003). Nitrogen ecophysiology of intertidal seaweeds from New Zealand: N uptake, storage and utilization in relation to shore position and season. Marine Ecology Progress Series 264: 3148.CrossRefGoogle Scholar
Pitt, F. D., Mazard, S., Humphreys, L. et al. (2010). Functional characterization of Synechocystis sp. Strain PCC 6803 pst1 and pst2 gene clusters reveals a novel strategy for phosphate uptake in a freshwater cyanobacterium. Journal of Bacteriology 192: 35123523CrossRefGoogle Scholar
Pirc, H. (1985). Growth dynamics in Posidonia oceanica (L.) Delile. I. Seasonal changes of soluble carbohydrates, starch, free amino acids, nitrogen and organic anions in different parts of the plant. Marine Ecology 6: 141165.CrossRefGoogle Scholar
Quigg, A., Finkel, Z. V., Irwin, A. J. et al. (2003). The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425: 291294.CrossRefGoogle ScholarPubMed
Quigg, A. (2008). Trace elements. In: Jørgensen, S. E. & Fath, B. D. (eds.) Ecological Stoichiometry in the Encyclopedia of Ecology, Vol. 5. Elsevier, Oxford, pp. 35643573.CrossRefGoogle Scholar
Quigg, A., Irwin, A. J. & Finkel, Z. V. (2011). Evolutionary inheritance of elemental stoichiometry in phytoplankton. Proceedings of the Royal Society: Biological Sciences 278: 526534.Google ScholarPubMed
Quigg, A., Al-Anasi, M., Nour El Din, N. et al. (2013). Phytoplankton along the coastal shelf of an oligotrophic hypersaline environment in a semi-enclosed marginal sea: Qatar (Arabian Gulf). Continental Shelf Research 60: 116.CrossRefGoogle Scholar
Quigg, A. (2016). Micronutrients. In: Borowitzka, M. A., Beardall, J. & Raven, J. A. (eds.) The Physiology of Microalgae. Developments in Applied Phycology Series, Vol. 6. Springer, Dordrecht, pp. 211231.Google Scholar
Rascio, N. & La Rocca, N. (2013). Biological Nitrogen Fixation, Reference Module in Earth Systems and Environmental Sciences. Elsevier, Amsterdam. https://doi.org/10.1016/B978–0-12–409548–9.09470–7.Google Scholar
Raven, J. A. & Smith, F. A. (1976). Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytologist 76: 415431.CrossRefGoogle Scholar
Raven, J. A. (1980). Nutrient transport in microalgae. Advances in Microbiology and Physiology 21: 47226.CrossRefGoogle ScholarPubMed
Raven, J. A. (1981). Nutrient strategies of submerged benthic plants: The acquisition of C, N and P by rhizophytes and haptophytes. New Phytologist 88: 130.CrossRefGoogle Scholar
Raven, J. A. (1984). Energetics and Transport in Aquatic Plants. A. R. Liss Inc., New York.Google Scholar
Raven, J. A. (1985). Regulation of pH and generation of osmolarity in vascular plants: A cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytologist 101: 2577.CrossRefGoogle ScholarPubMed
Raven, J. A. & Farquhar, G. D. (1990). The influence of N metabolism and organic acid synthesis on the natural abundance of isotopes of carbon in plants. New Phytologist 116: 505529.CrossRefGoogle Scholar
Raven, J. A., Wollenweber, B. & Handley, L. L. (1992). A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs. New Phytologist 121: 1932. https://doi.org/10.1111/nph.1992.121.issue-1.CrossRefGoogle Scholar
Raven, J. A., Evans, M. C. W. & Korb, R. E. (1999). The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynthesis Research 60: 111149.CrossRefGoogle Scholar
Raven, J. A. & Knoll, A. H. (2010). Non-skeletal biomineralization by eukaryotes: Matters of moment and gravity. Geomicrobiology Journal 27: 572584.CrossRefGoogle Scholar
Raven, J. A. (2013a). RNA function and phosphorus use by photosynthetic organisms. Frontiers in Plant Science 4: 536. https://doi.org/10.3389/fpls.2013.00536.CrossRefGoogle ScholarPubMed
Raven, J. A. (2013b). The evolution of autotrophy in relation to phosphorus requirement. Journal of Experimental Botany 64: 40234046.CrossRefGoogle ScholarPubMed
Raven, J. A. (2017). Evolution and palaeophysiology of the vascular system and other means of long distance transport. Philosophical Transactions of the Royal Society B 373: 20160497.CrossRefGoogle Scholar
Raven, J. A., Knight, C. A. & Beardall, J. (2019). Cell size has gene expression and biophysical consequences for cellular function. Perspectives in Phycology 6: 8194.CrossRefGoogle Scholar
Raven, J. A. & Beardall, J. (2020). Energizing the plasmalemma of marine photosynthetic organisms: The role of primary active transport. Journal of the Marine Biological Association of the United Kingdom 100: 333346.CrossRefGoogle Scholar
Raven, J. A., Beardall, J. & Quigg, A. (2020). Light-driven oxygen consumption in the water-water cycles and photorespiration, and light stimulated mitochondrial respiration. In: Larkum, A. W. D., Raven, J. A. & Douglas, S. (eds.) Photosynthesis in the Algae. Biochemical and Physiological Mechanisms. Advances in Photosynthesis and Respiration 45, Springer Nature Publishing, Cham, pp. 161178. https://doi.org/10.1007/978-3-030-33397-3_8.CrossRefGoogle Scholar
Redfield, A. C. (1934). On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Daniel, R. J. (ed.) James Johnstone Memorial Volume. Liverpool University Press, Liverpool, UK, pp. 176192.Google Scholar
Rees, T. A. V. (2007). Metabolic and ecological constraints imposed by similar rates of ammonium and nitrate uptake per unit surface area at low substrate concentrations in marine phytoplankton and macroalgae. Journal of Phycology 43: 197207.Google Scholar
Rees, T. A. V. & Raven, J. A. (2021). The maximum growth rate hypothesis is correct for eukaryotic photosynthetic organisms but not cyanobacteria. New Phytologist 230: 601611.CrossRefGoogle Scholar
Reid, R. J., Mimura, T., Ohsumi, Y. et al. (2000). Phosphate uptake in Chara: Membrane transport via Na/Pi cotransport. Plant Cell and Environment 23: 223228.CrossRefGoogle Scholar
Rhee, G.-Y. (1978). Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnology and Oceanography 23: 1025.CrossRefGoogle Scholar
Richardson, T. L. & Jackson, G. A. (2007). Small phytoplankton and carbon export from the surface ocean. Science 315: 838840.CrossRefGoogle ScholarPubMed
Risgaard-Petersen, N. & Jensen, K. (1997). Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L. Limnology and Oceanography 42: 529537.CrossRefGoogle Scholar
Roberts, S. C. (1997). Physiological effects of phosphorus limitation on photosynthesis in two green algae. PhD thesis, Monash University, Melbourne, Australia. pp. 116.Google Scholar
Roberts, S., Shelly, K. & Beardall, J. (2008). Interactions among phosphate uptake, photosynthesis, and chlorophyll fluorescence in nutrient-limited cultures of the chlorophyte microalga Dunaliella tertiolecta. Journal of Phycology 44: 662669.CrossRefGoogle ScholarPubMed
Rogato, A., Amato, A., Iudicone, D. et al. (2015). The diatom molecular toolkit to handle nitrogen uptake. Marine Genomics 24: 95108.CrossRefGoogle ScholarPubMed
Roleda, M. Y. & Hurd, C. L. (2019). Seaweed nutrient physiology: Application of concepts to aquaculture and bioremediation. Phycologia 58: 552562.CrossRefGoogle Scholar
Rose, A., Padovan, A., Christian, K. et al. (2021). The diversity of nitrogen-cycling microbial genes in a waste stabilization pond reveals changes over space and time that is uncoupled to changing nitrogen chemistry. Microbial Ecology 8: 1102911041.Google Scholar
Rosenburg, G. & Ramus, J. (1984). Uptake of inorganic nitrogen and seaweed surface area: volume ratios. Aquatic Botany 19: 6572.CrossRefGoogle Scholar
Roth, N. C. & Pregnall, A. M. (1988). Nitrate reductase activity in Zostera marina. Marine Biology 99: 457463.CrossRefGoogle Scholar
Sakshaug, E., Granéli, E., Elbrächter, M. et al. (1984). Chemical composition and alkaline phosphatase activity of nutrient-saturated and P-deficient cells of four marine dinoflagellates. Journal of Experimental Marine Biology and Ecology 77: 241254.CrossRefGoogle Scholar
Sand-Jensen, K., Martinson, T. K., Jakobs, A. L. et al. (2021). Large pools and fluxes of carbon, calcium and phosphorus in dense charophyte stands in ponds. Science of the Total Environment 765: 142792. https://doi.org/10.1016/j.scitoenv.2020.142792.CrossRefGoogle ScholarPubMed
Sanchez-Baracaldo, P., Ridgwell, A. & Raven, J. A. (2014). A neoproterozoic transition in the marine nitrogen cycle. Current Biology 6: 652657.CrossRefGoogle Scholar
Sañudo-Wilhelmy, S. A., Kustka, A. B., Gobler, C. J. et al. (2001). Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature 411: 6669.CrossRefGoogle ScholarPubMed
Sapriel, G., Quinet, M., Heijde, M. et al. (2009). Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters. PLOS ONE 4: e7458. https://doi.org/10.1371/journal.pone.0007458.CrossRefGoogle ScholarPubMed
Scanlan, D. J. & Post, A. F. (2008). Aspects of marine cyanobacterial nitrogen physiology and connection to the nitrogen cycle. In: Capone, D. G., Bronk, D. A., Mulholland, M. R. & Carpenter, E. J. (eds.) Nitrogen in the Marine Environment. Elsevier, Amsterdam, pp. 10731096.CrossRefGoogle Scholar
Scanlan, D. J., Ostrowski, M., Mazard, S. et al. (2009). Ecological genomics of marine picocyanobacteria. Microbiology and Molecular Biology Reviews 73: 249299.CrossRefGoogle ScholarPubMed
Schindler, D. W. (1975). Whole-lake eutrophication experiments with phosphorus, nitrogen and carbon. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen 19: 32213231.Google Scholar
Schoelynck, J., Bal, K., Backx, H. et al. (2010). Silica uptake in aquatic and wetland macrophytes: A strategic choice between silica, lignin and cellulose? New Phytologist 186: 385391.CrossRefGoogle ScholarPubMed
Sculthorpe, C. D. (1967). The Biology of Aquatic Vascular Plants. Edward Arnold, London.Google Scholar
Short, F. T., Dennison, W. C. & Capone, D. G. (1990) Phosphorus-limited growth of the tropical seagrass Syringodium filiforme in carbonate sediments. Marine Ecology Progress Series 62: 169174.CrossRefGoogle Scholar
Shrestha, R. P., Tesson, B., Krichmar, T. N. et al. (2012). Whole transcriptome analysis of the silicon response of the diatom Thalassiosira pseudonana. BMC Genomics 13: 499.CrossRefGoogle ScholarPubMed
Shrestha, R. P. & Hildebrand, M. (2015). Evidence for a regulatory role of diatom silicon transporters in cellular silicon responses. Eukaryotic Cell 14: 2940.CrossRefGoogle ScholarPubMed
Siaut, M., Heijde, M., Mangogna, M. et al. (2007). Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene 406: 2335.CrossRefGoogle ScholarPubMed
Smith, V. H. (1983). Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669671.CrossRefGoogle ScholarPubMed
Smith, S., Yamanaka, Y., Pahlow, M. et al. (2009). Optimal uptake kinetics: Physiological acclimation explains the patterns of nitrate uptake by phytoplankton in the ocean. Marine Ecology Progress Series 384: 112.CrossRefGoogle Scholar
Sohm, J. A., Webb, E. A. & Capone, D. G. (2011). Emerging patterns of marine nitrogen fixation. Nature Reviews in Microbiology 9: 499508.CrossRefGoogle ScholarPubMed
Solomon, C. M., Collier, J. L., Berg, G. M. et al. (2010). Role of urea in microbial metabolism in aquatic systems: A biochemical and molecular review. Aquatic Microbial Ecology 59: 6788.CrossRefGoogle Scholar
Solovchenko, A. E., Ismagulova, T. T., Lukyanov, A. A. et al. (2019). Luxury phosphorus uptake in microalgae. Journal of Applied Phycology 31: 27552770.CrossRefGoogle Scholar
Sproles, A. E., Kirk, N. L. & Kitchen, S. A. (2018). Phylogenetic characterization of transporter proteins in the cnidarian-dinoflagellate symbiosis. Molecular and Phylogenetic Evolution 120: 307320.CrossRefGoogle ScholarPubMed
Sterner, R. W. & Elser, J. J. (2002). Ecological Stoichiometry: The Biology of the Elements From Molecules to the Biosphere. Princeton University Press, Princeton.Google Scholar
Staal, M. F., Meysman, J. R. & Staal, L. J. (2003). Temperature excludes N2-fixing heterocystous cyanobacteria in the tropical oceans. Nature 425: 504507.CrossRefGoogle ScholarPubMed
Stapel, J., Aerts, T. L., Dutnhoven, B. H. M. et al. (1999). Nutrient uptake by leaves and roots of the seagrass, Thalassia hemprichii in the Spermods Archipelago, Indonesia. Marine Ecology Progress Series 134: 195206.CrossRefGoogle Scholar
Su, Z., Olman, V., Mao, F. et al. (2005). Comparative genomics analysis of NtcA regulons in cyanobacteria: Regulation of nitrogen assimilation and its coupling to photosynthesis. Nucleic Acids Research 33: 51565171.CrossRefGoogle ScholarPubMed
Suggett, D. J., Warner, M. E. & Leggat, W. (2017). Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends in Ecology and Evolution 32: 735745.CrossRefGoogle ScholarPubMed
Sunda, W. G. (1994). Trace metal/phytoplankton interactions in the sea. In: Bidoglio, G. & Stumm, W. (eds.) Chemistry of Aquatic Systems: Local and Global Perspectives. Springer, Dordrecht, The Netherlands, pp. 213247.CrossRefGoogle Scholar
Sylvan, J. B., Quigg, A., Tozzi, S. et al. (2011). Mapping phytoplankton community physiology on a river impacted continental shelf: Testing a multifaceted approach. Estuaries and Coasts 34: 12201233.CrossRefGoogle Scholar
Tabita, F. R., Hanson, T. E., Li, H. et al. (2007). Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiology and Molecular Biology Reviews 71: 576599.CrossRefGoogle ScholarPubMed
Takabayashi, M., Wilkerson, F. P. & Robertson, D. L. (2005). Response of glutamine synthetase gene transcription and enzyme activity to external nitrogen sources in the diatom Skeletonema costatum (Bacillariophyceae). Journal of Phycology 41: 8494.CrossRefGoogle Scholar
Tanaka, R. & Tanaka, A. (2007). Tetrapyrrole biosynthesis in higher plants. Annual Review of Plant Biology 58: 321346.CrossRefGoogle ScholarPubMed
Taylor, M. W. & Rees, T. A. V. (1999). Kinetics of ammonium assimilation in two seaweeds, Enteromorpha sp. (Chlorophyceae) and Osmundaria colensoi (Rhodophyceae). Journal of Phycology 35: 740746.CrossRefGoogle Scholar
Thamatrakoln, K. & Hildebrand, M. (2008). Silicon uptake in diatoms revisited: A model for saturable and nonsaturable uptake kinetics and the role of silicon transporters. Plant Physiology 146: 13971407.CrossRefGoogle Scholar
Thompson, A. W., Huang, K., Saito, M. A. et al. (2011). Transcriptome response of high- and low-light adapted Prochlorococcus strains to changing iron availability. The ISME Journal 5: 15801594.CrossRefGoogle ScholarPubMed
Tilman, D. (1982). Resource Competition and Community Structure. Princeton University Press, Princeton.Google ScholarPubMed
Tolonen, A. C., Aach, J., Lindell, D. et al. (2006). Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability. Molecular Systems Biology 2: 53. https://doi.org/10.1038/msb4100087.CrossRefGoogle ScholarPubMed
Touchette, B. W. & Burkholder, J. M. (2000) Reviews of nitrogen and phosphorus metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology 250: 133167.CrossRefGoogle Scholar
Tréguer, P., Bowler, C., Moriceau, B. et al. (2018). Influence of diatom diversity on the ocean biological carbon pump. Nature Geoscience 11: 2737.CrossRefGoogle Scholar
Twilley, R. R., Chen, R. H. & Hargis, T. (1992). Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air and Soil Pollution 64: 265265.CrossRefGoogle Scholar
Twining, B. S. & Baines, S. B. (2013). The trace metal composition of marine phytoplankton. Annual Review of Marine Science 5: 191215.CrossRefGoogle ScholarPubMed
Tyrrell, T. (1999). The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400: 525531.CrossRefGoogle Scholar
Van de Waal, D. B. & Litchman, E. (2020). Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philosophical Transactions of the Royal Society B 375: 20190706. https://doi.org/10.1098/rstb.2019.0706.CrossRefGoogle Scholar
Van Mooy, B. A., Fredricks, H. F., Pedler, B. E. et al. (2009). Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458: 6972.CrossRefGoogle ScholarPubMed
Vermeer, C. P., Escher, M., Portielje, R. et al. (2003). Nitrogen uptake and translocation by Chara. Aquatic Botany 76: 245258.CrossRefGoogle Scholar
Vitousek, P. M. & Howarth, R. W. (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13: 87115.CrossRefGoogle Scholar
Vitousek, P. M., Menge, D. N. L., Reed, S. C. et al. (2013). Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B 368: 20130119. https://doi.org/10.1098/rstb.2013.0119.CrossRefGoogle ScholarPubMed
Vogels, G. D. & Van Der Drift, C. (1976). Degradation of purines and pyrimidines by microorganisms. Bacteriology Review 40: 403468.CrossRefGoogle ScholarPubMed
Voss, M., Bange, H. W., Dippner, J. W. et al. (2013). The marine nitrogen cycle: Recent discoveries, uncertainties and the potential relevance of climate change. Philosophical Transactions of the Royal Society B 368: 20130121. https://doi.org/10.1098/rstb.2013.0121.CrossRefGoogle ScholarPubMed
Walker, N. A., Reid, R. J. & Smith, F. A. (1993). The uptake and metabolism of urea by Chara australis. IV. Symport with sodium – a slip model for the high and low affinity systems. Journal of Membrane Biology 136: 263271.CrossRefGoogle ScholarPubMed
Waraich, E. A., Amad, R., Ashraf, M. Y. et al. (2011). Improving agricultural water use efficiency by nutrient management. Acta Agriculturae Scandinavica – Soil & Plant Science 61: 291304.Google Scholar
Wang, X., Huang, B. & Zhang, H. (2014). Phosphorus deficiency affects multiple macromolecular biosynthesis pathways of Thalassiosira weissflogii. Acta Oceanology Sinica 33: 8591.CrossRefGoogle Scholar
Waycott, M., Duarte, C. M., Carruthers, T. J. B. et al. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences USA 106: 1237712381. https://doi.org/10.1073/pnas.0905620106.CrossRefGoogle ScholarPubMed
Wetz, M. S., Cira, E. K., Sterba-Boatwright, B. et al. (2017). Exceptionally high organic nitrogen concentrations in a semi-arid South Texas estuary susceptible to brown tide blooms. Estuarine, Coastal and Shelf Science 188: 2737.CrossRefGoogle Scholar
Wilkerson, F. P. & Trench, R. K. (1986). Uptake of dissolved inorganic nitrogen by the symbiotic clam Tridacna gigas and the coral Acropora sp. Marine Biology 93: 237246.CrossRefGoogle Scholar
Wilkerson, F. P., Dugdale, R. C., Hogue, V. E. et al. (2006). Phytoplankton blooms and nitrogen productivity in the San Francisco Bay. Estuaries Coasts 29: 401416.CrossRefGoogle Scholar
Williams, S. K. & Hodson, R. C. (1977). Transport of urea at low concentrations in Chlamydomonas reinhardtii. Journal of Bacteriology 130: 266273.CrossRefGoogle Scholar
Williams, S. L. (1981). Uptake of sediment ammonium and translocation in a marine green macroalga Caulerpa cuppressoides. Limnology and Oceanography 29: 374379.CrossRefGoogle Scholar
Williams, S. L. & Fisher, T. R. (1985). Kinetics of nitrogen-15 labelled ammonium uptake by Caulerpa cupressoides (Chlorophyta). Journal of Phycology 21: 287296.CrossRefGoogle Scholar
Wong, J. C. Y., Enríquez, S. & Baker, D. M. (2021). Towards a trait-based understanding of Symbiodiniaceae nutrient acquisition strategies. Coral Reefs 40: 625639.CrossRefGoogle Scholar
Wu, J. F., Sunda, W., Boyle, E. A. et al. (2000). Phosphate depletion in the western North Atlantic Ocean. Science 289: 759762.CrossRefGoogle ScholarPubMed
Wurch, L. L., Haley, S. T., Orchard, E. D. et al. (2011). Nutrient regulated transcriptional responses in the brown tide forming alga Aureococcus anophagefferens. Environment and Microbiology 13: 468481.CrossRefGoogle ScholarPubMed
Wynne, D. & Berman, T. (1990). The influence of environmental factors on nitrate reductase activity in freshwater phytoplankton. I. Field studies. Hydrobiologia 194: 235245.CrossRefGoogle Scholar
Yacano, M. R., Foster, S. Q., Ray, N. E. et al. (2022). Marine macroalgae are an overlooked sink of silicon in coastal systems. New Phytologist 233: 23302336.CrossRefGoogle ScholarPubMed
Yamaguchi, H., Yamaguchi, M., Fukami, K. et al. (2005). Utilization of phosphate diester by the marine diatom Chaetoceros ceratosporus. Journal of Plankton Research 27: 603606.CrossRefGoogle Scholar
Yang, Z. K., Niu, Y.-F. & Ma, Y.-H. (2013). Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnology for Biofuels 6: 67. https://doi.org/10.1186/1754–6834–6-67.CrossRefGoogle ScholarPubMed
Yang, Z. K., Ma, Y. H., Zheng, J. W. et al. (2014). Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom Phaeodactylum tricornutum. Journal of Applied Phycology 26: 7382.CrossRefGoogle ScholarPubMed
Yin, K., Liu, H. & Harrison, P. J. (2017). Sequential nutrient uptake as a potential mechanism for phytoplankton to maintain high primary productivity and balanced nutrient stoichiometry. Biogeosciences 14: 24692480.CrossRefGoogle Scholar
Young, E. B., Dring, M. J., Savidge, G. et al. (2007). Seasonal variations in nitrate reductase activity and internal N pools in intertidal brown algae are correlated with ambient nitrate concentrations. Plant Cell and Environment 30: 764774.CrossRefGoogle ScholarPubMed
Yu, C., Pan, Y. & Hu, H. (2023). NmrA acts as a positive regulator of nitrate assimilation in Phaeodactylum tricornutum. Algal Research 69: 102960. https://doi.org/10.1016/j.algal.2022.102960.CrossRefGoogle Scholar
Zehr, J. P. & Kudela, J. P. (2011). Nitrogen cycle of the open ocean: From genes to ecosystem. Annual Review of Marine Science 3: 197225.CrossRefGoogle Scholar
Zehr, J. P. & Capone, D. G. (2020). Changing perspectives in marine nitrogen fixation. Science 368: 9514.CrossRefGoogle ScholarPubMed
Zhang, Q., Bendif, E. M., Zhou, Y. et al. (2022). Declining metal availability in the Mesozoic seawater reflected in phytoplankton succession. Nature Geoscience 15: 932941.CrossRefGoogle Scholar
Zimmerman, A. E., Allison, S. D. & Martiny, A. C. (2014). Phylogenetic constraints on elemental stoichiometry and resource allocation in heterotrophic marine bacteria. Environmental Microbiology 16: 13981410.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×