Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T11:14:51.414Z Has data issue: false hasContentIssue false

13 - Effects of Pollutants on Microalgae

from Part II - Physiology of Photosynthetic Autotrophs in Present-Day Environments

Published online by Cambridge University Press:  24 October 2024

Mario Giordano
Affiliation:
Università degli Studi di Ancona, Italy
John Beardall
Affiliation:
Monash University, Victoria
John A. Raven
Affiliation:
University of Dundee
Stephen C. Maberly
Affiliation:
UK Centre for Ecology & Hydrology, Lancaster
Get access

Summary

Aquatic phototrophs are increasingly being exposed to a host of potentially toxic materials, mostly anthropogenic in origin, that contaminate oceans and freshwater ecosystems. Here, focusing on algae, we consider the effects of pesticides (herbicides and insecticides), polychlorinated biphenyls, plastics, hydrocarbons and heavy metals on aspects of growth and physiological performance. Algae differ widely in their resistance to these pollutants, but some have been shown to actively remove toxicants from the surrounding water, either by biochemical detoxification processes or by absorption to cell components (in many cases the cell wall). Algae with the ability to remove pollutants from affected water have been proposed as possible agents of bioremediation, though to date most of the studies have been at the laboratory scale and there is a need to show that algal remediation can be achieved at scale. There is also a need for more studies using ecologically relevant concentrations of pollutants and investigation of interactions between multiple pollutants and environmental factors.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Shafy, H. I. & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum 25: 107123.CrossRefGoogle Scholar
Abinandan, S., Subashchandrabose, S. R., Venkateswarlu, K. et al. (2020). Sustainable iron recovery and biodiesel yield by acid-adapted microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, grown in synthetic acid mine drainage. ACS Omega 5: 68886894.CrossRefGoogle ScholarPubMed
Almeida, A. C., Gomes, T., Langford, K. et al. (2019). Oxidative stress potential of the herbicides bifenox and metribuzin in the microalgae Chlamydomonas reinhardtii. Aquatic Toxicology 210: 117128.CrossRefGoogle ScholarPubMed
Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin 62: 15961605.CrossRefGoogle ScholarPubMed
Anyasi, R. O. (2011). Biological remediation of polychlorinated biphenyls (PCB) in the environment by microorganisms and plants. African Journal of Biotechnology 10: 1891618938.CrossRefGoogle Scholar
Asghari, S., Rajabi, F., Tarrahi, R. et al. (2020). Potential of the green microalga Chlorella vulgaris to fight against fluorene contamination: Evaluation of antioxidant systems and identification of intermediate biodegradation compounds. Journal of Applied Phycology 32: 411419.CrossRefGoogle Scholar
Baghour, M. (2019). Algal degradation of organic pollutants. In Martínez, L., Kharissova, O. & Kharisov, B (eds.) Handbook of Ecomaterials, Vol. 1. Springer International Publishing, Cham, pp. 565586.CrossRefGoogle Scholar
Baker, L. F., Mudge, J. F., Thompson, D. G. et al. (2016). The combined influence of two agricultural contaminants on natural communities of phytoplankton and zooplankton. Ecotoxicology 25: 10211032.CrossRefGoogle ScholarPubMed
Batterton, J. C., Boush, G. M. & Matsumura, F. (1971). Growth response of blue-green algae to aldrin, dieldrin endrin and their metabolites. Bulletin of Environmental Contamination and Toxicology 6: 589591.CrossRefGoogle ScholarPubMed
Ben Chekroun, K., Sánchez, E. & Baghour, M. (2014). The role of algae in bioremediation of organic pollutants. International Research Journal of Public and Environmental Health 1: 1932.Google Scholar
Bergami, E., Pugnalini, S., Vannuccini, M. L. et al. (2017). Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquatic Toxicology 189: 159169.CrossRefGoogle ScholarPubMed
Besseling, E., Wang, B., Lürling, M. et al. (2014). Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environmental Science and Technology 48: 1233612343.CrossRefGoogle Scholar
Beyer, A. & Biziuk, M. (2009). Environmental fate and global distribution of polychlorinated biphenyls. In Whitacre, D. M. (ed.) Reviews of Environmental Contamination and Toxicology, Vol. 201. Springer, Boston, MA, pp. 137158.Google Scholar
Bhattacharya, P., Lin, S., Turner, J. P. et al. (2010). Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. Journal of Physical Chemistry C 114: 1655616561.CrossRefGoogle Scholar
Biggs, D. C., Rowland, R. G. & Wurster, C. F. (1979). Effects of trichloroethylene, hexachlorobenzene and polychlorinated biphenyls on the growth and cell size of marine phytoplankton. Bulletin of Environmental Contamination and Toxicology 21: 196201.CrossRefGoogle ScholarPubMed
Birungi, Z. S. & Chirwa, E. M. N. (2015). The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources. Journal of Hazardous Materials 299: 6777.CrossRefGoogle ScholarPubMed
Bodin, H., Asp, H. & Hultberg, M. (2017). Effects of biopellets composed of microalgae and fungi on cadmium present at environmentally relevant levels in water. International Journal of Phytoremediation 19: 500504.CrossRefGoogle ScholarPubMed
Bwapwa, J. K., Jaiyeola, A. T. & Chetty, R. (2017). Bioremediation of acid mine drainage using algae strains: A review. South African Journal of Chemical Engineering 24: 6270.CrossRefGoogle Scholar
Canniff, P. M. & Hoang, T. C. (2018). Microplastic ingestion by Daphnia magna and its enhancement on algal growth. Science of the Total Environment 633: 500507.CrossRefGoogle ScholarPubMed
Carder, J. P. & Hoagland, K. D. (1998). Combined effects of alachlor and atrazine on benthic algal communities in artificial streams. Environmental Toxicology and Chemistry 17: 14151420.CrossRefGoogle Scholar
Carrera-Martinez, D., Mateos-Sanz, A., Lopez-Rodas, V. et al. (2011). Adaptation of microalgae to a gradient of continuous petroleum contamination. Aquatic Toxicology 101: 342350.CrossRefGoogle ScholarPubMed
Chae, Y. & An, Y. J. (2017). Effects of micro- and nanoplastics on aquatic ecosystems: Current research trends and perspectives. Marine Pollution Bulletin 124: 624632.CrossRefGoogle Scholar
Chae, Y., Kim, D. & An, Y. J. (2019). Effects of micro-sized polyethylene spheres on the marine microalga Dunaliella salina: Focusing on the algal cell to plastic particle size ratio. Aquatic Toxicology 216: 105296.CrossRefGoogle ScholarPubMed
Chamsi, O., Pinelli, E., Faucon, B. et al. (2019). Effects of herbicide mixtures on freshwater microalgae with the potential effect of a safener. Annales de Limnologie – International Journal of Limnology 55: 19.CrossRefGoogle Scholar
Chaudhari, P. R., Jayangouder, I. & Krishnamoorthi, K. P. (1989). Response of some common freshwater algae to DDT applications. Proceedings of the lndian Academy of. Science (Plant Science) 99: 279285.Google Scholar
Chen, W., Jia, Y., Liu, A. et al. (2017). Simultaneous elimination of cyanotoxins and PCBs via mechanical collection of cyanobacterial blooms: An application of ‘green-bioadsorption concept’. Journal of Environmental Sciences (China) 57: 118126.CrossRefGoogle ScholarPubMed
Chetouhi, C., Masseret, E., Satta, C. T. et al. (2020). Intraspecific variability in membrane proteome, cell growth, and morphometry of the invasive marine neurotoxic dinoflagellate Alexandrium pacificum grown in metal-contaminated conditions. Science of the Total Environment 715: 136834.CrossRefGoogle ScholarPubMed
Chiellini, C., Guglielminetti, L., Pistelli, L. et al. (2020). Screening of trace metal elements for pollution tolerance of freshwater and marine microalgal strains: Overview and perspectives. Algal Research 45: 101751.CrossRefGoogle Scholar
Choix, F. J., de-Bashan, L. E. & Bashan, Y. (2012). Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions. Enzyme and Microbial Technology 51: 300309.CrossRefGoogle ScholarPubMed
Cole, M., Lindeque, P., Fileman, E. et al. (2013). Microplastic ingestion by zooplankton. Environmental Science and Technology 47: 66466655.CrossRefGoogle ScholarPubMed
DaSilva, E. J., Henriksson, L. E. & Henriksson, E. (1975). Effect of pesticides on blue-green algae and nitrogen-fixation. Archives of Environmental Contamination and Toxicology 3: 193204.CrossRefGoogle ScholarPubMed
Davis, J. A., Hetzel, F., Oram, J. J. et al. (2007). Polychlorinated biphenyls (PCBs) in San Francisco Bay. Environmental Research 105: 6786.CrossRefGoogle ScholarPubMed
De-Bashan, L. E., Bashan, Y., Moreno, M. et al. (2002). Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Canadian Journal of Microbiology 48: 514521.CrossRefGoogle ScholarPubMed
Debenest, T., Silvestre, J., Coste, M., et al. (2008). Herbicide effects on freshwater benthic diatoms: Induction of nucleus alterations and silica cell wall abnormalities. Aquatic Toxicology 88: 8894.CrossRefGoogle ScholarPubMed
Debenest, T., Silvestre, J., Coste, M. et al. (2010). Effects of pesticides on freshwater diatoms. Reviews of Environmental Contamination and Toxicology 203: 87103.Google ScholarPubMed
Deng, J., Fu, D., Hu, W. et al. (2020). Physiological responses and accumulation ability of Microcystis aeruginosa to zinc and cadmium: Implications for bioremediation of heavy metal pollution. Bioresource Technology 303: 122963.CrossRefGoogle ScholarPubMed
Deng, L., Senseman, S. A., Gentry, T. J. et al. (2015). Effect of selected herbicides on growth and lipid content of Nannochloris oculata. Journal of Aquatic Plant Management 53: 2835.Google Scholar
Ebenezer, V. & Ki, J.-S. (2016). Toxic effects of Aroclor 1016 and bisphenol A on marine green algae Tetraselmis suecica, diatom Ditylum brightwellii and dinoflagellate Prorocentrum minimum. The Korean Journal of Microbiology 52: 306312.CrossRefGoogle Scholar
Eich, A., Mildenberger, T., Laforsch, C. et al. (2015). Biofilm and diatom succession on polyethylene (PE) and biodegradable plastic bags in two marine habitats: Early signs of degradation in the pelagic and benthic zone? PLOS ONE 10: e0137201.CrossRefGoogle ScholarPubMed
Elahi, A., Arooj, I., Bukhari, D. A. et al. (2020). Successive use of microorganisms to remove chromium from wastewater. Applied Microbiology and Biotechnology 104: 37293743.CrossRefGoogle ScholarPubMed
Eregie, S. B. & Jamal-Ally, S. F. (2019). Comparison of biodegradation of lubricant wastes by Scenedesmus vacuolatus vs a microalgal consortium. Bioremediation Journal 23: 277301.CrossRefGoogle Scholar
Erickson, M. D. (1997). Analytical Chemistry of PCBs, 2nd ed. CRC Press, New York, NY.Google Scholar
Fitzgerald, S. A. & Steuer, J. J. (2006). Association of polychlorinated biphenyls (PCBs) with live algae and total lipids in rivers – A field-based approach. Science of the Total Environment 354: 6074.CrossRefGoogle Scholar
Gonzalez-Rey, M., Tapie, N., Le Menach, K. et al. (2015). Occurrence of pharmaceutical compounds and pesticides in aquatic systems. Marine Pollution Bulletin 96: 384400.CrossRefGoogle ScholarPubMed
González, J., Figueiras, F. G., Aranguren-Gassis, M. et al. (2009). Effect of a simulated oil spill on natural assemblages of marine phytoplankton enclosed in microcosms. Estuarine, Coastal and Shelf Science 83: 265276.CrossRefGoogle Scholar
Groner, M. L. & Relyea, R. A. (2011). A tale of two pesticides: How common insecticides affect aquatic communities. Freshwater Biology 56: 23912404.CrossRefGoogle Scholar
Guo, Y., Ma, W., Li, J. et al. (2020). Effects of microplastics on growth, phenanthrene stress, and lipid accumulation in a diatom, Phaeodactylum tricornutum. Environmental Pollution 257: 113628.CrossRefGoogle Scholar
Halm-Lemeille, M. P., Abbaszadeh Fard, E., Latire, T. et al. (2014). The effect of different polychlorinated biphenyls on two aquatic models, the green alga Pseudokirchneriella subcapitata and the haemocytes from the European abalone Haliotis tuberculata. Chemosphere 110: 120128.CrossRefGoogle ScholarPubMed
Harding, L. W. & Phillips, J. H. (1978). Polychlorinated biphenyl (PCB) effects on marine phytoplankton photosynthesis and cell division. Marine Biology 49: 93101.CrossRefGoogle Scholar
Hernando, M. D., Ferrer, I., Agüera, A. et al. (2004). Evaluation of pesticides in wastewaters. A combined (chemical and biological) analytical approach. In Barcelo, D. (ed.) Water Pollution. The Handbook of Environmental Chemistry, Vol. 2. Springer-Verlag, Berlin, Heidelberg, pp. 5377.Google Scholar
Ibrahim, W. M., Karam, M. A., El-Shahat, R. M. et al. (2014). Biodegradation and utilization of organophosphorus pesticide malathion by cyanobacteria. BioMed Research International 2014: 392681. https://doi.org/10.1155/2014/392682.CrossRefGoogle ScholarPubMed
Jaafari, J. & Yaghmaeian, K. (2019). Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere 217: 447455.CrossRefGoogle ScholarPubMed
Jin, M., Xiao, X., Qin, L. et al. (2020). Physiological and morphological responses and tolerance mechanisms of Isochrysis galbana to Cr(VI) stress. Bioresource Technology 302: 122860.CrossRefGoogle ScholarPubMed
Karydis, M. & Fogg, G. E. (1980). Physiological effects of hydrocarbons on the marine diatom Cyclotella cryptica. Microbial Ecology 6: 281290.CrossRefGoogle Scholar
Khatiwada, B., Hasan, M. T., Sun, A. et al. (2020). Proteomic response of Euglena gracilis to heavy metal exposure – identification of key proteins involved in heavy metal tolerance and accumulation. Algal Research 45: 101764.CrossRefGoogle Scholar
Lal, S. (1984). Effects of insecticides on algae. In Lal, R. (ed.) Insecticide Microbiology. Springer, Berlin, Heidelberg, pp. 203236.CrossRefGoogle Scholar
Lara, R. J., Wiencke, C. & Ernst, W. (1989). Association between exudates of brown algae and polychlorinated biphenyls. Journal of Applied Phycology 1: 267270.CrossRefGoogle Scholar
Leong, Y. K. & Chang, J.-S. (2020). Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresource Technology 303: 122886.CrossRefGoogle ScholarPubMed
Liu, G., Jiang, R., You, J. et al. (2020). Microplastic impacts on microalgae growth: Effects of size and humic acid. Environmental Science and Technology 54: 17821789.CrossRefGoogle ScholarPubMed
Long, M., Moriceau, B., Gallinari, M. et al. (2015). Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates. Marine Chemistry 175: 3946.CrossRefGoogle Scholar
Lu, J., Ma, Y., Xing, G. et al. (2019). Revelation of microalgae’s lipid production and resistance mechanism to ultra-high Cd stress by integrated transcriptome and physiochemical analyses. Environmental Pollution 250: 186195.CrossRefGoogle ScholarPubMed
Luo, L., Xiao, Z., Zhou, X. et al. (2020). Quantum chemical calculation to elucidate the biodegradation pathway of methylphenanthrene by green microalgae. Water Research 173: 115598.CrossRefGoogle ScholarPubMed
Machado, M. D. & Soares, E. V. (2019). Sensitivity of freshwater and marine green algae to three compounds of emerging concern. Journal of Applied Phycology 31: 399408.CrossRefGoogle Scholar
Madadi, R., Pourbabaee, A. A., Tabatabaei, M. et al. (2016). Treatment of petrochemical wastewater by the green algae Chlorella vulgaris. International Journal of Environmental Research 10: 555560.Google Scholar
Mahanty, H. K. & Gresshoff, P. M. (1978). Influence of polychlorinated biphenyls (PCBs) on growth of freshwater algae. Botanical Gazette 139: 202206.CrossRefGoogle Scholar
Mansano, A. S., Moreira, R. A., Dornfeld, H. C. et al. (2017). Effects of diuron and carbofuran and their mixtures on the microalgae Raphidocelis subcapitata. Ecotoxicology and Environmental Safety 142: 312321.CrossRefGoogle ScholarPubMed
Moisset, S., Tiam, S. K., Feurtet-Mazel, A. et al. (2015). Genetic and physiological responses of three freshwater diatoms to realistic diuron exposures. Environmental Science and Pollution Research 22: 40464055.CrossRefGoogle ScholarPubMed
Mostafa, F. I. Y. & Helling, C. S. (2002). Impact of four pesticides on the growth and metabolic activities of two photosynthetic algae. Journal of Environmental Science and Health – Part B Pesticides, Food Contaminants and Agricultural Wastes 37: 417444.Google ScholarPubMed
Muñoz, R., Guieysse, B. & Mattiasson, B. (2003). Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Applied Microbiology and Biotechnology 61: 261267.CrossRefGoogle ScholarPubMed
Nandimandalam, H. & Gude, V. G. (2019). Indigenous biosensors for in situ hydrocarbon detection in aquatic environments. Marine Pollution Bulletin 149: 110643.CrossRefGoogle Scholar
Nie, J., Sun, Y., Zhou, Y. et al. (2020). Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Science of the Total Environment 707: 136080.CrossRefGoogle ScholarPubMed
Niestroy, J., Martínez, A. B. & Band-Schmidt, C. J. (2014). Analysis of concentration-dependent effects of copper and PCB on different Chattonella spp. microalgae (Raphidophyceae) cultivated in artificial seawater medium. EXCLI Journal 13: 197211.Google ScholarPubMed
Nolte, T. M., Hartmann, N. B., Kleijn, J. M. et al. (2017). The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquatic Toxicology 183: 1120.CrossRefGoogle ScholarPubMed
Nowicka, B., Fesenko, T., Walczak, J. et al. (2020). The inhibitor-evoked shortage of tocopherol and plastoquinol is compensated by other antioxidant mechanisms in Chlamydomonas reinhardtii exposed to toxic concentrations of cadmium and chromium ions. Ecotoxicology and Environmental Safety 191: 110241.CrossRefGoogle ScholarPubMed
Pandey, L. K. (2020). In situ assessment of metal toxicity in riverine periphytic algae as a tool for biomonitoring of fluvial ecosystems. Environmental Technology and Innovation 18: 100675.CrossRefGoogle Scholar
Patel, J. G., Kumar, J. I. N., Kumar, R. N. et al. (2016). Biodegradation capability and enzymatic variation of potentially hazardous polycyclic aromatic hydrocarbons – Anthracene and Pyrene by Anabaena fertilissima. Polycyclic Aromatic Compounds 36: 7287.CrossRefGoogle Scholar
Pham, T. L., Dao, T. S., Bui, H. N. et al. (2020). Lipid production combined with removal and bioaccumulation of Pb by Scenedesmus sp. green alga. Polish Journal of Environmental Studies 29: 17851791.CrossRefGoogle Scholar
Pistocchi, R., Dao, L. T. H., Mikulic, P. et al. (2019). Metal pollution in water: Toxicity, tolerance and use of algae as a potential remediation solution. In Hallmann, A. & Rampelotto, P. H. (eds.) Grand Challenges in Algae Biotechnology. Springer, Cham, pp. 471500.CrossRefGoogle Scholar
Plastics Europe (2018). Plastics– the Facts 2018: An analysis of European plastics production, demand and waste data. Brussels, Wemmel: Association for Plastics Manufacturers, European Association of Plastics Recycling. Reteived from: https://plasticseurope.org/wp-content/uploads/2021/10/2018-Plastics-the-facts.pdf.Google Scholar
Pradhan, D., Sukla, L. B., Mishra, B. B. et al. (2019). Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. Journal of Cleaner Production 209: 617629.CrossRefGoogle Scholar
Radwan, E. K., Abdel-Aty, A. M., El-Wakeel, S. T. et al. (2020). Bioremediation of potentially toxic metal and reactive dye-contaminated water by pristine and modified Chlorella vulgaris. Environmental Science and Pollution Research 27: 2177721789.CrossRefGoogle ScholarPubMed
Ricart, M., Barceló, D., Geiszinger, A. et al. (2009). Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere 76: 13921401.CrossRefGoogle ScholarPubMed
Ridley, S. M. & Horton, P. (1984). DCMU-induced fluorescence changes and photodestruction of pigments associated with an inhibition of photosystem I cyclic electron flow. Zeitschrift für Naturforschung C 39: 351353.CrossRefGoogle Scholar
Romero-Lopez, J., Lopez-Rodas, V. & Costas, E. (2012). Estimating the capability of microalgae to physiological acclimatization and genetic adaptation to petroleum and diesel oil contamination. Aquatic Toxicology 124–125: 227237.CrossRefGoogle ScholarPubMed
Sabater, S., Artigas, J., Corcoll, N. et al. (2016). Ecophysiology of river algae. In Necchi Jr, O (ed.) River Algae. Springer International Publishing, Cham, pp. 197217.CrossRefGoogle Scholar
Salehi, M., Biria, D., Shariati, M. et al. (2019). Treatment of normal hydrocarbons contaminated water by combined microalgae – Photocatalytic nanoparticles system. Journal of Environmental Management 243: 116126.CrossRefGoogle ScholarPubMed
Sarmah, P. & Rout, J. (2018). Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environmental Science and Pollution Research 25: 3350833520.CrossRefGoogle ScholarPubMed
Senger, H. & Fleischhacker, P. (1978). Adaptation of the photosynthetic apparatus of Scenedesmus obliquus to strong and weak light conditions. I. Differences in pigments, photosynthetic capacity, quantum yield and dark reactions. Physiologia Plantarum 43: 3542.CrossRefGoogle Scholar
Shen, N. & Chirwa, E. M. N. (2020). Live and lyophilized fungi-algae pellets as novel biosorbents for gold recovery: Critical parameters, isotherm, kinetics and regeneration studies. Bioresource Technology 306: 123041.CrossRefGoogle ScholarPubMed
Shivaji, S. & Dronamaraju, S. V. L. (2019). Scenedesmus rotundus isolated from the petroleum effluent employs alternate mechanisms of tolerance to elevated levels of cadmium and zinc. Scientific Reports 9: 115.CrossRefGoogle ScholarPubMed
Sjollema, S. B., Redondo-Hasselerharm, P., Leslie, H. A. et al. (2016). Do plastic particles affect microalgal photosynthesis and growth? Aquatic Toxicology 170:259261.CrossRefGoogle ScholarPubMed
Skoglund, R. S. (1996). A kinetics model for predicting the accumulation of PCBs in phytoplankton. Environmental Science and Technology 30: 21132120.CrossRefGoogle Scholar
Staley, Z. R., Harwood, V. J. & Rohr, J. R. (2015). A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems. Critical reviews in Toxicology 45: 813836.CrossRefGoogle ScholarPubMed
Stratton, G. W. & Corke, C. T. (1982). Toxicity of the insecticide permethrin and some degradation products towards algae and cyanobacteria. Environmental Pollution. Series A, Ecological and Biological 29: 7180.CrossRefGoogle Scholar
Subashchandrabose, S. R., Venkateswarlu, K., Venkidusamy, K. et al. (2019). Bioremediation of soil long-term contaminated with PAHs by algal–bacterial synergy of Chlorella sp. MM3 and Rhodococcus wratislaviensis strain 9 in slurry phase. Science of the Total Environment 659: 724731.CrossRefGoogle ScholarPubMed
Swackhamer, D. L. & Skoglund, R. S. (1993). Bioaccumulation of PCBs by algae: Kinetics versus equilibrium. Environmental Toxicology and Chemistry 12: 831838.CrossRefGoogle Scholar
Tang, X., He, L. Y., Tao, X. Q. et al. (2010). Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. Journal of Hazardous Materials 181: 11581162.CrossRefGoogle ScholarPubMed
Upadhyay, A. K., Mandotra, S. K., Kumar, N. et al. (2016). Augmentation of arsenic enhances lipid yield and defense responses in alga Nannochloropsis sp. Bioresource Technology 221: 430437.CrossRefGoogle ScholarPubMed
Urrutia, C., Yañez-Mansilla, E. & Jeison, D. (2019). Bioremoval of heavy metals from metal mine tailings water using microalgae biomass. Algal Research 43: 101659.CrossRefGoogle Scholar
Vargo, G., Hutchins, M. & Almquist, G. (1982). The effect of low, chronic levels of no. 2 fuel oil on natural phytoplankton assemblages in microcosms: 1. Species composition and seasonal succession. Marine Environmental Research 6: 245264.CrossRefGoogle Scholar
Vimal Kumar, R., Kanna, G. R. & Elumalai, S. (2017). Biodegradation of polyethylene by green photosynthetic microalgae. Journal of Bioremediation and Biodegradation 8: 18.CrossRefGoogle Scholar
Wright, S. L., Thompson, R. C. & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: A review. Environmental Pollution 178: 483492.CrossRefGoogle ScholarPubMed
Xaaldi Kalhor, A., Movafeghi, A., Mohammadi-Nassab, A. D. et al. (2017). Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Marine Pollution Bulletin 123: 286290.CrossRefGoogle ScholarPubMed
Xing, Y., Lu, Y., Dawson, R. W. et al. (2005). A spatial temporal assessment of pollution from PCBs in China. Chemosphere 60: 731739.CrossRefGoogle ScholarPubMed
Zeroual, S., El Bakkal, S. E., Mansori, M. et al. (2020). Cell wall thickening in two Ulva species in response to heavy metal marine pollution. Regional Studies in Marine Science 35: 101125.CrossRefGoogle Scholar
Zhang, C., Chen, X., Wang, J. et al. (2017). Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae. Environmental Pollution 220: 12821288.CrossRefGoogle ScholarPubMed
Zhang, H., Jiang, X., Lu, L. et al. (2015). Biodegradation of polychlorinated biphenyls (PCBs) by the novel identified cyanobacterium Anabaena PD-1. PLOS ONE 10: e0131450.Google ScholarPubMed
Zhao, Y., Shang, D., Ning, J. et al. (2019). Subcellular distribution and chemical forms of lead in the red algae, Porphyra yezoensis. Chemosphere 227: 172178.CrossRefGoogle ScholarPubMed
Zhu, X., Sun, Y., Zhang, X. et al. (2016). Herbicides interfere with antigrazer defenses in Scenedesmus obliquus. Chemosphere 162: 243251.CrossRefGoogle ScholarPubMed
Zhu, Z.-L., Wang, S.-C., Zhao, F.-F. et al. (2019). Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum. Environmental Pollution 246: 509517.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×