Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T03:40:40.079Z Has data issue: false hasContentIssue false

Chapter 9 - Tsuga

Pinales: Abietaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Stately evergreen trees, often well furnished nearly to the ground, with straight, tapering trunks and tapering or rounded crowns of regular outline. They have an arched, drooping leader, and their numerous slender branch systems form wide and flattened sprays bearing (in most species) very numerous, small, distinctly flattened, oblong leaves and small, pendulous cones.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 217 - 242
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, M.D., Van de Gevel, S., Dodson, R.C. & Copenheaver, C.A. 2000. The dendroecology and climatic impacts for old-growth white pine and hemlock on the extreme slopes of the Berkshire Hills, Massachusetts, U.S.A. Canadian Journal of Botany 78: 851861.CrossRefGoogle Scholar
Ager, T.A., MatthewsJr, J.V. & Yeend, W. 1994. Pliocene terrace gravels of the ancestral Yukon River near Circle, Alaska: palynology, paleobotany, paleoenvironmental reconstruction and regional correlation. Quaternary International 22: 185206.CrossRefGoogle Scholar
Allison, T.D., Moeller, R.E. & Davis, M.B. 1986. Pollen in laminated sediments provides evidence for a mid-Holocene forest pathogen outbreak. Ecology 6: 11011105.CrossRefGoogle Scholar
Ally, D. & Ritland, K. 2007. A case study: looking at the effects of fragmentation on genetic structure in different life history stages of old-growth Mountain hemlock (Tsuga mertensiana). Journal of Heredity 98: 7378.CrossRefGoogle ScholarPubMed
Axelrod, D.I. 1985. Miocene floras from the Middlegate Basin, west-central Nevada. University of California Publications in Geological Sciences 129: 1279.Google Scholar
Axelrod, D.I. 1986. Cenozoic history of some western American pines. Annals of the Missouri Botanic Garden 73: 565641.CrossRefGoogle Scholar
Axelrod, D.I. 1987 The Late Oligocene Creede Flora, Colorado. Berkeley, CA: University of California Press.Google Scholar
Axelrod, D.I. 1988. An interpretation of high montane conifers in western Tertiary floras. Paleobiology 14(3): 301306.CrossRefGoogle Scholar
Axelrod, D.I. 1998a. The Eocene Thunder Mountain flora of central Idaho. University of California Publications in Geological Sciences 142: 161.Google Scholar
Axelrod, D.I. 1998b. The Oligocene Haynes Creek flora of eastern Idaho. University of California Publications in Geological Sciences 143: 1160.Google Scholar
Banner, A., Pojar, J. & Rouse, G.E. 1983. Postglacial paleoecology and successional relationships of a bog woodland near Prince Rupert, British Columbia. Canadian Journal of Forest Research 13(5): 938947.CrossRefGoogle Scholar
Batten, D.J. & Dutta, R.J. 1997. Ultrastructure of exine of gymnospermous pollen grains from Jurassic and basal Cretaceous deposits in Northwest Europe and implications for botanical relationships. Review of Palaeobotany and Palynology 99(1): 2554.CrossRefGoogle Scholar
Bennett, K.D. & Fuller, J.L. 2002. Determining the age of the mid-Holocene Tsuga canadensis (hemlock) decline, eastern North America. The Holocene 12: 421429.CrossRefGoogle Scholar
Bennett, K.D. & Fuller, J.L. 2004. The mid-Holocene Tsuga canadensis (hemlock) decline, eastern North America – age versus causes: a reply to Payette. The Holocene 14: 950951.CrossRefGoogle Scholar
Benowicz, A., L’Hirondelle, S. & El Kassaby, Y.A. 2001. Patterns of genetic variation in mountain hemlock (Tsuga mertensiana (Bong.) Carr.) with respect to height growth and frost hardiness. Forest Ecology and Management 154: 2333.CrossRefGoogle Scholar
Bentz, S.E., Riedel, L.G.H., Pooler, M.R. & Townsend, A.M. 2002. Hybridisation and self-compatibility in controlled pollinations of eastern North American and Asian hemlock (Tsuga) species. Journal of Arboriculture 28: 200205.Google Scholar
Bertini, A. 2000. Pollen record from Colle Curti and Cesi: early and middle Pleistocene mammal sites in the Umbro–Marchean Apennine mountains (central Italy). Journal of Quaternary Science 15(8): 825840.3.0.CO;2-6>CrossRefGoogle Scholar
Bertini, A. 2006. The Northern Apennines palynological record as a contribute for the reconstruction of the Messinian palaeoenvironments. Sedimentary Geology 188: 235258.CrossRefGoogle Scholar
Bertoldi, R., Rio, D. & Thunell, R. 1989. Pliocene–Pleistocene vegetational and climatic evolution of the south-central Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology 72: 575.CrossRefGoogle Scholar
Bhattacharya, K. & Chanda, S. 1992. Late Quaternary vegetational history of Upper Assam, India. Review of Palaeobotany and Palynology 72(3–4): 325333.CrossRefGoogle Scholar
Bhiry, N. & Filion, L. 1996. Mid-Holocene hemlock decline in eastern North America linked with phytophagous insect activity. Quaternary Research 45(3): 312320.CrossRefGoogle Scholar
Blyakharchuk, T.A. 2003. Four new pollen sections tracing the Holocene vegetational development of the southern part of the West Siberian Lowland. The Holocene, 13(5): 715731.CrossRefGoogle Scholar
Blyakharchuk, T.A. & Sulerzhitsky, L.D. 1999. Holocene vegetational and climatic changes in the forest zone of Western Siberia according to pollen records from the extrazonal palsa bog Bugristoye. The Holocene 9(5): 621628.CrossRefGoogle Scholar
Blyakharchuk, T.A., Wright, H.E., Borodavko, P.S., et al. 2004. Late Glacial and Holocene vegetational changes on the Ulagan high-mountain plateau, Altai Mountains, southern Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology 209: 259279.CrossRefGoogle Scholar
Briles, C.E., Whitlock, C. & Bartlein, P.J. 2005. Postglacial vegetation, fire, and climate history of the Siskiyou Mountains, Oregon, USA. Quaternary Research 64(1): 4456.CrossRefGoogle Scholar
Brown, J., Collins, M., Tudhope, A.W. & Toniazzo, T. 2008. Modelling mid-Holocene tropical climate and ENSO variability: towards constraining predictions of future change with palaeo-data. Climate Dynamics 30: 1936.CrossRefGoogle Scholar
Brown, K.J. & Hebda, R.J. 2002. Origin, development and dynamics of coastal temperate conifer rainforests of southern Vancouver Island, Canada. Canadian Journal of Forest Research 32: 353372.CrossRefGoogle Scholar
Brown, K.J. & Hebda, R.J. 2003. Coastal rainforest connections disclosed through a Late Quaternary vegetation, climate and fire history investigation from the Mountain Hemlock Zone on southern Vancouver Island, British Columbia, Canada. Review of Palaeobotany and Palynology 123: 247269.CrossRefGoogle Scholar
Calcote, R.C. 2003. Mid-Holocene climate and the hemlock decline: the range limit of Tsuga canadensis in the western Great Lakes region USA. The Holocene 13: 215224.CrossRefGoogle Scholar
Cázares, E. & Trappe, J.M. 1993. Vesicular endophytes in roots of the Pinaceae. Mycorrhiza 2: 153156.CrossRefGoogle Scholar
Chaney, R.W. & Hu, H.H. 1940. A Miocene flora from Shangdong Province, China. Part II. Physical conditions and correlation. Carnegie Institution of Washington Publications 507.Google Scholar
Cheng, W.-C. 1933. The studies of Chinese conifers. I. Tsuga Carriere. Contribution of the Biological Laboratory, Science Society of China 9: 1823.Google Scholar
Christie, R.L. & McMillan, N.J. 1991. Introduction. In Christie, R. L. & McMillan, N. J. (eds.), Tertiary Fossil Forests of the Geodetic Hills, Axel Heiberg Island, Arctic Archipelago. Geological Survey of Canada, Bulletin 403, p. xiii–xvi.CrossRefGoogle Scholar
Christy, E.J. & Mack, R.N. 1984. Variation in demography of juvenile Tsuga heterophylla across the substratum mosaic. Journal of Ecology 72: 7591.CrossRefGoogle Scholar
Colinvaux, P.A. 1964. The environment of the Bering land bridge. Ecological Monographs 34: 297329.CrossRefGoogle Scholar
Collinson, M.E. 1983. Palaeofloristic assemblages and palaeoecology of the lower Oligocene Bembridge marls, Hamstead ledge, Isle of Wight. Botanical Journal of the Linnean Society 86: 177225.CrossRefGoogle Scholar
Daubenmire, R. 1978. Plant Geography. New York: Academic Press.Google Scholar
Davis, M.B. 1989. Lags in vegetation response to greenhouse warming. Climatic Change 15(1–2): 7582.CrossRefGoogle Scholar
Davis, M.B., Calcote, R.R., Sugita, S. & Takahara, H. 1998. Patchy invasion and the origin of a hemlock–hardwoods forest mosaic. Ecology 79: 26412659.Google Scholar
Del Tredici, P. & Kitajima, A. 2004. Introduction and cultivation of Chinese hemlock (Tsuga chinensis) and its resistance to hemlock wooly adelgid (Adelges tsugae). Journal of Arboriculture 30: 282286.Google Scholar
Demske, D., Mohr, B. & Oberhänsli, H. 2002. Late Pliocene vegetation and climate of the Lake Baikal region, southern East Siberia, reconstructed from palynological data. Palaeogeography, Palaeoclimatology, Palaeoecology 184(1–2): 107129.CrossRefGoogle Scholar
Dogra, P.D. 1986. Conifers of India and their natural gene resources in relation to forestry and the Himalayan environment. Glimpses in Plant Research 7: 129194.Google Scholar
Elias, S.A. 1980. Paleoenvironmental interpretations of Holocene insect fossil assemblages from three sites in arctic Canada. University of Colorado at Boulder.Google Scholar
Elias, T.S. 1980. The Complete Trees of North America. Washington, DC: Van Nostrand ReinholdGoogle Scholar
El-Kassaby, Y.A. & Edwards, D.G.W. 2001. Germination ecology in mountain hemlock (Tsuga mertensiana (Bong.) Carr.). Forest Ecology and Management 144: 183188.CrossRefGoogle Scholar
Fan, Z.X., Bräuning, A., Yang, B. & Cao, K.F. 2009. Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Global and Planetary Change 65: 111.CrossRefGoogle Scholar
Fauquette, S. & Bertini, A. 2003. Quantification of the northern Italy Pliocene climate from pollen data: evidence for a very peculiar climate pattern. Boreas 32: 361369.CrossRefGoogle Scholar
Fauquette, S., Suc, J.-P., Guiot, J., et al. 1999. Climate and biomes in the west Mediterranean area during the Pliocene. Palaeogeography, Palaeoclimatology, Palaeoecology 152: 1536.CrossRefGoogle Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 33: 73110.CrossRefGoogle Scholar
Filion, L. & Quinty, F. 1993. Macrofossil and tree-ring evidence for a long-term forest succession and mid-Holocene hemlock decline. Quaternary Research 40(1): 8997.CrossRefGoogle Scholar
Fitschen, J. 1929. Die Gattung Tsuga. Mitteilungen der Deutschen Dendrologischen Gesellschaft 41: 111.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Franklin, J.F. & Dyrness, C.T. 1969. Vegetation of Oregon & Washington. US Pacific Northwest Forest and Range Experiment Station.CrossRefGoogle Scholar
Fujiki, T. & Ozawa, T. 2008. Vegetation change in the main island of Okinawa, southern Japan from late Pliocene to early Pleistocene. Quaternary International 184(1): 7583.CrossRefGoogle Scholar
Fuller, J.L. 1998. Ecological impact of the mid-Holocene hemlock decline in southern Ontario, Canada. Ecology 79: 23372351.CrossRefGoogle Scholar
Fusco, F. 2007. Vegetation response to early Pleistocene climatic cycles in the Lamone valley (Northern Apennines, Italy). Review of Palaeobotany and Palynology 145(1–2): 123.CrossRefGoogle Scholar
Gaussen, H. 1967. Les Gymnospermes actuelles et fossiles. Additions et corrections aux Abietacées. Les Taxodiacées. Travaux Laboratoire Forestier de Toulouse II XII: 1316.Google Scholar
Gavin, D.G., McLachlan, J.S., Brubaker, L.B. & Young, K.A. 2001. Postglacial history of subalpine forests, Olympic Peninsula, Washington, USA. Holocene 11: 177188.CrossRefGoogle Scholar
Gedalof, Z. & Smith, D.J. 2001. Dendroclimatic response of mountain hemlock (Tsuga mertensiana) in Pacific North America. Canadian Journal of Forest Research 31: 322332.CrossRefGoogle Scholar
Haas, J.N. & McAndrews, H.H. 1999. The summer drought related hemlock (Tsuga canadensis) decline in eastern North America 5,700–5,100 years ago. Pp 2224 in Proceedings: Symposium on Sustainable Management of Hemlock Ecosystems in Eastern North America. Durham, NH: US Forest Service.Google Scholar
Hably, L. & Marrón, M.T.F. 2007. The first macrofossil record of Ginkgo from the Iberian Peninsula. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 244: 6570.CrossRefGoogle Scholar
Hadley, J.L. & Schedlbauer, J.L. 2002. Carbon exchange of an old-growth eastern hemlock (Tsuga canadensis) forest in central New England. Tree Physiology 22(15–16): 10791092.CrossRefGoogle Scholar
Harmon, M.E. & Franklin, J.F. 1989. Tree seedlings on logs in PiceaTsuga forests of Oregon and Washington. Ecology 70: 4859.CrossRefGoogle Scholar
Hart, J.L. & Shankman, D. 2005. Disjunct Eastern hemlock (Tsuga canadensis) stands at its southern range boundary. Journal of the Torrey Botanical Society 132: 602612.CrossRefGoogle Scholar
Havill, N.P., Campbell, C.S., Vining, T.F., et al. 2008. Phylogeny and biogeography of Tsuga (Pinaceae) inferred from nuclear ribosomal ITS and chloroplast DNA sequence data. Systematic Botany 33(3): 478489.CrossRefGoogle Scholar
Hyatt, T.L. & Naiman, R.J. 2001. The residence time of large woody debris in the Queets River, Washington, USA. Ecological Applications 11(1): 191202.CrossRefGoogle Scholar
Iwauchi, A. & Hase, Y. 1992. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 5. Yoshino area (Middle Pleistocene). Journal Geological Society of Japan 98: 205221.Google Scholar
Jaramillo-Correa, J.P., Beaulieu, J., Khasa, D.P. & Bousquet, J. 2009. Inferring the past from the present phylogeographic structure of North American forest trees: seeing the forest for the genes. Canadian Journal of Forest Research 39(2): 286307.CrossRefGoogle Scholar
Jarvis, D.I. 1993. Pollen evidence of changing Holocene monsoon climate in Sichuan Province, China. Quaternary Research 39(3): 325337.CrossRefGoogle Scholar
Jenkins, J.C., Aber, J.D. & Canham, C.D. 1999. Hemlock wooly adelgid impacts on community structure and N cycling rates in eastern hemlock forests. Canadian Journal of Forest Research 29: 630645.CrossRefGoogle Scholar
Jiménez-Moreno, G., Fauquette, S. & Jean-Pierre, S. 2008. Vegetation, climate and palaeoaltitude reconstructions of the Eastern Alps during the Miocene based on pollen records from Austria, Central Europe. Journal of Biogeography 35: 16381649.CrossRefGoogle Scholar
Jumpponen, A., Trappe, J.M. & Cázares, E. 2002. Occurrence of ectomycorrhizal fungi on the forefront of retreating Lyman Glacier (Washington, USA) in relation to time since deglaciation. Mycorrhiza 12: 4349.CrossRefGoogle ScholarPubMed
Kan, X.Z., Wang, S.S., Ding, X. & Wang, X.Q. 2007. Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications. Molecular Phylogenetics and Evolution 44(2): 765777CrossRefGoogle Scholar
Kawahata, H. & Ohshima, H. 2002. Small latitudinal shift in the Kuroshio Extension (Central Pacific) during glacial times: evidence from pollen transport. Quaternary Science Reviews 21(14–15): 17051717.CrossRefGoogle Scholar
Kincaid, J.A. 2007. Compositional and environmental characteristics of Tsuga canadensis (L.) Carr. forests in the southern Appalachian Mountains, USA. Journal of the Torrey Botanical Society 134: 479488.CrossRefGoogle Scholar
Kranabetter, J.M. & Friesen, J. 2002. Ectomycorrhizal community structure on western hemlock (Tsuga heterophylla) seedlings transplanted from forests into openings. Canadian Journal of Botany 80: 861868.CrossRefGoogle Scholar
Krueger, L.M. & Peterson, C.J. 2006. Effects of white-tailed deer on Tsuga canadensis regeneration: Evidence of microsites as refugia from browsing. American Midland Naturalist 156: 353362.CrossRefGoogle Scholar
Kuan, C.-T. (1981). Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotax. Sinica 14: 407420 (in Chinese).Google Scholar
Kubota, Y. 2006. Spatial pattern and regeneration dynamics in a temperate AbiesTsuga forest in southwestern Japan. Journal of Forest Research 11: 191201.CrossRefGoogle Scholar
Kunzmann, L. & Mai, D.H. 2005. Conifers of the Mastixioideae-flora from Wiesa near Kamenz (Saxony, Miocene) with special consideration of leaves. Palaeontographica Abteilung B Palaophytologie 272: 67.CrossRefGoogle Scholar
Lacourse, T. 2004. A late Pleistocene pollen record from the continental shelf of western Canada. Current Research in the Pleistocene 21: 8789.Google Scholar
Lacourse, T. 2005. Late Quaternary dynamics of forest vegetation on northern Vancouver Island, British Columbia, Canada. Quaternary Science Reviews 24(1–2): 105121.CrossRefGoogle Scholar
LePage, B.A. 2003. A new species of Tsuga (Pinaceae) from the middle Eocene of Axel Heiberg Island, Canada, and an assessment of the evolution and biogeographical history of the genus. Botanical Journal of the Linnean Society 141: 257296.CrossRefGoogle Scholar
Li, H.L. 1963. Woody Flora of Taiwan. Livingston, AL: Livingston Publishing.Google Scholar
Li, L.C. 1995. Studies on the karyotype and phylogeny of the Pinaceae. Acta Phytotaxonomica Sinica 33: 417432.Google Scholar
Liu, G.G. & Leopold, E.B. 1992. Paleoecology of a Miocene flora from Shanwang Formation, Shandong Province, north east China. Palynology 16: 187212.CrossRefGoogle Scholar
Liu, T.-S. 1962. A phytogeographic sketch on the forest flora of Taiwan (Formosa). Acta Phytotaxica Geobotanica 20: 149157.Google Scholar
Lopatina, D.A. 2003. Comparative analysis of the Eocene–Miocene micro- and macrofloras of the Eastern Sikhote Alin’. Stratigraphy and Geological Correlation, 11: 7490.Google Scholar
Macko, S. 1963. Sporomorphs from Upper Cretaceous near Opole (Silesia) and from the London Clays. Prace Wrocławskiego Towarzystwa Naukowego. Seria B 106: 1–82.Google Scholar
Manum, S.B. 1962. Studies in the Tertiary Flora of Spitzbergen. Oslo: Norsk Polarinstitutt.Google Scholar
Mathiasen, R.L. & Daugherty, C.M. 2005. Comparative susceptibility of conifers to western hemlock dwarf mistletoe in the Cascade Mountains of Washington and Oregon. Western Journal of Applied Forestry 20: 94100.CrossRefGoogle Scholar
Mathiasen, R.L. & Hawksworth, F.G. 1988. Dwarf mistletoes on western white pine and whitebark pine in northern California and southern Oregon. Forest Science 34(2): 429440.CrossRefGoogle Scholar
Matsumoto, M., Ohsawa, T.A. & Nishida, M. 1995. Tsuga shimokawaensis, a new species of permineralised conifer leaves from the Middle Miocene Shimokawa Group, Hokkaido, Japan. Journal of Plant Research 108: 417428.CrossRefGoogle Scholar
MatthewsJr, J.V. 1982. East Beringia during Late Wisconsin time: a review of the biotic evidence. Pp 127150 in Hopkins, D., Matthews, J., & Young, S. (eds.), Paleoecology of Beringia. New York: Academic Press.CrossRefGoogle Scholar
Mattson, W.J. & Haack, R.A. 1987. The role of drought in outbreaks of plant-feeding insects. Bio-Science 37(2): 110118.Google Scholar
Mazancov, M. 1962. Rostlinne mikrofosilie z loziska Uhelnfi ve Slezsku. Sb Ustred Ustavu Geol 27: 159191.Google Scholar
McKenna, M.C. 1975. Fossil mammals and early Eocene North Atlantic land continuity. Annals of the Missouri Botanical Garden 62: 335353.CrossRefGoogle Scholar
McKenna, M.C. 1983a. Cenozoic paleogeography of North Atlantic land bridges. Pp 351399 in Bott, M., Saxov, S., Talwani, M. & Thiede, J. (eds.), Structure and Development of the Greenland-Scotland Ridge: New Methods and Concepts. New York: Springer.CrossRefGoogle Scholar
McKenna, M.C. 1983b. Holarctic landmass rearrangement, cosmic events, and Cenozoic terrestrial organisms. Annals of the Missouri Botanical Garden 70: 459489.CrossRefGoogle Scholar
Millar, C.I., King, J.C., Westfall, R.D., Alden, H.A. & Delany, D.L. 2006. Late Holocene forest dynamics, volcanism, and climate change at Whitewing Mountain and San Joaquin Ridge, Mono County, Sierra Nevada, CA, USA. Quaternary Research 66(2): 273287.CrossRefGoogle Scholar
Miller, C.N. & Crabtree, D.R. 1989. A new taxodiaceous seed cone from the Oligocene of Washington. American Journal of Botany 76(1): 133142.CrossRefGoogle Scholar
Miyadokoro, T., Nishimura, N., Hoshino, D. & Yamamoto, S.I. 2004. Dynamics of forest canopy and major tree populations over nine years in a subalpine old-growth coniferous forest, central Japan. Ecoscience 11(1): 130136.CrossRefGoogle Scholar
Mohr, J.A., Whitlock, C. & Skinner, C.N. 2000. Postglacial vegetation and fire history, eastern Klamath Mountains, California, USA. The Holocene 10(5): 587601.CrossRefGoogle Scholar
Mour, M. 1997. Spatial models of competition and gap dynamics in old-growth Tsuga heterophylla/Thuja plicata forests. Forest Ecology and Management 94: 175186.CrossRefGoogle Scholar
Nakamura, T. & Obata, K. 1985. Differences in ecological character between Abies veitchii and Tsuga diversifolia. II: Distribution of seedlings on the moss-covered floor of Tsuga forest on Mt. Fuji. Bulletin of the Tokyo University Forests 74: 6779 (in Japanese).Google Scholar
Narukawa, Y., Iida, S., Tanouchi, H., Abe, S. & Yamamoto, S.I. 2003. State of fallen logs and the occurrence of conifer seedlings and saplings in boreal and subalpine old-growth forests in Japan. Ecological Research 18: 267277.CrossRefGoogle Scholar
Nealis, V.G., Turnquist, R. & Garbutt, R. 2004. Defoliation of juvenile western hemlock by western blackheaded budworm in Pacific coastal forests. Forest Ecology and Management 198: 291301.CrossRefGoogle Scholar
Němejc, F., Kvaček, Z., Pacltová, B. & Konzalová, M. 2003. Tertiary plants of the Plzeň Basin (West Bohemia). Acta Universitatis Carolinae Geologica 46: 121176.Google Scholar
Nguyen, Duc To Luu & Thomas, P. 2004. Cay La Kim Viet Nam (Conifers of Vietnam: An Illustrated Field Guide). Hanoi: World Publishing House.Google Scholar
Numata, M. 1971. Ecological interpretation of vegetation zonation of high mountains, particularly in Japan and Taiwan. Pp 288299 in Troll, C. (ed.), Geoecology of the High-Mountain Regions of Eurasia. Wiesbaden: Franz Steiner Verlag GMBH.Google Scholar
O’Brien, C.E. & Jones, R.L. 2003. Early and Middle Pleistocene vegetation history of the Medoc region, southwest France. Journal of Quaternary Science 18(6): 557579.CrossRefGoogle Scholar
Ohsawa, M. 1990. An interpretation of latitudinal patterns of forest limits in South and east Asian mountains. Journal of Ecology 78: 326339.CrossRefGoogle Scholar
Ohsawa, M., Shakya, P.R. & Numata, M. 1973. On the occurrence of deciduous broad-leaved forests in the cool-temperate zone of the humid Himalayas in eastern Nepal. Japanese Journal of Ecology 23: 218228.Google Scholar
Orwig, D.A., Foster, D.R. & Mausel, D.L. 2002. Landscape patterns of hemlock decline in New England due to the introduced hemlock wooly adelgid. Journal of Biogeography 29: 14751487.CrossRefGoogle Scholar
Page, C.N. 1974. Morphology and affinities of Pinus canariensis. Notes from the Royal Botanic Garden Edinburgh 33: 317323.Google Scholar
Page, C.N. 1979. The experimental biology of ferns. Pp 551579 in Dyer, A.F. (ed.). The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Page, C.N. & Barker, M.A. 1988. Ecology and geography of hybridisation in British and Irish horsetails. Proceedings of the Royal Society of Edinburgh 86B: 265272.Google Scholar
Paradis, A., Elkington, J., Hayhoe, K. & Buonaccorsi, J. 2008. Role of winter temperature and climate change on the survival and future range expansion of the hemlock wooly adelgid (Adelges tsugae) in eastern North America. Mitigation and Adaptation Strategies for Global Change 13: 541554.CrossRefGoogle Scholar
Parish, R. & Antos, J.A. 2004. Structure and dynamics of an ancient montane forest in coastal British Columbia. Oecologia 141(4): 562576.CrossRefGoogle ScholarPubMed
Parish, R. & Antos, J.A. 2006. Slow growth, long-lived trees, and minimal disturbance characterize the dynamics of an ancient, montane forest in coastal British Columbia. Canadian Journal of Forest Research 36(11): 28262838.CrossRefGoogle Scholar
Parish, R., Nigh, G.D. & Antos, J.A. 2008. Allometry and size structure of trees in two ancient snow forests in coastal British Columbia. Canadian Journal of Forest Research 38(2): 278288.CrossRefGoogle Scholar
Parker, A.J. 1989. Forest/environment relationships in Yosemite National Park, California. Vegetatio 82: 4154.CrossRefGoogle Scholar
Parshall, T. 2002. Late Holocene stand-scale invasion by hemlock (Tsuga canadensis) at its western range limit. Ecology 83: 13861398.CrossRefGoogle Scholar
Parsons, D.J. 1972. The southern extension of Tsuga mertensiana (mountain hemlock) in the Sierra Nevada. Madrono 21: 536539.Google Scholar
Paudayal, K.N. 2005. Late Pleistocene pollen assemblages from the Thimi Formation, Kathmandu Valley, Nepal. Island Arc 14(4): 328337.CrossRefGoogle Scholar
Payette, S. 2004. Determining the age of the mid-Holocene Tsuga canadensis (hemlock) decline, eastern North America: a comment on Bennett and Fuller. The Holocene 14(6): 949950.CrossRefGoogle Scholar
Peterson, D.W. & Peterson, D.L. 2001. Mountain hemlock growth responds to climatic variability at annual and decadal time scales. Ecology 82: 33303345.CrossRefGoogle Scholar
Pooler, M.R., Riedel, L.G.H., Bentz, S.E. & Townsend, A.M. 2002. Molecular markers used to verify interspecific hybridisation between hemlock (Tsuga) species. Journal of the American Association for Horticultural Science 127: 623627.CrossRefGoogle Scholar
Popescu, S.-M. 2006. Late Miocene and Early Pliocene environments in the southwestern Black Sea region from high-resolution palynology of DSDP Site 380A (Leg 42B). Palaeogeography, Palaeoclimatology, Palaeoecology 238: 6477.CrossRefGoogle Scholar
Potter, K.M., Dvorak, W.S., Crane, B.S., et al. 2008. Allozyme variation and recent evolutionary history of eastern hemlock (Tsuga canadensis) in the southeastern United States. New Forests 35: 131145.CrossRefGoogle Scholar
Price, K. & Hochachka, G. 2001. Epiphytic lichen abundance: effects of stand age and composition in coastal British Columbia. Ecological Applications 11(3): 904913.CrossRefGoogle Scholar
Rheder, A. 1927. Rheder’s Manual of Cultivated Trees and Shrubs Hardy in North America. New York: Macmillan.Google Scholar
Richardson, A.D., Ashton, P.M.S., Berlyn, G.P., McGroddy, M.E. & Cameron, I.R. 2001. Within-crown foliar plasticity of western hemlock, Tsuga heterophylla, in relation to stand age. Annals of Botany 88: 10071015.CrossRefGoogle Scholar
Sakai, A. 1970. Mechanism of desiccation damage of conifers wintering in soil-frozen areas. Ecology 51: 657664.CrossRefGoogle Scholar
Shang, Y. & Zavada, M.S. 2003. The ultrastructure of Cerebropollenites from the Jurassic and Cretaceous of Asia. Grana 42(2): 102107.CrossRefGoogle Scholar
Shen, J., Jones, R.T., Yang, X., Dearing, J.A. & Wang, S. 2006. The Holocene vegetation history of Lake Erhai, Yunnan province southwestern China: the role of climate and human forcings. The Holocene 16(2): 265276.CrossRefGoogle Scholar
Shilo, N.A., Lozhkin, A.V., Titov, E.E. & Shumilov, Yu. V. 1983. The Kirgilyakh Mammoth (Paleogeographic Aspect). Moscow: Nauka.Google Scholar
Shuman, B., Bartlein, P., Logar, N., Newby, P. & WebbIII, T. 2002. Parallel climate and vegetation responses to the early Holocene collapse of the Laurentide Ice Sheet. Quaternary Science Reviews 21(16–17): 17931805.CrossRefGoogle Scholar
Shuman, B., Newby, P., Donnelly, J.P., Tarbox, A. & WebbIII, T. 2005. A record of late-Quaternary moisture-balance change and vegetation response from the White Mountains, New Hampshire. Annals of the Association of American Geographers 95(2): 237248.CrossRefGoogle Scholar
Singh, J.S. & Singh, S.P. 1987. Forest vegetation of the Himalaya. The Botanical Review 53: 80192.CrossRefGoogle Scholar
Small, M.J., Small, C.J. & Dreyer, G.D. 2005. Changes in hemlock-dominated forest following wooly adelgid infestation in southern New England. Journal of the Torrey Botanical Society 132: 458470.CrossRefGoogle Scholar
Smith, D.J. & Gedalov, Z. 2001. Dendroclimatic response of mountain hemlock (Tsuga mertensiana) in Pacific North America. Canadian Journal of Forest Research 31: 322332.Google Scholar
Snyder, C.D., Young, J.A., Lemarie, D.P. & Smith, D.R. 2002. Influence of eastern hemlock (Tsuga canadensis) forests on aquatic invertebrate assemblages in headwater streams. Canadian Journal of Fisheries and Aquatic Sciences 59: 262275.CrossRefGoogle Scholar
Straus, A. 1952. Beiträge zur Pliocänflora von Willershausen III. Die niederen Pflanzengruppen bis zu den Gymnospermen. Palaeonto-graphica B 83(1–3): 144.Google Scholar
Su, H.J. 1984a. Studies on the climate and vegetation types of the natural forests in Taiwan (I): analysis of the variations in climatic factors. Quarterly Journal of Chinese Forestry 17(3): 114.Google Scholar
Su, H. J. 1984b. Studies on the climate and vegetation types of the natural forests in Taiwan (II): altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry 17(4): 5773.Google Scholar
Sudworth, G.B. 1908. Forest Trees of the Pacific Slope. San Francisco, CA: USDA.CrossRefGoogle Scholar
Sugita, H. & Tani, M. 2001. Difference in microhabitat-related regeneration patterns between two subalpine conifers, Tsuga diversifolia and Abies mariesii, on Mount Hyacine, northern Honshu, Japan. Ecological Research 16: 423433.CrossRefGoogle Scholar
Takahara, H. & Kitagawa, H. 2000. Vegetation and climate history since the last interglacial in Kurota Lowland, western Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 155: 123134.CrossRefGoogle Scholar
Tang, C.Q. & Ohsawa, M. 2002. Tertiary relic deciduous forests on a humid subtropical mountain, Mt. Emei, Sichuan, China. Folia Geobotanica 37: 93106.CrossRefGoogle Scholar
Tarasov, P.E., WebbIII, T., Andreev, A.A., et al. 1998. Present‐day and mid‐Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. Journal of Biogeography 25(6): 10291053.CrossRefGoogle Scholar
Taylor, A.H. 1995. Forest expansion and climate change in the mountain hemlock (Tsuga mertensiana) zone, Lassen Volcanic National Park, California, USA. Arctic and Alpine Research 27: 207216.CrossRefGoogle Scholar
Taylor, R.J. 1972. The relationship and origin of Tsuga heterophylla and Tsuga mertensiana based on phytochemical and morphological interpretations. American Journal of Botany 29: 149157.CrossRefGoogle Scholar
Tiffney, B.H. 1985. The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. Journal of the Arnold Arboretum 66(2): 243273.CrossRefGoogle Scholar
Tingley, M.W., Orwig, D.A., Field, R. & Motzlin, G. 2002. Avian responses to removal of a forest dominant: consequences of hemlock wooly adelgid infestations. Journal of Biogeography 29: 15051516.CrossRefGoogle Scholar
Tsukada, M. 1967. Vegetation in subtropical formosa during the Pleistocene glaciations and the Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 3: 4964.CrossRefGoogle Scholar
Tsukada, M. 1983. Vegetation and climate during the last glacial maximum in Japan. Quaternary Research 19(2): 212235.CrossRefGoogle Scholar
Ueno, J. 1957. Relationship of genus Tsuga from pollen morphology. Journal of the Institute of Polytechnics, Osaka City University, Series D. Biology 8: 191196.Google Scholar
Vabre, A. 1954. L’hybrids TsugoPicea hookeriana et ses parents etude des plantules. Travaux Laboratoire Forestiere de Toulouse Tome 1(5): 18.Google Scholar
Van Campo-Duplan, M. & Gaussen, H. 1949. Sur quatre hybrides de genres chez les Abietinees. Bulletin de la Société d’histoire naturelle de Toulouse 84: 95109.Google Scholar
Viereck, L.A. & Little, E.L. 1972. Alaska Trees and Shrubs. Washington, DC: US Forest Service.Google Scholar
Wang, W.M., Saito, T. & Nakagawa, T. 2001. Palynostratigraphy and climatic implications of Neogene deposits in the Himi area of Toyama Prefecture, Central Japan. Review of Palaeobotany and Palynology 117(4): 281295.CrossRefGoogle Scholar
Wangda, P. & Ohsawa, M. 2006. Structure and regeneration dynamics of dominant tree species along altitudinal gradient in a dry valley slopes of the Bhutan Himalaya. Forest Ecology and Management 230(1–3): 136150.CrossRefGoogle Scholar
Whitney, S. 1985. Western Forests. New York: Alfred A. Knopf.Google Scholar
Wilson, E.H. 1916. The Conifers and Taxads of Japan. Cambridge, MA: Arnold Arboretum.Google Scholar
Wimberly, M.C. & Spies, T.A. 2001. Influences of environment and disturbance on forest patterns in coastal Oregon watersheds. Ecology 82(5): 14431459.CrossRefGoogle Scholar
Wolfe, J.A. 1979. Temperature parameters of humid to mesic forests of eastern Asia and relation of forests to other regions of the Northern Hemisphere and Australasia. US Geological Survey Professional Paper 1106.CrossRefGoogle Scholar
Wolff, R.L., Lavialle, O., Pédrono, F., et al. 2002. Abietoid seed fatty acid composition: a review of the genera Abies, Cedrus, Hesperopeuce, Keteleeria, Pseudolarix, and Tsuga and preliminary inferences on the taxonomy of Pinaceae. Lipids 37: 1726.CrossRefGoogle Scholar
Wonkka, C.L., Lafon, C.W., Hutton, C.M. & Joslin, A.J. 2013. A CSR classification of tree life history strategies and implications for ice storm damage. Oikos 122(2): 209222.CrossRefGoogle Scholar
Woodward, A., Schreiner, E.G. & Silsbee, D.G. 1995. Climate, geography, and tree establishment in subalpine meadows of the Olympic Mountains, Washington, USA. Arctic and Alpine Research 27(3): 217225.CrossRefGoogle Scholar
Wu, J.Y., Kaji, M. & Suzuki, K. 1996. Altitudinal distributions of major tree species in a natural Morrison spruce [Picea morrisonicola] forest in central Taiwan. Journal of the Japanese Forestry Society (Japan) 78(3): 301308.Google Scholar
Xu, J.X., Wang, Y.F. & Li, C.S. 2000. A method for quantitative reconstruction of tertiary palaeoclimate and environment: coexistence approach. Pp 195203 in Li, C. S., (ed.), Advances in Plant Science, vol. 3. Heidelberg: China Higher Education Press and Springer-Verlag (in Chinese).Google Scholar
Xu, J.X., Ferguson, D.K., Li, C.S., Wang, Y.F. & Du, N.Q. 2004. Climatic and ecological implications of Late Pliocene palynoflora from Longling, Yunnan, China. Quaternary International 117(1): 91103.CrossRefGoogle Scholar
Xu, J.X., Ferguson, D.K., Li, C.S. & Wang, Y.F. 2008. Late Miocene vegetation and climate of the Lühe region in Yunnan, southwestern China. Review of Palaeobotany and Palynology 148(1): 3659.CrossRefGoogle Scholar
Yamakawa, C., Momohara, A., Nunotani, T., Matsumoto, M. & Watano, Y. 2008. Paleovegetation reconstruction of fossil forests dominated by Metasequoia and Glyptostrobus from the late Pliocene Kobiwako Group, central Japan. Paleontological Research 12(2): 167180.CrossRefGoogle Scholar
Yi, T.M., Li, C.S. & Jiang, X.M. 2005. Conifer woods of the Pliocene age from Yunnan, China. Journal of Integrative Plant Biology 47(3): 264270.CrossRefGoogle Scholar
Yoshida, N. & Ohsawa, M. 1999. Seedling success of Tsuga sieboldii along a microtopographic gradient in a mixed cool-temperate forest in Japan. Plant Ecology 140: 8998.CrossRefGoogle Scholar
Yu, X.D., Luo, T.H. & Zhou, H.Z. 2008. Distribution of carabid beetles among 40-year-old regenerating plantations and 100-year-old naturally regenerated forests in Southwestern China. Forest Ecology and Management 255(7): 26172625.CrossRefGoogle Scholar
Zhang, Z.-X., Liu, P., Liu, C.-S., et al. 2008. The structure characteristics and dominant population regeneration types of Tsuga tchekiangensis communities in the Jiulongshan National Natural Reserve of Zhejiang Province. Acta Ecologica Sinica 28: 45474558.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Tsuga
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Tsuga
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Tsuga
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.013
Available formats
×