Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T02:39:54.791Z Has data issue: false hasContentIssue false

Chapter 13 - Taxus

Taxales: Taxaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Medium-sized to sometimes massive and aged evergreen shrubs or trees, some with broad irregularly tapering crowns. Female trees bear single seeds enclosed in an ultimately succulent aril forming fleshy berry-like structures when mature, which are usually bright red.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 292 - 322
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, T.D. 1990. Pollen production and plant density affect pollination and seed production in Taxus canadensis. Ecology 71: 516522.CrossRefGoogle Scholar
Allison, T.D. 1991. Variation in sex expression in Canada yew (Taxus canadensis). American Journal of Botany 78: 569578.CrossRefGoogle Scholar
Allison, T.D. 1993. Self-fertility in Canada yew (Taxus canadensis Marsh.). Bulletin of the Torrey Botanical Club 120: 115120.CrossRefGoogle Scholar
Allison, T.D., Shimizu, T., Ohara, M. & Yamanaka, N. 2008. Variation in sexual reproduction in Taxus cuspidata Sieb. & Zucc. Plant Species Biology 23: 2532.CrossRefGoogle Scholar
Altmann, K.H. & Gertsch, J. 2007. Anticancer drugs from nature: natural products as a unique source of new microtubule-stabilising agents. Natural Products Report 24: 327357.CrossRefGoogle Scholar
Anderson, E.D. & Owens, J.N. 1999. Megagametophyte development, fertilisation and cytoplasmic inheritance in Taxus brevifolia. International Journal of Plant Sciences 160: 459469.CrossRefGoogle Scholar
Arno, S.F. 1977. Northwest Trees. Seattle, WA: The Mountaineers.Google Scholar
Axelrod, D.I., Al-Shebaz, I. & Raven, P.H. 1998. History of the modern flora of China. Pp 4355 in Zhang, A.L. & Wu, S.G. (eds.), Floristic Characteristics and Diversity of East Asian Plants. Beijing: China Higher Education Press/Springer.Google Scholar
Bailey, J.D. & Liegel, L.H. 1998. Pacific yew (Taxus brevifolia Nutt.) growth and site factors in western Oregon. Northwest Science 72: 283292.Google Scholar
Ball, R.L., Camey, D.H. & Albrecht, T. 1990. Taxol inhibits stimulation of cell DNA synthesis by human cytomegalovirus. Experimental Cell Research 191: 3744.CrossRefGoogle ScholarPubMed
Bao, W.K. & Chen, Q.H. 1998. Present status, problems and further development strategies on natural Taxus resource and their exploitation within China. Journal of Natural Resources 13: 375380.Google Scholar
Barker, K.P., Burrowclough, G.E. & Groth, J.G. 2002. A phylogenetic analysis of passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proceedings of the Royal Society B: Biological Sciences 269(1488): 295308.CrossRefGoogle ScholarPubMed
Barnea, A., Harborne, J.B. & Pannell, C. 1993. What parts of fleshy fruits contain secondary compounds toxic to birds and why? Biochemical Systematics and Ecology 21: 421429.CrossRefGoogle Scholar
Bartkowiak, S. 1970. Ornitochoria rodzimych I obcych gatunkow drew I krzewow. Arboretum Kornickie 15: 237261 (in Polish).Google Scholar
Bartkowiak, S. 1978. Seed dispersal by birds. Pp 139146 in Bartkowiak, S., Bugala, W., Czartoryski, A., et al. (eds.), The Yew: Taxus baccata. Warsaw: Department of the National Center for Scientific and Technical, and Economic Information.Google Scholar
Bell, C.P. 2005. Progress in evolution of bird migration and pattern in avians. Journal of Avian Biology 31: 258265.CrossRefGoogle Scholar
Berglund, B.E. 1966 Late-Quaternary vegetation in eastern Blekinge, southeastern Sweden: a pollen analytical study. II. Post-glacial time. Opera Botanica 12: 1190.Google Scholar
Bevan-Jones, R. 2016. The Ancient Yew: A History of Taxus baccata. Oxford: Windgather Press.CrossRefGoogle Scholar
Bialobok, S. 1978. Possibilities of yew cultivation in an environment modified by man. Pp 147149 in Bartkowiak, S., Bugala, W., Czartoryski, A., et al. (eds.), The Yew: Taxus baccata. Warsaw: Department of the National Center for Scientific and Technical, and Economic Information.Google Scholar
Birks, H.J.B. 1982. Mid-Flandrian forest history of Roundsea Wood National nature Reserve, Cumbria. New Phytologist 90: 339354.CrossRefGoogle Scholar
Brea, M., Bellosi, E. & Krause, M. 2009. Taxaceoxylon katuatenkum sp. nov. from the Loluel-Laike Formation (Lower-Middle Eocene), Chubut, Argentina: a component of Paleogene subtropical forests of Patagonia. Ameghiniana 46: 127140.Google Scholar
Brockman, C.F. 1949. Trees of Mount Ranier National Park. Seattle, WA: University of Washington Press.Google Scholar
Bruderer, B. & Salewski, V. 2008. Evolution of bird migration in a biogeographical context. Journal of Biogeography 35: 19511959.CrossRefGoogle Scholar
Busing, R.T., Halpern, C.B. & Spies, T.A. 1995. Ecology of Pacific yew (Taxus brevifolia) in western Oregon and Washington. Conservation Biology 9: 11991207.CrossRefGoogle Scholar
Cao, C.-M., Zhang, M.-L., Wang, Y.-F., et al. 2006. Two new taxanes from needles and branches bark of Taxus cuspidata. Chemistry and Biodiversity 3: 11531161.CrossRefGoogle ScholarPubMed
Carpenter, R.J., Hill, R.S., Greenwood, D.R., Partridge, A.D. & Banks, M.A. 2004. No snow in the mountains: Early Eocene plant fossils from Hotham Heights, Victoria, Australia. Australian Journal of Botany 52: 685718.CrossRefGoogle Scholar
Chang, S.-H., Ho, C.-K., Chen, Z.Z. & Tsay, J.-Y. 2001. Micropropagation of Taxus mairei from mature trees. Plant Cell Reports 20: 469502.CrossRefGoogle Scholar
Changxing, L., Saddai, G., Hassan, F., et al. 2020. Biotechnology approach to the production of plant-derived primary anti-cancer agents: an update and overview. Biomedicine and Pharmacotherapy 132: 110918.CrossRefGoogle Scholar
Chase, M. 1991a. Taxol appears effective in treating advanced breast cancer, study finds. Wall Street Journal, 9 April: A1.Google Scholar
Chase, M. 1991b. Cancer drug may save many human lives – at a cost of a rare tree. Wall Street Journal, 18 December: B5.Google Scholar
Chen, Q.-H., Xu, T.-L., & Chen, X.-M. 1997. The utilization and conservation of germplasm resources of Taxus in Guizhou. Guizhou Science 15: 219222.Google Scholar
Cheng, Y., Nicholson, G., Tripp, K. & Chaw, S.-M. 2000. Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution 14: 353365.CrossRefGoogle Scholar
Chiappe, L.M. 1995. The first 85 million years of avian evolution. Nature 378: 349355.CrossRefGoogle Scholar
Chiappe, L.M. & Dyke, G.J. 2002. The Mesozoic radiation of birds. Annual Review of Ecology and Systematics 33: 91124.CrossRefGoogle Scholar
Chira, E. 1964. Vplyv teploty na priebeh meiozy pelovych materskych buniek Taxus baccata L. Biologia 19: 235244 (in Polish).Google Scholar
Chuang, C.-F., El-Razel, M.H.A., Kuo, Y.-C., et al. 2009. Taxane diterpenoids from Taiwanese yew Taxus sumatrana. Helvetica Chimica Acta 92: 21342136.CrossRefGoogle Scholar
Chuang, T.I. & Hu, W.W.L. 1965. Study of Amentotaxus argotaenia (Hance) Pilger. Botanical Bulletin Academica Sinica II, 4: 1014.Google Scholar
Clark, C.J., Poulsen, J.R., Connor, E.F. & Parker, V.T. 2004. Fruiting trees a dispersal foci in semi-deciduous tropical forest. Oecologia 139: 6675.CrossRefGoogle Scholar
Clark, J.G.D. 1963. Neolithic bows from Somerset, England, and the prehistory of archery in north-western Europe. Proceedings of the Prehistoric Society 29: 5098.CrossRefGoogle Scholar
Coles, J.M., Heal, S.V.E. & Orme, B.J. 1978. The use and character of wood in prehistoric Britain and Ireland. Proceedings of the Prehistoric Society 44: 145.CrossRefGoogle Scholar
Collins, D., Mill, R.R. & Möller, M. 2003. Species separation of Taxus baccata, T. canadensis and T. cuspidata (Taxaceae) and origins of their reputed hybrids inferred from RAPD and cpDNA data. American Journal of Botany 90: 175182.CrossRefGoogle Scholar
Comes, H.P. & Kadereit, J.W. 1998. The effects of Quaternary climatic change on plant distribution and evolution. Trends in Plant Science 3: 432438.CrossRefGoogle Scholar
Contreras-Medina, R., Luna-Vega, I., & Rios-Muňoz, C.A. 2010. Distribución de Taxis globosa (Taxaceae) en México: Modelas ecológicos de nicho efectos du cambio del uso di sueloy conservación. Revists Chileana de Historia Natural 83: 421433.Google Scholar
Contreras-Medina, R., Luna-Vega, I., & Ramírez-Martinez, J.C. 2011. Representativdad del tejo mexicna (Taxus globosa Schtdl.), Taxaceae, en las areas naturals protegedas de Mesoaméricana. Spanish Journal o Novel development 51: 5160.Google Scholar
Cooper, A. & Penny, D. 1997. Mass survival of birds across the Cretaceous–Tertiary boundary: molecular evidence. Science 275: 11091113.CrossRefGoogle Scholar
Corrandini, P., Edelin, C., Bruneau, A. & Bouchard, A. 2002. Architectural and genotypic variation in the clonal shrub Taxus canadensis as determined from random amplified polymorphic DNA and amplified length polymorphism. Canadian Journal of Botany 80: 205219.CrossRefGoogle Scholar
Cox, C.W. 1985. The evolution of avian migration systems between tropical and temperate regions of the world. American Naturalist 126: 451474.CrossRefGoogle Scholar
Cragg, G.M., Schepartz, S.A., Suffness, M. & Grever, M.R. 1993. The taxol supply crisis: new NCI policies for handling the large scale production of novel natural product anticancer and anti-HIV agents. Journal of Natural Products 56: 16571668.CrossRefGoogle ScholarPubMed
Cramp, S. (ed.). 1988. The Birds of the Western Palearctic. Vol. V. Oxford: Oxford University Press.Google Scholar
Creutz, G. 1952. Misteldrossel und Seidenschwanz. Ornithologische Mitteilung 4: 67.Google Scholar
Daniewski, W., Gumulka, M., Anczewski, W., et al. 1998. Why the yew tree (Taxus baccata) is not attacked by insects. Phytochemistry 49: 12791282.CrossRefGoogle Scholar
Dark, S.O.S. 1932. Chromosomes of Taxus, Sequoia, Cryptomeria and Thuya. Annals of Botany 46: 965977.CrossRefGoogle Scholar
Deforce, K. & Bastiaens, J. 2007. The Holocene history of Taxus baccata (yew) in Belgium and neighbouring regions. Belgian Journal of Botany 140: 222237.Google Scholar
Dempsey, D. & Hook, I. 2000. Yew (Taxus) species: chemical and morphological variations. Pharmaceutical Biology 38: 274280.CrossRefGoogle ScholarPubMed
DiFazio, S.P., Wilson, M.V. & Vance, N.C. 1998. Factors limiting seed production of Taxus brevifolia (Taxaceae) in Western Oregon. American Journal of Botany 85: 910918.CrossRefGoogle Scholar
Ding, A.H., Porteu, F., Sanchez, E. & Nathan, C.F. 1990. Shared actions of endotoxin and taxol on TNF receptors and TNF release. Science 248: 370372.CrossRefGoogle Scholar
Dodson, J.R. & Bradshaw, R.H.W. 1987. A history of vegetation and fire 6,600 BP to present, County Sligo, western Ireland. Boreas 16: 113123.CrossRefGoogle Scholar
Dogra, P.D. 1980. Embryogeny of gymnosperms and taxonomic assessment. Glimpses in Plant Research 5: 114128.Google Scholar
Dörken, V.M., Nimsch, H. & Rudall, P.J. 2019. Origin of the Taxaceae aril: evolutionary implications of seed-cone teratologies in Pseudotaxus chienii. Annals of Botany 123: 133143.CrossRefGoogle Scholar
Doss, R.P., Carney, J.R., Shanks, C.H., Williamson, R.T. & Chamberlain, J.D. 1997. Two new taxoids from European yew (Taxus baccata) that act as pyrethroid insecticide synergists with the black vine weevil (Otiorhynchus sulcatus). Journal of Natural Products 60: 11301133.CrossRefGoogle Scholar
Doyle, J. 1945. Developmental lines in pollination mechanisms of Coniferales. Science Proceedings Royal Dublin Society II 24: 4362.Google Scholar
Doyle, J. 1963. Proembryogeny in Pinus in relation to that of other conifers: a survey. Proceedings of the Royal Irish Academy B62: 181216.Google Scholar
Doyle, J. & Brennan, M. 1971. Cleavage polyembryony in conifers and taxads: a survey. Proceedings of the Royal Society of Dublin A4: 5788.Google Scholar
Dyke, G.J. 2001. The evolution of birds in the Early Tertiary: systematics and patterns of diversification. Geological Journal 36: 306315.CrossRefGoogle Scholar
Edwards, S.V. & Boles, W.E. 2002. Out of Gondwana: the origin of passerine birds. Trends in Ecology and Evolution 17: 347349.CrossRefGoogle Scholar
El-Kassaby, Y.A. & Yanchuk, A.D. 1994. Genetic diversity, differentiation and inbreeding in Pacific yew from British Columbia. Journal of Heredity 85: 112117.CrossRefGoogle Scholar
Ericson, P.G.P., Kestedt, M., & Johannsen, M.S. 2003. Evolution, biogeography, and patterns of diversification in passerine birds. Journal of Avian Biology 34: 315.CrossRefGoogle Scholar
Fang, W.S., Fang, Q.C. & Liang, X.T. 1996. Bicyclic taxoids from needles of Taxus chinensis. Planta Medica 62: 567569.CrossRefGoogle ScholarPubMed
Farjon, A. 1998. World Checklist and Bibliography of Conifers. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A. & Filer, D. 2013. An Atlas of the World’s Conifers: An Analysis of Their Distribution, Biogeography, Diversity and Conservation Status. Leiden: Brill.CrossRefGoogle Scholar
Feduccia, A. 1999. The Origin and Evolution of Birds, 2nd ed. New Haven, CT: Yale University Press.Google Scholar
Fei, Y.J., Lei, Z.X., Yu, C.J., Chen, Z.Y. & He, J. 1997. The cause for endangerment of Taxus L. and measures for its sustainable development in China. Natural Resources 5: 5963.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 33: 73110.CrossRefGoogle Scholar
Ferguson, D.K. 1978. Some current research on fossil and recent taxads. Review of Palaeobotany and Palynology 26(1–4): 213226.CrossRefGoogle Scholar
Ferguson, D.K. 1985. A new species of Amentotaxus (Taxaceae) from northeastern India. Kew Bulletin 40: 115119.CrossRefGoogle Scholar
Fischer, H.E. & Chapman, C.A. 1993. Frugivores and fruit syndromed: differential patterns at the genus and species level. Oikos 66: 432482.CrossRefGoogle Scholar
Florin, R. 1938. Die Koniferen des Oberkarbons und des unteren Perms. Palaeontographica B 85: 1729.Google Scholar
Florin, R. 1945. On taxonomic relationships, male cones. Palaeontographica B 85 (8): 657.Google Scholar
Florin, R. 1948a. On Nothotaxus, a new genus of the Taxaceae, from Eastern China. Acta Horti Bergiani 14: 385395.Google Scholar
Florin, R. 1948b. On the morphology and relationships of the Taxaceae. Botanical Gazette 110: 3139.CrossRefGoogle Scholar
Florin, R. 1951. Evolution in cordaites and conifers. Acta Horti Bergiani 15: 285388.Google Scholar
Florin, R. 1954. The female reproductive organs of Conifers and Taxads. Biological Review 29: 367389.CrossRefGoogle Scholar
Florin, R. 1958. On Jurassic taxads and conifers from north-western Europe and eastern Greenland. Acta Horti Bergiani 17: 257410.Google Scholar
Florin, R. 1958. On the Jurassic taxads and conifers from north-western Europe and eastern Greenland. Acta Horti Bergiani 16: 257402.Google Scholar
Fu, L.K., Yu, Y.F. & Farjon, A. 1999. Cupressaceae. Pp 6277 in Wu, Z.Y. & Raven, P.H. (eds.), Flora of China 4. Beijing: Science Press.Google Scholar
Fuller, R.J. 1982. Bird Habitats in Britain. Calton: Poyser.Google Scholar
Gao, L.M., Möller, M., Zhang, X.M., et al. 2007. High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam. Molecular Ecology 16(22):46844698.CrossRefGoogle Scholar
Gao, L.M., Möller, M., Zhang, X.-M., et al. 2009. High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam. Molecular Ecology 16: 46844698.CrossRefGoogle Scholar
Garcia, D., Zamora, R., Hodar, J.A., Gomez, J.M. & Castro, J. 2000. Yew (Taxus baccata L.) regeneration is facilitated by fleshy-fruited shrubs in Mediterranean environments. Biological Conservation 95: 3138.CrossRefGoogle Scholar
Garcia, D., Obeso, J.R. & Martinez, I. 2005. Spatial concordance between seed rain and seedling establishment in bird-dispersed trees: does scale matter? Journal of Ecology 93: 693704.CrossRefGoogle Scholar
Garcia-Arana, M.A., Cantú-Ayala, C., Estrada-Castillión, E., Panda-Moreno, M., Moreno-Talamantez, A.M. 2012. Distribucion actual et potential de Taxus globosa en México. Journal of Botanical Research Institute of Texas 6: 587598.Google Scholar
Ge, S., Hong, D.Y., Wang, H.Q., Liu, Z.Y. & Zhang, C. 1998. Population genetic structure and conservation of an endangered conifer, Cathaya argyrophylla (Pinaceae). International Journal of Plant Sciences 159: 351357.CrossRefGoogle Scholar
Godfrey, R.K. & Kurz, H. 1962. The Florida Torreya destined for extinction. Science 136(3519): 900902.CrossRefGoogle ScholarPubMed
Godwin, H. 1956. The History of the British Flora. Cambridge: Cambridge University Press.Google Scholar
Greguss, P. 1955. Xylotomische Bestimmung der heute lebenden Gymnospermen. Budapest: Akademiai Kiado.Google Scholar
Grimaldi, D. & Engel, M.S. 2005. Evolution of the Insects. Cambridge: Cambridge University Press.Google Scholar
Grime, J.P. 1979. Plant Strategies and Vegetation Processes. Chichester: John Wiley.Google Scholar
Griswold, C. K., Taylor, C.M. & Norris, D.R. 2010. The evolution of migration in a seasonal environment. Proceedings of the Royal Society, Biological Science 277: 27112720.CrossRefGoogle Scholar
Gueritte, F. 2001. General and recent aspects of the chemistry and structure-activity relationships of taxoids. Current Pharmaceutical Design 7: 12291249.CrossRefGoogle ScholarPubMed
Gupta, B.L. 1928. Forest Flora of the Chakrata, Dehra Dun and Saharanpur Forest Divisions, United Provinces. Calcutta: Government of India Central Publication Branch.Google Scholar
Han, R. 1996. Highlight on the studies of anticancer drugs derived from plants in China. Stem Cells 12: 5363.CrossRefGoogle Scholar
Hanson, J. 2017. Some contributions of organic chemistry to the study of the biosynthesis of natural products. Science Progress 100: 124211.CrossRefGoogle Scholar
Hao, D.C., Huang, B.-L. & Yang, L. 2008a. Phylogenetic relationships of the genus Taxus inferred from chloroplast intergenic spacer and nuclear coding DNA. Biological Pharmaceutical Bulletin 31: 260265.CrossRefGoogle ScholarPubMed
Hao, D.C., Xiao, P.G., Huang, B.-L., Ge, G.B. & Yang, L. 2008b. Interspecific relationships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences. Plant Systematics and Evolution 276: 89104.CrossRefGoogle Scholar
Hao, D.C., Huang, B.L., Chen, S.L. & Mu, J. 2009. Evolution of the chloroplast trnL-trnF region in the gymnosperm lineages Taxaceae and Cephalotaxaceae. Biochemical Genetics 47: 351369.CrossRefGoogle ScholarPubMed
Harris, T.M. 1976. The Mesozoic gymnosperms. Review of Palaeobotany and Palynology 21: 119134.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hartley, P.H.T. 1954. Wild fruits in the diet of British thrushes: a study in the ecology of closely allied species. British Birds 47: 98107.Google Scholar
Hattenschwiler, S. 2001. Tree seedling growth in natural deep shade: functional traits related to interspecific variation in response to elevated CO2. Oecologia 129: 3142.CrossRefGoogle Scholar
Hattenschwiler, S. & Korner, C. 2000. Tree seedling responses to in-situ CO2 enrichment differ among species and depend upon understorey light availability. Global Change Biology 6: 213226.CrossRefGoogle Scholar
Heit, C.E. 1968. Thirty five years’ testing of tree and shrub seed. Journal of Forestry 66: 632633.Google Scholar
Helbig, A.J. 2003. Evolution of bird migration: a phylogenetic and biogeographic perspective. Pp. 320 in Berthold, P., Gwinner, E. & Sonnenschein, E. (eds.), Avian Migration. Berlin: Springer.CrossRefGoogle Scholar
Herrera, C.M. 1988. A study of avian frugivores, bird-dispersed plants, and their interrelationships with Mediterranean shrublands. Ecological Monographs 54: 123.CrossRefGoogle Scholar
Hertel, H. & Kohlstock, N. 1996. Genetische Variation und geographische Struktur von Eibenvorkommen (Taxus baccata L.) in Mecklenburg-Vorpommern (Germany). Silvae Genetica 45: 290294.Google Scholar
Hewitt, G.M. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London, Ser. B, Biological Sciences 359: 183195.CrossRefGoogle Scholar
Hilfiker, K., Holderegger, R., Rotach, P. & Gugerli, F. 2004. Dynamics of genetic variation in Taxus baccata: local versus regional perspectives. Canadian Journal of Botany 82: 219227.CrossRefGoogle Scholar
Hirasuna, T.J., Pestchanker, L.J., Srinivasan, V. & Shuler, M.L. 1996. Taxol production in suspension cultures of Taxus baccata. Plant Cell, Tissue and Organ Culture 44: 95102.CrossRefGoogle Scholar
Holmes, F.A., Walters, R.S., Theriault, R.L., et al. 1991. Phase II trial of taxol, an active drug in the treatment of metastatic breast cancer. Journal of the National Cancer Institute 83: 17971805.CrossRefGoogle ScholarPubMed
Hook, I., Poupat, C., Ahond, A., et al. 1999. Seasonal variation of neutral and basic taxoid contents in shoots of European yew (Taxus baccata). Phytochemistry 52: 10411045.CrossRefGoogle Scholar
Horowitz, S.B. 1992. Mechanism of action of taxol. Trends in Pharmacological Sciences 13: 134136.CrossRefGoogle Scholar
Hu, Y.-S., Wang, H.-Y. & Wang, F.-H. 1992 Leaf anatomy of Austrotaxus in relation to its systematic position. Cathaya 4: 6977.Google Scholar
Huang, C.-C., Chiang, T.-Y. & Hsu, T.-W. 2008. Isolation and characterisation of microsatellite loci in Taxus sumatrana (Taxaceae) using PCR-based isolation of microsatellite arrays (PIMA). Conservation Genetics 9: 471473.CrossRefGoogle Scholar
Hulme, P.E. 1996. Natural regeneration of yew (Taxus baccata L.): microsite, seed or herbivore limitation. Journal of Ecology 84: 835861.CrossRefGoogle Scholar
Hulme, P.E. 1997. Post-dispersal seed predation and the establishment of vertebrate dispersed plants in Mediterranean scrublands. Oecologia 111: 9198.CrossRefGoogle ScholarPubMed
Hulme, P.E. & Borelli, T. 1999. Variability in post-dispersal seed predation in deciduous woodland: relative importance of location, seed species, burial and density. Plant Ecology 145–156.Google Scholar
Hulten, E. 1971. Atlas over vaxternas utbredning I Norden. Stockholm: Generalstabens Litografiska Anstals Forlag (in Swedish).Google Scholar
Huxtable, R. J. 1992. The pharmacology of extinction. Journal of Ethnopharmacology 37: 111.CrossRefGoogle ScholarPubMed
Iszkulo, G. & Boratynski, A. 2004. Interaction between canopy tree species and European yew Taxus baccata (Taxaceae). Polish Journal of Ecology 52: 523531.Google Scholar
Jalas, J. & Suominen, J. (eds.), 1973. Atlas Florae Europaeae. 2. Gymnosperms. Helsinki: Committee for the Mapping of Flora Europaea.Google Scholar
Janchen, E. 1949. Das System der Koniferen. Oest. Acad. Wiss. Math-Naturw. Kl. 158: 155162.Google Scholar
Jaziri, M., Zhiri, A. Guo, Y.-W., et al. 1996. Taxus sp. cell, tissue and organ cultures as alternative sources for taxoids production: a literature survey. Plant Cell Tissue and Organ Culture 46: 5975.CrossRefGoogle Scholar
Jennewein, S. & Croteau, R. 2001. Taxol: biosynthesis, molecular genetics, and biotechnological applications. Applied Microbiological Biotechnology 57: 1319.Google Scholar
Jetter, R., Klinger, A. & Schaffer, S. 2002. Very long-chain phenylpropyl and phenybutyl esters from Taxus baccata needle cuticular waxes. Phytochemistry 61: 579587.CrossRefGoogle Scholar
Jǿnsson, , K., Henri-Fabre, P., Ricklets, R. & Fjeldsa, J. et al. 2011. Major global radiation of corvoid birds originated in the proto-Papuan archipelago. Proceedings of the National Academy of Sciences of the USA 108: 23282333.CrossRefGoogle ScholarPubMed
Jordano, P., Garcia, C., Goday, J.A. & Garcia-Castaño, J.L. 2007. Diffuse tree attraction of frugivores to complex seed dispersal patterns. Proceedings of the National Academy of Sciences 104: 32783282.CrossRefGoogle Scholar
Kamppa, G. 1926. Dendrologinche Erfahrungen in Finnland. Mitteilungen der Deutsche dendrologischen Gesellscaft 26: 192194.Google Scholar
Kelly, D.L. 1981. The native forest vegetation of Killarney, south-west Ireland: an ecological account. Journal of Ecology 69: 437472.CrossRefGoogle Scholar
Kelsey, R.G. & Vance, N.C. 1992. Taxol and cephalomannine concentration in the foliage and bark of shade and sun exposed Taxus brevifolia trees. Journal of Natural Products 55: 912916.CrossRefGoogle Scholar
Keng, H. 1963. Taxonomic position of Phyllocladus and the classification of the conifers. Gardens Bulletin Singapore 20: 127130.Google Scholar
Kimura, K., Yumoto, T. & Kikuzawa, K. 2001. Fruiting phenology of fleshy-fruited plants and seasonal dynamics of frugivorous birds in four vegetation zones on Mt. Kinabalu, Borneo. Journal of Tropical Ecology 17: 833858.CrossRefGoogle Scholar
Kobayashi, J. & Shigemori, H. 2002. Bioactive taxoids from the Japanese yew Taxus cuspidata. Medicinal Research Reviews 22: 305328.CrossRefGoogle Scholar
Kollmann, J. 2000. Dispersal of fleshy-fruited species: a matter of spatial scale? Perspectives in Plant Ecology, Evolution and Systematics 3: 2951.CrossRefGoogle Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Kou, X.Y., Ferguson, D.K., Xu, J.X., Wang, Y.F. & Li, C.S. 2006. The reconstruction of paleovegetation and paleoclimate in the Late Pliocene of west Yunnan, China. Climatic Change 7: 431448.CrossRefGoogle Scholar
Kräusel, R. 1918. Einige Bemerkungen zur Bestimmung fossiler Koniferen-Hölzer. Österreichische Botanische Zeitschrift 67(4/5): 127135.CrossRefGoogle Scholar
Kräusel, R. 1949. Die Fossilen Koniferen – Holzer. Palaeontographica Abt. B. Palaophytologie 89: 83203.Google Scholar
Kräusel, R. & Jain, K.P. 1964. New fossil coniferous woods from the Rajmahal Hils, Bihar, India. Palaeobotanist (India) 12: 5966.Google Scholar
Kruckeberg, A.R. 2002. Geology and Plant Life: The Effects of Landforms and Rock Types on Plants. Seattle, WA: University of Washington Press.Google Scholar
Kryshtofovich, A. 1935. A final link between the Tertiary floras of Asia and Europe (contribution to the age of the Arcto-Tertiary floras of the Northern Holarctic). The New Phytologist 34(4): 339344.CrossRefGoogle Scholar
Kumar, A., Sharma, C.M. & Baduni, N.P. 1997. Community structure and physical environment: a case study of the temperate mixed coniferous Lata forest in the Malari Valley of Garhwal Himalaya. Journal of Tropical Forest Science 9: 449457.Google Scholar
Kunzmann, L. & Mai, D.H. 2005. Conifers of the Mastixioideae-flora from Wiesa near Kamenz (Saxony, Miocene) with special consideration of leaves. Palaeontographica Abteilung B Palaophytologie 272: 6780.CrossRefGoogle Scholar
Kurochkin, E.N. 1995. Synopsis of Mesozoic birds and evolution of class aves. Archaeopteryx 13: 4766.Google Scholar
Kvaček, Z. 1984. Tertiary taxads of NW Bohemia. 1982. Acta Univ. Carol Geol Pokor 4: 471491.Google Scholar
Kvaček, Z. & Rember, W.C. 2000. Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carolinae, Geologica 44: 7585.Google Scholar
Kwit, C., Horovitz, C.C. & Platt, W. 2004. Conserving slow-growing, long-lived tree species: input from the demography of a rare understorey conifer, Taxus floridana. Conservation Biology 18: 432443.CrossRefGoogle Scholar
Larson, D.W., Matthes, U. & Kelly, P.E. 2000. Cliff Ecology: Pattern and Process in Cliff Ecosystems. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Larson, D.W., Matthes, U., Gerrath, J.A., et al. 2001. Evidence for the widespread occurrence of ancient forests on cliffs. Journal of Biogeography 27: 319331.CrossRefGoogle Scholar
Le Page-Degivry, M.T. & Garello, G. 1973. La dormance embryonnaire chez Taxus baccata: influence de la composition du milieu liquide sur l’indication de la germination. Physiologia Plantarum 29: 204207.CrossRefGoogle Scholar
Lemoine, N., Schafer, H.C. & Bohning-Gaese, K. 2007. Species richness of migrating birds as influenced by global climate change. Global Ecology and Biogeography 16: 5664.CrossRefGoogle Scholar
Levine, J.M. & Murrell, D.J. 2003. The community-level consequences of seed dispersal patterns. Annual Review of Ecology and Systematics 34: 549574.CrossRefGoogle Scholar
Li, D. 1999. Taxus spp. resources in Yunnan and the sustainable exploration strategies. Journal of South-west Forestry College 19: 7885.Google Scholar
Li, H.L. & Keng, H. 1994. Taxaceae. Pp. 550551 in Editorial Committee of the Flora of Taiwan (ed.), Flora of Taiwan. Taipei: Flora of Taiwan.Google Scholar
Li, J., Davis, C.C., Tredici, P.D. & Donoghue, M.J. 2001. Phylogeny and biogeography of Taxus (Taxaceae) inferred from sequences of the internal transcribed spacer region of nuclear ribosomal DNA. Harvard Papers in Botany 6: 267274.Google Scholar
Li, J.Y., Sidhu, R.S., Ford, E.J., et al. 1998. The induction of taxol production in the endophytic fungus Periconia sp from Torreya grandifolia. Journal of Industrial Microbiology and Biotechnology 20: 259264.CrossRefGoogle Scholar
Li, N. & Fu, L.K. 1997. Notes on gymnosperms. I. Taxonomic treatment of some Chinese conifers. Novon 7: 261264.Google Scholar
Li, N., Wang, Z., Cai, Y., & Zhang, L. 2020. Importance of microhabitat selection by birds for the early recruitment of endangered trees in a fragmented forest. Avian Research 11: 16.CrossRefGoogle Scholar
Li, S.H., Zhang, H.-J. & Yao, P 2000. Rearranged taxanes from the bark of Taxus yunnanensis. Journal of Natural Products 63: 14881491.CrossRefGoogle Scholar
Li, X.L., Yu, X.M. & Guo, W. 2006. Genomic diversity within Taxus cuspidata var nana revealed by random amplified polymorphic DNA markers. Russian Journal of Plant Physiology 53: 684688.CrossRefGoogle Scholar
Lowe, J. 1897. The Yew Trees of Great Britain and Ireland. London: Macmillan.Google Scholar
Lu, C., Zhu, Q. & Deng, Q. 2008. Effect of frugivorous birds on the establishment of a naturally regenerating population of Chinese yew in ex situ conservation. Integrative Zoology 3: 186193.CrossRefGoogle ScholarPubMed
Ma, X. & Wang, Z. 2006. Anticancer drug discovery and the future: an evolutionary perspective. Drug Discovery Today 1016: 17.Google Scholar
Macovei, G., & Givulescu, R. 2006. The present stage in the knowledge of the fossil flora at Chiuzbaia, Maramureş, Romania. Carpathian Journal of Earth and Environmental Sciences 1(1): 4152.Google Scholar
Mai, D.H. 1981. Entwicklung und Klimatische Differenzierung der Laubwaldflora Mitteleuropas im Tertiar. Flora 171: 525585.CrossRefGoogle Scholar
Mansukhlal, C.W., Taylor, H.L., Monroe, E.W., Coggon, P. & McPhail, A.T. 1971. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society 93: 23252327.Google Scholar
Martínez, I., García, D. & Olsen, J.R. 2008. Differential seed dispersal patterns generated by a common assemblage of vertebrate frugivores in three fleshy-fruited trees. Ecoscience 15: 189199.CrossRefGoogle Scholar
Melzack, R.N. & Watts, D. 1982a. Variations in seed weight, germination, and seedling vigour in the yew (Taxus baccata L.) in England. Journal of Biogeography 9: 5563.CrossRefGoogle Scholar
Melzack, R.N. & Watts, D. 1982b. Cold hardiness in the yew (Taxus baccata L.) in Britain. Journal of Biogeography 9: 231241.CrossRefGoogle Scholar
Miao, Y.-C., Su, J.-R., Zhang, Z.-J., et al. 2008. Isolation and characterisation of microsatellite markers for the endangered Taxus yunnanensis. Conservation Genetics 9: 16831685.CrossRefGoogle Scholar
Miao, Z., Wang, Y., Yu, X., Guo, B. & Tang, K. 2009. New endophytic taxane production fungus from Taxus chinensis. Applied Biochemistry and Microbiology 45: 8186.CrossRefGoogle ScholarPubMed
Miller, R.W. 1980. A brief survey of Taxus alkaloids and other taxane derivatives. Journal of Natural Products 43: 425437.CrossRefGoogle Scholar
Miller, R.W., Powell, R.G., Smith, C.R., Arnold, E. & Clardy, J. 1981. Antileukemic alkalods from Taxus walliciana Zucc. Journal of Organic Chemistry 46: 14691474.CrossRefGoogle Scholar
Minore, D., Weatherly, H.H. & Cartmill, M. 1996. Seeds, seedlings, and growth of Pacific yew (Taxus brevifolia). Northwest Science 70: 223229.Google Scholar
Mitchell, A.F. 1972. Conifers in the British Isles. London: HMSO.Google Scholar
Mitchell, A.K., Duncan, R.W., Bow, T.A. & Marshall, V.G. 1997. Origin and distribution of the yew big bud mite, Cecidophyopsis psilapsis (Nalepa) in British Columbia. Canadian Entomologist 129: 745755.CrossRefGoogle Scholar
Mitchell, F.J.G. 1988. The vegetational history of the Killarney oakwoods, SW Ireland: evidence from fine spatial resolution pollen analysis. Journal of Ecology 76: 415436.CrossRefGoogle Scholar
Mitchell, F.J.G. 1990a. The history and vegetation dynamics of a yew wood (Taxus baccata L.) in S.W. Ireland. New Phytologist 115: 573577.CrossRefGoogle Scholar
Mitchell, F.J.G. 1990b. The impact of grazing and human disturbance on the dynamics of woodland in S.W. Ireland. Journal of Vegetation Science 1: 245254.CrossRefGoogle Scholar
Moeller, M., Gao, L.M., Mill, R.R., et al. 2007. Morphometric analysis of the Taxus wallichiana complex (Taxaceae) based on herbarium material. Botanical Journal of the Linnean Society 155(3): 307335.CrossRefGoogle Scholar
Mohapatra, K.P., Sehgal, R.N., Sharma, R.K. & Mohapatra, T. 2009. Genetic analysis and conservation of endangered medicinal tree species Taxus wallichiana in the Himalayan region. New Forests 37: 109121.CrossRefGoogle Scholar
Moir, A.K. 1999. The dendrochronological potential of modern yew (Taxus baccata) with special reference to a yew from Hampton Court palace, UK. New Phytologist 114: 479488.CrossRefGoogle Scholar
Möller, M., Gao, L.-M., Mill, R.R., et al. 2007. Morphometric analysis of the Taxus wallichiana-complex (Taxaceae) based on herbarium material. Botanical Journal of the Linnean Society 122: 307335.CrossRefGoogle Scholar
Möller, M., Gao, L.M., Mill, R.R., et al. 2013. A multidisciplinary approach reveals hidden taxonomic diversity in the morphologically challenging Taxus wallichiana complex. Taxon 62(6): 11611177.CrossRefGoogle Scholar
Möller, M., Liu, J., Li, Y., et al. 2020. Repeated intercontinental migrations and recurring hybridizations characterise the evolutionary history of yew (Taxus L.). Molecular Phylogenetics and Evolution 153: 106952.CrossRefGoogle ScholarPubMed
Moody, R. 1980. Prehistoric World. London: Hamlyn.Google Scholar
Mroczek, T., Glowniak, Z. & Hajnos, M. 2000. Screening for pharmaceutically important taxoids in Taxus baccata var aurea Corr. with CC/SPE/HPLC-PDA procedure. Biomedical Chromatography 14: 516529.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Mukherjee, S., Gosh, B., Jha, T.B. & Jha, S. 2002. Variation in content of taxol and related taxanes in eastern Himalayan populations of Taxus wallichiana. Planta Medica 68: 757759.CrossRefGoogle ScholarPubMed
Mundry, I. & Mundry, M. 2001. Male cones in Taxaceae s.l.: an example of Wettstein’s Pseudanthium concept. Plant Biology (Stuttgart) 3: 405416.CrossRefGoogle Scholar
Nevo, M., Vamota, K., Razafimandimby, D., et al. 2018. Frugivores and the evolution of forest crown structure. Royal Society, Biology Letters 14: 14.Google Scholar
Newton, I. 2008. The Migration Ecology of Birds. London: Academic Press.Google Scholar
Nosova, N.V. & Kiritchkova, A.I. 2018. A new species of Marskea Florin (Pinopsida) from the Middle Jurassic of the Irkutsk Coal Basin (East Siberia). Paleontological Journal 52(5): 574581.CrossRefGoogle Scholar
O’Connell, M., Mitchell, F.J.G., Readman, P.W. & Doherty, T.J. 1987. Palaeocological investigations towards the reconstruction of the post-glacial environment at Lough Doo, County Mayo, Ireland. Journal of Quaternary Science 2: 49164.Google Scholar
Orr, M.Y. 1937. On the value for diagnostic purposes of certain of the anatomical features of conifer leaves. Notes from the Royal Botanic Garden Edinburgh 19: 255266.Google Scholar
Page, C.N. 1973. Ferns, polyploids, and their bearing on the evolution of the Canarian flora. Monographia Biologicae Canariensis 4: 8388.Google Scholar
Page, C.N. 1974. Morphology and affinities of Pinus canariensis. Notes from the Royal Botanic Garden Edinburgh 33: 317323.Google Scholar
Palido, F. 2007. The genetics of the evolution of avian migration. Bioscience 57: 165174.CrossRefGoogle Scholar
Pant, S. & Samant, S.S. 2008. Population ecology of the endangered Himalayan yew in Khokhan Wildlife Sanctuary of North Western Himalaya for conservation management. Journal of Mountain Science 5: 257264.CrossRefGoogle Scholar
Phillips, L. 1974. Vegetational history of the Ipswichian-Eemian interglacial in Britain and Continental Europe. New Phytologist 73: 589604.CrossRefGoogle Scholar
Piovesan, G., Saba, E.P., Biondi, F., et al. 2009. Population ecology of yew (Taxus baccata L.) in the Central Apennines: spatial patterns and their relevance for conservation strategies. Plant Ecology 205: 2346.CrossRefGoogle Scholar
Pole, M. 1997a. Miocene conifers from the Manuherikia Group, New Zealand. Journal of the Royal Society of New Zealand 27: 355370.CrossRefGoogle Scholar
Pole, M.S. 1997b. Paleocene plant macrofossils from Kakahu, south Canterbury, New Zealand. Journal of the Royal Society of New Zealand 27: 371400.CrossRefGoogle Scholar
Pole, M. 2007. Conifer and cycad distribution in the Miocene of southern New Zealand. Australian Journal of Botany 55: 143164.CrossRefGoogle Scholar
Poupat, C., Hook, I., & Gueritte, F. 2000. Neutral and basic taxoid contents in the needles of Taxus species. Planta Medica 66: 580584.CrossRefGoogle ScholarPubMed
Press, J.R. & Short, M.J. 1994. Flora of Madeira. London: HMSO.Google Scholar
Price, R.A. 1990. The genera of Taxaceae in the southeastern United States. Journal of the Arnold Arboretum 71: 6991.CrossRefGoogle Scholar
Rajewski, M., Lange, S. & Hattemer, H.H. 2000. Reproduktion bei der Generhaltung seltner baumarten: das Beispiel der Eibe (Taxus baccata L.). Forest, Snow and Landscape Research 75: 251266.Google Scholar
Rao, K.V., Hanuman, J.B., Alvarez, C., et al. 1995. A new large-scale process for taxol and related taxanes from Taxus brevifolia. Pharmaceutical Research 12: 10031010.CrossRefGoogle ScholarPubMed
Raunkiaer, C. 1934. The Life-Form of Plants and Statistical Plant Geography. Oxford: Oxford University Press.Google Scholar
Redfern, M. 1975. The life history and morphology of the early stages of the yew gall-midge, Taxmyia taxi (Inchbald) (Diptera: Cercidomyiidae). Journal of Natural History 9: 513533.CrossRefGoogle Scholar
Renoult, J.P., Valiado, A., Jordan, P. & Schaefer, H.M. 2016. Adaptation of fruit colours to multiple distinct microhabitats. New Phytologist 201: 678686.CrossRefGoogle Scholar
Rikhari, H.C., Palni, L.M.S., Sharma, A.S. & Nandi, S.K. 1998. Himalayan yew: stand structure, canopy damage, regeneration and conservation strategy. Environmental Conservation 25: 334341.CrossRefGoogle Scholar
Rikhari, H.C., Sharma, A.S., Nandeem, M., & Palni, L.M.S. 2000. The effect of disturbance levels, forest types and associates on the regeneration of Taxus baccata: lessons from the Central Himalayas. Current Science 79: 8890.Google Scholar
Roulande-Lefevre, C., Diouf, M.N., Brauman, A. & Neyra, M. 2002. Phylogenetic relationships in termitomyces (family Agaricaceae) based on the nucleotide sequence of ITS: a first approach to elucidate the evolutionary history of the symbiosis between fungus-growing termites and their fungi. Molecular Phylogenetics and Evolution 22: 423429.CrossRefGoogle Scholar
Roy, S.K. 1972. Fossil wood of Taxaceae from the McMurray formation (Lower Cretaceous) of Alberta, Canada. Canadian Journal of Botany 50: 349352.CrossRefGoogle Scholar
Sands, W.A. 1969. The association of termites and fungi. Pp 495524 in Krishna, K. & Weesner, F.M. (eds.), Biology of Termites. Vol I. New York: Academic Press.CrossRefGoogle Scholar
Sanhi, B. 1920. On certain archaic features in the seed of Taxus baccata, with remarks on the antiquity of the Taxineae. Annals of Botany 34: 117133.Google Scholar
Saniga, M. 2000. Struktura, produkcne a regeneracne pocesy tisa obcajneho v Statnej reservacii Plavno. Journal of Forest Science (Prague) 46: 7690.Google Scholar
Sarmaja-Korjonen, K., Vasari, Y. & Haeggstrom, C.-A. 1991. Taxus baccata and influence of Iron Age man on the vegetation of Aland, SW Finland. Annales Botanica Fennici 28: 143159.Google Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356374.CrossRefGoogle Scholar
Schaefer, H.M., Levy, D.T., Schafer, V. & Avery, M. 2006. The roles of chromatic and achromatic signals for fruit detection by birds. Behavioural Ecology 17: 784789.CrossRefGoogle Scholar
Schaefer, H.M., Valido, A. & Jontano, P. 2014. Birds see the true colours of fruits to live off the fat of the land. Proceedings of the Royal Society, ser. B. 281: 20132516.Google ScholarPubMed
Scher, S. 1996. Genetic structure of natural Taxus populations in western North America. Pp 424441 in Smith, T.B. & Wayna, R.K. (eds.), Molecular Genetic Approaches in Conservation. New York: Oxford University Press.CrossRefGoogle Scholar
Schulz, B., Haas, S., Junker, C., Andrée, M. & Schobert, M. 2015. Fungal endophytes are involved in multiple balanced antagonisms. Current Science 108: 3945.Google Scholar
Seki, M., Ohzora, C., Takeda, M., & Furusaki, S. 2000. Taxol (paclitaxel) production using free and immobilised cells of Taxus cuspidate. Biotechnology and Bioengineering 53: 214219.3.0.CO;2-K>CrossRefGoogle Scholar
Serevo, P.C. & Rao, C. 1992. Early evidence of avian flight and perching: new evidence from the Cretaceous of China. Science 255: 845848.Google Scholar
Shah, A., Li, D.-Z., Möller, M., et al. 2008. Delimitation of Taxus fauna Nan Li & R.R.Mill (Taxaceae) based on morphological and molecular data. Taxon 57: 211222.Google Scholar
Shanker, K., Pathak, N.K.R., Trivedi, V.P. Chansuria, J.P.N. & Pandey, V.B. 2002. An evaluation of toxicity of Taxus baccata Linn. in experimental animals. Journal of Ethnopharmacology 79: 6973.CrossRefGoogle ScholarPubMed
Shen, Y.-C., Cheng, K.-C.,& Lin, Y.-C. 2005. Three new taxane diterpenoids from Taxus sumatrana. Journal of Natural Products 68: 9093.CrossRefGoogle ScholarPubMed
Shen, Y.-C., Lin, Y.-S., Hsu, S.-M., et al. 2007. Tasumatrols P-T, five new taxoids from Taxus sumatrana. Helvetica Chimica Acta 90: 1319.CrossRefGoogle Scholar
Shi, Q.W., Oritani, T. & Sugiyama, T. 1999. Two new taxane diterpenoids from the seeds of the Chinese yew, Taxus yunnanensis. Journal of Asian Natural Products Research 2: 7179.CrossRefGoogle Scholar
Skorupski, M. & Luxton, M. 1998. Mesostigmatid mites (Acari: Parasitiformes) associated with yew (Taxus baccata) in England and Wales. Journal of Natural History 32: 419439.CrossRefGoogle Scholar
Smal, C.M. & Fairley, J.S. 1980a. Food of wood mice and bank voles in oak and yew woods in Kilarney, Ireland. Journal of Zoology 191: 413418.CrossRefGoogle Scholar
Smal, C.M. & Fairley, J.S. 1980b. The fruits available as food to small rodents in two woodland ecosystems. Holarctic Ecology 3: 1018.Google Scholar
Snow, B. & Snow, D. 1988. Birds and Berries. Calton: Poyser.Google Scholar
Sorensen, A.E. 1984. Nutrition, energy and passage time: experiments with fruit preference in European blackbirds (Turdus merula). Journal of Animal Ecology 53: 545557.CrossRefGoogle Scholar
Sorochinskii, B.V., Prokhnevskii, A.I. & Grodzinskii, D.M. 1990. Method of isolating taxol from Taxus baccata. Khimiya Prirodnykh Soeineneii 5: 702703 (in Russian).Google Scholar
Spjut, R.J. 2007a. Taxonomy and nomenclature of Taxus (Taxaceae). Journal of Botanical Research Institute of Texas 1: 203289.Google Scholar
Spjut, R.J. 2007b. A phytogeographical analysis of Taxus (Taxaceae) based on leaf anatomical characters. Journal of Botanical Research Institute of Texas 1: 291332.Google Scholar
Splittstoeser, W.E. & Meyer, M.M. 2006. Evergreen foliage contributions to the spring growth of Taxus. Physiologia Plantarum 24: 528533.CrossRefGoogle Scholar
Straus, A. 1952. Beiträge zur Pliozänflora von Willershausen III. Die niederen Pflanzengruppen bis zu den Gymnospermen. Palaeontographica Abt B 93.Google Scholar
Strouts, R.G. & Winter, T.G. 1994. Diagnosis of Ill-Health in Trees. London: HMSO/Forestry Commission.Google Scholar
Sudworth, G.B. 1908. Forest Trees of the Pacific Slope. San Francisco, CA: USDA.CrossRefGoogle Scholar
Sukatschev, W. 1908. Über des vorkommen der Samen von Euryale ferox Salisb. in einer interglazialen Ablagerungen in Russland. Bericht der Deutschen Botanischen Gesellschaft 26: 132137.Google Scholar
Suliman, S. & Raizada, M.N. 2020. States of biosynthesis and storage of taxol in Taxus media (Rehder) plants: mechanism and accumulation. Phytochemistry 175: 112369.CrossRefGoogle Scholar
Suzuki, M. 1979. The course of resin canals in the shoots of conifers I. Taxaceae, Cephalotaxaceae and Podocarpaceae. Botanical Magazine Tokyo 92: 235251.CrossRefGoogle Scholar
Szaniawski, R.K. 1978. An outline of yew physiology. Pp 5564 in Bartkowiak, S., Bugala, W., Czartoryski, A., et al. (eds.), The Yew: Taxus baccata. Warsaw: Department of the National Center for Scientific and Technical, and Economic Information.Google Scholar
Tachibana, S., Ishikaw, H. & Itoh, K. 2005. Antifungal activities of compounds isolated from the leaves of Taxus cuspidata ver nana against plant pathogenic fungi. Journal of Wood Science 51: 181184.CrossRefGoogle Scholar
Tang, J.M. 1996. Distribution and conservation strategy of Taxus chinensis in Shenlongjia. Hubei Forestry Science and Technology 1: 3136.Google Scholar
Tang, Z.-X., Chen, Z.-K. & Wang, F.-H. 1968. Investigation on sexual reproductive cycle in Torreya grandis. Acta Phytotaxonomica Sinica 24: 451453.Google Scholar
Thomas, P.A. & Polwart, A. 2003. Taxus baccata L. biological flora of the British Isles. Journal of Ecology 91: 489524.CrossRefGoogle Scholar
Thompson, J.N. & Wilson, M.F. 1978. Disturbance and the dispersal of fleshy fruits. Science 2000: 11611163.CrossRefGoogle Scholar
Tittensor, R.M. 1980. Ecological history of yew Taxus baccata L. in southern England. Biological Conservation 17: 243265.CrossRefGoogle Scholar
Van Rozendaal, E.L.M., Kurstjens, S.J.L., Van Beek, T.A. & Van den Berg, R.G. 1999. Chemotaxonomy of Taxus. Phytochemistry 52: 427433.CrossRefGoogle Scholar
Vanek, T., Vesela, D, Mala, J., et al. 1996. Production of taxanes by Taxus baccata plant cells. Biotechnology Letters 18: 501504.CrossRefGoogle Scholar
Vogler, P. 1904. Die Eibe (Taxus baccata L.) in der Schweiz. Jahrbuch der St Gallischen Naturwissenschaftlichen Gesellschaft für das Vereinsjahr.Google Scholar
Voliotis, D. 1986. Historical and environmental significance of the yew (Taxus baccata L.). Israel Journal of Botany 35: 4752.Google Scholar
Von der Werth, J. & Murphy, J.J. 1994. Cardiovascular toxicity associated with yew leaf ingestion. British Heart Journal 72: 9293.CrossRefGoogle ScholarPubMed
Wang, B. & Qi, Y.L. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16: 299363.CrossRefGoogle ScholarPubMed
Wang, X.Q. & Shu, Y.Q. 2000. Chloroplast matK gene phylogeny of Taxaceae and Cephalotaxaceae, with additional reference to the systematic position of Nageia. Acta Phytotaxonomica Sinica 38: 201-210.Google Scholar
Wani, M.C., Taylor, H.L., Wall, M.E., Coggon, P. & McPhail, A.T. 1971. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society 93: 23252327.CrossRefGoogle ScholarPubMed
Watt, A.S. 1926. Yew communities of the South Downs. Journal of Ecology 14: 282316.CrossRefGoogle Scholar
Watt, A.S. 1934a. The vegetation of the Chiltern Hills, with special reference to the beechwoods and their seral relationships. Journal of Ecology 22: 230270.CrossRefGoogle Scholar
Watt, A.S. 1934b. The vegetation of the Chiltern Hills, with special reference to the beechwoods and their seral relationships. II. The vegetation of the plateaus. Journal of Ecology 22: 445507.CrossRefGoogle Scholar
Watts, W.A., Allen, J.R.M., Huntley, B. & Fritz, S.C. 1996. Vegetation history and climate of the last 15,000 years at Laghi di Monticchio, southern Italy. Quaternary Science Reviews 15: 113132.CrossRefGoogle Scholar
West, R.G. 1962. A note on Taxus pollen in the Hoxnian Interglacial. New Phytologist 61: 189190.CrossRefGoogle Scholar
Wheeler, N.C., Jech, K.S. & Masters, S.A. 1995. Genetic variation and parameter estimates in Taxus brevifolia (Pacific yew). Canadian Journal of Forest Research 25: 19131927.CrossRefGoogle Scholar
White, J.E.J. 1998. Estimating the Age of Large and Veteran Trees in Britain. London: HMSO/Forestry Commission.Google Scholar
Whitfield, P. 1993. The Natural History of Evolution. London: Doubleday.Google Scholar
Williamson, R. 1978. The Great Yew Forest I: The Natural History of Kingley Vale. London: Macmillan.Google Scholar
Wilson, C.R., Sauer, J.M. & Hooser, S.B. 2001. Taxines: a review of the mechanism and toxicity of yew (Taxus spp.). Toxicon 39: 175185.CrossRefGoogle ScholarPubMed
Wilson, E.O. 1916. Conifers and Taxads of Japan. Cambridge: Cambridge University Press.Google Scholar
Wilson, P., Bunopane, M. & Allison, T.D. 1996. Reproductive biology of the monoecious clonal shrub Taxus canadensis. Bulletin of the Torrey Botanical Club 123: 715.CrossRefGoogle Scholar
Witherup, K.M., Look, S.A., Stasko, M.W., et al. 1990. Taxus spp. needles contain amounts of taxol comparable to the bark of Taxus brevifolia: analysis and isolation. Journal of Natural Products 55: 12491255.CrossRefGoogle Scholar
Wooton, R.J. 1990. Major insect radiations. Pp 187208 in Taylor, P.D. & Larwood, G.P. (eds.), Major Evolutionary Radiations. Oxford: Clarendon Press.Google Scholar
Wu, Z.Y. 1998. Delineation and unique features of the Sino-Japanese floristic region. Pp 135 in Boufford, D.E. & Ohba, H. (eds.), Sino-Japanese Flora: Its Characteristics and Diversification. Tokyo: Tokyo University Press.Google Scholar
Wu, Z.Y. & Wu, S.G. 1998. A proposal for a new floristic kingdom (realm): the E. Asiatic kingdom, its delineation and characteristics. Pp 312 in Zhang, A.L. & Wu, S.G. (eds.), Floristic Characteristics and Diversity of East Asian Plants. Beijing: China Higher Education Press/Springer.Google Scholar
Xing, S.P., Chen, Z.K., Hu, Y.X., Zhou, F. & Lin, J.X. 2000. Ovule development, formation of pollination drop and pollination process in Taxus chinensis (Taxaceae). Acta Botanica Sinica 42: 126132.Google Scholar
Xu, X.-H., Sun, B.-M., Yan, D.-P., Wang, J. & Dong, C. 2015. A Taxus leafy branch with attached ovules from the Lower Cretaceous of Inner Mongolia, North China. Cretaceous Research 54: 266282.CrossRefGoogle Scholar
Zamani, S., Abbasian, Z., Khaksar, G., et al. 2008. Genomic diversity among yew (Taxus baccata) genotypes of Iran revealed by random amplified polymorphism DNA markers. International Journal of Agriculture and Biology 10: 648652.Google Scholar
Zhang, M.-L., Dong, M., Huo, C.-H., et al. 2008. Taxopropellane: a novel taxane with an unprecedented polycyclic skeleton from the needles of Taxus canadensis. European Journal of Organic Chemistry 32: 54145417.CrossRefGoogle Scholar
Zhou, X., Wang, Z., Jiang, K., et al. 2007. Screening of taxol-producing endophytic fungi from Taxus chinensis var mairei. Applied Biochemistry and Microbiology 43: 439443.CrossRefGoogle Scholar
Zu, Y.-G., Chen, H.-F., Wang, W.-J. & Nie, S.-Q. 2006. Population structure and distribution pattern of Taxus cuspidate in Muling region of Heilongjiang Province, China. Journal of Forestry Research 17: 8082.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Taxus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Taxus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Taxus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.017
Available formats
×