Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T12:10:45.467Z Has data issue: false hasContentIssue false

Chapter 4 - Pinus

Pinales: Pinaceae S.S

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Tall, long-lived evergreen forest trees with rough-barked, often vertically creviced trunks, to 25 m or less, eventually mostly bearing a broadly irregular to pyramidal or rounded crown, giving mature trees a particularly stately and often majestic billowing open-crowned habit with age. Foliage is dominated by conspicuous, long, needle-like leaves borne in basally united (fasciculate) groups from shoots with a strongly seasonal annual growth rhythm. Seeds are protected within a (usually) robust, woody cone.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 96 - 147
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, H.G. & Quink, T.F. 1970. Ecology of eastern white pines seed caches made by small forest mammals. Ecology 51: 271278.CrossRefGoogle Scholar
Abella, S.R. & Covington, W.W. 2006a. Forest ecosystems of an Arizona Pinus ponderosa landscape: multifactor classification and implications for ecological restoration. Journal of Biogeography 33: 13681383.CrossRefGoogle Scholar
Abella, S.R. & Covington, W.W. 2006b. Vegetation–environment relationships and ecological species groups of an Arizona Pinus ponderosa landscape, USA. Plant Ecology 185: 255268.CrossRefGoogle Scholar
Adams, H.D. & Kolb, T.E. 2005. Tree growth response to drought and temperature in a mountain landscape in northern Arizona, USA. Journal of Biogeography 32(9): 16291640.CrossRefGoogle Scholar
Adriaensen, K., Vralstad, T., Noben, J.P., Vangronsveld, J. & Colpaert, J.V. 2005. Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Applications in Environmental Microbiology 71: 72797284.CrossRefGoogle ScholarPubMed
Adriaensen, K., Vangronsveld, J., Colpaert, J.V. 2006. Zinc-tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16: 553558.CrossRefGoogle ScholarPubMed
Ahonen-Jonnarth, U. & Finlay, R.D. 2001. Effects of elevated nickel and cadmium concentrations on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant and Soil 236: 129138.CrossRefGoogle Scholar
Akkiraz, M.S., Akgün, F., Örçen, S., Bruch, A. & Mosbrugger, V. 2006. Stratigraphic and palaeoenvironmental significance of Bartonian–Priabonian (Middle–Late Eocene) microfossils from the Başçeşme Formation, Denizli Province, Western Anatolia. Turkish Journal of Earth Sciences: 15(2): 155180.Google Scholar
Ali, A.A., Carcaillet, C., Talon, B. Roiron, P. & Terral, J.F. 2005. Pinus cembra L. (arolla pine), a common tree in the inner French Alps since the early Holocene and above the present tree line: a synthesis based on charcoal data from soils and travertines. Journal of Biogeography 32: 16591669.CrossRefGoogle Scholar
Almeida-Lenero, L., Giménez de Azcárate, J., Cleef, A.M. & Gonzales Trapaga, A. 2004. Las comunidades vegetales del zacatonal alpino de los Volcanes Popocatépetl y Nevado de Toluca, Región Central de México. Phytocoenologia 34(1): 91132.Google Scholar
Almeida-Leñero, L., Hooghiemstra, H., Cleef, A.M. & van Geel, B. 2005. Holocene climatic and environmental change from pollen records of lakes Zempoala and Quila, central Mexican highlands. Review of Palaeobotany and Palynology 136(1–2): 6392.CrossRefGoogle Scholar
Alvin, K.L. 1953. Three abietaceous cones from the Wealden of Belgium. Royal Belgian Institute of Natural Sciences 125: 142.Google Scholar
Alvin, K.L. 1957. On the two cones Pseudoaraucaria heeri (Coemans) nov. comb. and Pityostrobus villerotensis nov. sp from the Wealden of Belgium. Royal Belgian Institute of Natural Sciences 135: 127.Google Scholar
Alvin, K.L. 1960. Further conifers of the Pinaceae from the Wealden Formation of Belgium. Royal Belgian Institute of Natural Sciences 146: 139.Google Scholar
Alvin, K.L. 1988. On a new specimen of Pseudoaraucaria major Fliche (Pinaceae) from the Cretaceous of the Isle of Wight. Botanical Journal of the Linnean Society 97: 159170.CrossRefGoogle Scholar
Amir, H. & Pineau, R. 1998. Effects of metals on the germination and growth of fungal isolates from New Caledonian ultramafic soils. Soil Biology and Biochemistry 30: 20432054.CrossRefGoogle Scholar
Anenkhonov, O.A. & Chytrý, M. 1998. Syntaxonomy of vegetation of the Svyatoi Nos peninsula, Lake Baikal 2. Forests and krummholz in comparison with other regions of northern Buryatia. Folia Geobotanica 33: 3175.CrossRefGoogle Scholar
Argant, A. 2004. Les Carnivores du gisement Pliocène final de Saint-Vallier (Drôme, France). Geobios 37: S133S182.CrossRefGoogle Scholar
Armitage, F.B. & Burley, J. 1980. Pinus keysia. Tropical Forestry Papers 9: 130.Google Scholar
Arno, S.F. & Sneck, K.M. 1977. A Method for Determining Fire History in Coniferous Forests of the Mountain West. Washington, DC: USDA.Google Scholar
Arnold, M.L., 1997. Natural Hybridization and Evolution. Oxford: Oxford University Press.CrossRefGoogle Scholar
Axelrod, A.I. 1976. History of the conifer forests, California and Nevada. University of California Publications in Botany 70: 160.Google Scholar
Axelrod, A.I. 1979. Age and origin of Sonoran Desert vegetation. Californian Academy of Sciences Occasional Papers 132.Google Scholar
Axelrod, D.I. 1981. Holocene climatic changes in relation to vegetation disjunction and speciation. American Naturalist 117: 847870.CrossRefGoogle Scholar
Axelrod, D.I. 1985. Miocene floras from the Middlegate Basin, west-central Nevada. University of California Publications in Geological Sciences 129: 1279.Google Scholar
Axelrod, D.I. 1986. Cenozoic history of some western American pines. Annales of the Missouri Botanic Garden 73: 565641.CrossRefGoogle Scholar
Axelrod, D.I. 1988. Paleoecology of the late Pleistocene Monterey pine at Laguna Niguel, southern California. Botanical Gazette 149: 458464.CrossRefGoogle Scholar
Axelrod, D.I. 1998a. The Eocene Thunder Mountain flora of central Idaho. University of California Publications in Geological Sciences 142: 161.Google Scholar
Axelrod, D.I. 1998b. The Oligocene Haynes Creek flora of eastern Idaho. University of California Publications in Geological Sciences 143: 1160.Google Scholar
Axelrod, D.I. & Cota, J. 1993. A further contribution to closed-cone pine (Oocarpae) history. American Journal of Botany 80: 743751.Google Scholar
Axelrod, D.I. & Demere, T.A. 1984. A Pliocene flora from Chula Vista, San Diego County, California. Transactions of the San Diego Society of Natural History 20: 277300.Google Scholar
Axelrod, D.I. & Govean, F. 1996. An early Pleistocene closed-cone pine forest at Costa Mesa, southern California. International Journal of Plant Sciences 157: 323329.CrossRefGoogle Scholar
Axelrod, D.I. & Hill, T.G. 1988. Pinus × critchfieldii, a late Pleistocene hybrid pine from coastal Southern California. American Journal of Botany 75(4): 558569.CrossRefGoogle Scholar
Baar, J., Horton, T.R., Kretner, A.M. & Bruns, T.D. 1999. Mycorrhizal colonisation of Pinus muricata from resistant propagules after stand-replacing wildfire. New Phytologist 143: 409418.CrossRefGoogle Scholar
Baker, R.G. 1990. Late Quaternary history of whitebark pine in the Rocky Mountains. General technical report. US Department of Agriculture, Forest Service.Google Scholar
Bakker, M.R., Augusto, L. & Achat, D.L. 2006. Fine root distribution of trees and understorey in mature stands of maritime pine (Pinus pinasters) on dry and humid sites. Plant and Soil 286: 3751.CrossRefGoogle Scholar
Banks, H.P., Ortiz-Sotmayor, A. & Hartmann, C.M. 1981. Pinus escalantensis sp. nov. a new permineralized cone from the Oligocene of British Columbia. Botanical Gazette 142: 286293.CrossRefGoogle Scholar
Barbero, M., Loisel, R., Quezal, P., Richardson, D.M. & Romane, F. 1998. Pines of the Mediterranean Basin. Pp 153170 in Richardson, D.M. (ed.). Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Barden, L.S. 1988. Drought and survival in a self-perpetuating Pinus pungens population: equilibrium or nonequilibrium ? American Midland Naturalist 119: 253257.CrossRefGoogle Scholar
Barnes, R.D. & Styles, B.T. 1983. The closed-cone pines of Mexico and Central America. Commonwealth Forestry Review 62: 8184.Google Scholar
Barnola, L.F., Cedeno, A., & Hasegawa, M. 1997. Intraindividual variations of volatile terpene contents in Pinus caribaea needles and its possible relationship to Atta laevigata herbivory. Biochemical Systematics and Ecology 25: 707716.CrossRefGoogle Scholar
Barton, A.M. & Wallenstein, M.D. 1997. Effects of invasion of Pinus virginiana on soil properties in serpentine barrens in southeastern Pennsylvania. Journal of the Torrey Botanical Society 124: 297305.CrossRefGoogle Scholar
Basinger, J.F. & Rothwell, G.W. 1977. Anatomically preserved plants from the middle Eocene (Allenby Formation) of British Columbia. Canadian Journal of Botany 55(14): 19841990.CrossRefGoogle Scholar
Beaulieu, J.L.D. & Reille, M. 1984. A long upper Pleistocene pollen record from Les Echets, near Lyon, France. Boreas 13(2): 111132.CrossRefGoogle Scholar
Bendel, M., Kienast, F. & Rigling, D. 2006. Genetic population structure of three Armillaria species at the landscape scale: a case study from Swiss Pinus mugo forests. Mycological Research 110: 705712.CrossRefGoogle Scholar
Bennett, K.D. 1984. The post-glacial history of Pinus sylvestris in the British Isles. Quaternary Science Reviews 3: 133155.CrossRefGoogle Scholar
Bergmeier, E. 2002. Plant communities and habitat differentiation in the Mediterranean coniferous woodlands of Mt. Parnon (Greece). Folia Geobotanica 37: 309331.CrossRefGoogle Scholar
Berthelin, J., Leyval, C., Laheurte, R. & Degiudici, J. 1991. Involvement of roots and rhizosphere microflora in the chemical weathering of soil minerals. Pp 187200 in Atkinson, D. (ed.), Plant Root Growth: An Ecological Perspective. Oxford: Blackwell Scientific.Google Scholar
Betancourt, J.L., Van Devender, T.R. & Martin, P.S. 1990. Packrat Middens: The Last 40,000 Years of Biotic Change. Tucson, AZ: University of Arizona Press.Google Scholar
Betancourt, J.L., Schuster, W.S., Mitton, J.B. & Anderson, R.S. 1991. Fossil and genetic history of a pinyon pine (Pinus edulis) isolate. Ecology 72: 16851697.CrossRefGoogle Scholar
Betancourt, J.L., Rylander, K.A., Peñalba, C. & McVickar, J.L. 2001. Late Quaternary vegetation history of Rough Canyon, south-central New Mexico, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 165(1–2): 7195.CrossRefGoogle Scholar
Birks, H.J.B. 1973. Past and Present Vegetation of the Isle of Skye: A Palaeoecological Study. Cambridge: Cambridge University Press.Google Scholar
Birks, H.J.B. 1989. Holocene isochrone maps and patterns of tree-spreading in the British Isles. Journal of Biogeography 16(6): 503540.CrossRefGoogle Scholar
Birks, H., Larsen, E. & Birks, H.J.B. 2005. Did tree-Betula, Pinus and Picea survive the last glaciation along the west coast of Norway? A review of the evidence, in light of Kullman (2002). Journal of Biogeography 32(8): 14611471.CrossRefGoogle Scholar
Bjørndalen, J.E. 1980. Kalktallskogar i Skandina -vien – ett förslag till klassifi cering. (Calcareous pine forests in Scandinavia – a proposal to classification). Svensk Botanisk Tidskrift 74: 103122.Google Scholar
Blaudez, D., Jacob, C., Turnau, K., et al. 2000. Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycological Research 104: 13661371.CrossRefGoogle Scholar
Bo, S., Siegert, M.J., Mud, S. et al. 2009. The Gamburtsev Mountains and the origins and early evolution of the Antarctic ice sheet. Nature 459: 690693.CrossRefGoogle Scholar
Bochnak, A., Brud, S., Gawlik, A. et al. 2004. Unique geological, palaeobotanical and archaeological site in Witów near Brzesko Nowe (Southern Poland). Polish Geological Institute Special Papers 13: 125–130.Google Scholar
Bogunic, F., Muratovic, E. & Siljak-Yakoviev, S. 2006. Chromosomal differentiation between Pinus heldreichii and Pinus nigra. Annals of Forestry Science 63: 267274.CrossRefGoogle Scholar
Bogunic, F., Muratovic, E., Ballian, D., Siljak-Yakoviev, S. & Brown, S. 2007. Genome size stability among five subspecies of Pinus nigra Arnold s.l. Environmental and Experimental Botany 59: 354360.CrossRefGoogle Scholar
Booth, M.G. 2004. Mycorrhizal networks mediate overstorey–understorey competition in a temperate forest. Ecology Letters 7(7): 538546.CrossRefGoogle Scholar
Boratynska, K. & Boratynski, A. 2007. Taxonomic differences among closely related pines Pinus sylvestris, P. mugo, P. uncinata, P. rotundata and P. uliginosa as revealed in needle sclerenchyma cells. Flora: Morphology–Distribution–Functional Ecology of Plants 202: 555569.CrossRefGoogle Scholar
Boratynska, K., Marcysiak, K. & Boratynski, A. 2005. Pinus mugo (Pinaceae) in the Abruzzi Mountains: high morphological variation in isolated populations. Botanical Journal of the Linnean Society 147: 309316.CrossRefGoogle Scholar
Boyd, A. 2009. Relict conifers from the mid-Pleistocene of Rhodes, Greece. Historical Biology 21(1–2): 115.CrossRefGoogle Scholar
Brubaker, L.B., Anderson, P.M., Edwards, M.E. & Lozhkin, A.V. 2005. Beringia as a glacial refugium for boreal trees and shrubs: new perspectives from mapped pollen data. Journal of Biogeography 32(5): 833848.CrossRefGoogle Scholar
Bugnicourt, D., Claracq, P., Duperon, J. et al. 1988. A lignite deposit at Capvern. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine 12: 739757.Google Scholar
Cannon, S.H. & Reneau, S., 2000. Conditions for generation of fire-related debris flows, Capulin Canyon, New Mexico. Earth Surface Processes and Landforms 25: 11031121.3.0.CO;2-H>CrossRefGoogle Scholar
Chiang, T.Y. & Schaal, B.A. 2006 .Phylogeography of plants in Taiwan and the Ryukyu archipelago. Taxon 55: 3141.CrossRefGoogle Scholar
Christensen, K.M. & Whitham, T.G. 1991. Indirect herbivore mediation of avian seed dispersal in pinyon pine. Ecology 72: 534542.CrossRefGoogle Scholar
Christensen, K.M. & Whitham, T.G. 1993. Impact of insect herbivores on competition between birds and mammals for pinyon pine seeds. Ecology 74: 22702278.CrossRefGoogle Scholar
Climent, J., Tapias, R., Pardos, J.A. & Gil, L. 2004. Fire adaptations in the Canary Island pine (Pinus canariensis). Plant Ecology 171: 185196.CrossRefGoogle Scholar
Coffey, K., Benkman, C.W. & Milligan, B.G. 1999. The adaptive significance of spines on pine cones. Ecology 80: 12211229.CrossRefGoogle Scholar
Colby, D. & Prowell, D. 2006. Ants (Hymenoptera: Formicidae) in wet longleaf pine savannas in Louisiana. Florida Entomologist 89: 266269.CrossRefGoogle Scholar
Coleman, R.G. & Kruckeberg, A.R.. 1999. Geology and plant life of the Klamath-Siskiyou Mountain region. Natural Areas Journal 19: 320341.Google Scholar
Colgan, W. & Claridge, A.W. 2002. Mycorrhizal effectiveness of Rhizopogon spores recovered from faecal pellets of small forest-dwelling mammals. Mycological Research 106(3): 314320.CrossRefGoogle Scholar
Collinson, M.E. 1992. The early fossil history of Salicaceae: a brief review. Proceedings of the Royal Society of Edinburgh Section B: Biological Sciences 98: 155167.Google Scholar
Collinson, M.E. & Hooker, J.J. 1987. Vegetational and mammalian faunal changes in the Early Tertiary of southern England. Pp 259304 in Friis, E. M., Chaloner, W. G. & Crane, P. R. (eds.), The Origins of Angiosperms and Their Biological Consequences. Cambridge: Cambridge University Press.Google Scholar
Collinson, M.E., Fowler, K. & Boulter, M.C. 1981. Floristic changes indicate a cooling climate in the Eocene of southern England. Nature 291 (5813): 315317.CrossRefGoogle Scholar
Colpaert, J.V., Muller, L.A.H., Lambaerts, M., Adriaensen, K., & Vangronsveld, J. 2004. Evolutionary adaptation to Zn toxicity in populations of Suilloid fungi. New Phytologist 162: 549559.CrossRefGoogle Scholar
Conway, B.E., McCullough, D.G. & Leefers, L.A. 1999. Long term effects of jack pine budworm outbreaks on the growth of jack pine trees in Michigan. Canadian Journal of Forest Research 29: 15101517.CrossRefGoogle Scholar
Crane, P.R., Friis, E.M. & Pedersen, K.R. 1995. The origin and early diversification of angiosperms. Nature 374: 2730.CrossRefGoogle Scholar
Creber, G.T. 1956. A new species of abietaceous cone from the Lower Greensand of the Isle of Wight. Annals of Botany. NS 20: 375383.CrossRefGoogle Scholar
Creber, G.T. 1960. On Pityostrobus leckenbyi (Carruthers) Seward and Pityostrobus oblongus (Lindley & Hutton) Seward, fossil abietaceous cones from the Cretaceous. Journal of the Linnean Society of Botany 56: 421429.CrossRefGoogle Scholar
Creber, G.T. 1967. Notes on some petrified cones of the Pinaceae from the Cretaceous. Proceedings of the Linnean Society of London 178: 147152.CrossRefGoogle Scholar
Critchfield, W.B. 1967. Crossability and relationships of the closed-cone pines. Silvae Genetica 16: 89129.Google Scholar
Critchfield, W.B. 1975. Interspecific hybridisation in Pinus: a summary review. Pp 99105 in Fowler, D.P. & Yeatman, C.W. (eds.), Symposium on Interspecific and Interprovenance Hybridisation in Forest Trees. Fredericton, New Brunswick: Canadian Tree Improvement Association.Google Scholar
Critchfield, W.B. 1984. Impact of the Pleistocene on the genetic structure of North American conifers. Pp 70118 in Laner, R.M. (ed.). Proceedings of the Eighth North American Forest Biology Workshop. Logan, UT: Utah State University.Google Scholar
Critchfield, W.B. 1985. The late Quaternary history of lodgepole and jack pines. Canadian Journal of Forest Research 15: 749772.CrossRefGoogle Scholar
Critchfield, W.B. 1986. Hybridisation and classification of the white pines (Pinus section Strobus). Taxon 35: 647656.CrossRefGoogle Scholar
Critchfield, W.B. & Little, E.L. Jr. 1966. Geographic distribution of the pines of the world. US Department of Agriculture Forest Service Publication 991.CrossRefGoogle Scholar
Cuenca, A., Escalante, A.E. & Pinero, D. 2003. Long-distance colonization, isolation by distance, and historical demography in a relictual Mexican pinyon pine (Pinus nelsonii Shaw) as revealed by paternally inherited genetic markers (cpSSRs). Molecular Ecology 12: 20872097.CrossRefGoogle Scholar
Currey, D.R. 1968. An ancient bristlecone pine stand. Ecology 44: 564566.Google Scholar
D’Amico, M.E., Freppaz, M., Leonelli, G., Bonifacio, E. & Zanini, E. 2015. Early stages of soil development on serpentinite: the proglacial area of the Verra Grande Glacier, Western Italian Alps. Journal of Soils and Sediments 15: 12921310.CrossRefGoogle Scholar
Delevoryas, T. & Hope, R.C. 1987. Further observations on the late Triassic conifers Compsostrobus neotericus and Voltzia andrewsii. Review of Palaeobotany and Palynology 51(1–3): 5964.CrossRefGoogle Scholar
Delgado, P., Pinero, D., Chaos, A., Perez-Nasser, N. & Alvarez-Buylla, E.R. 1999. High population differentiation and genetic variation in the endangered Mexican pine Pinus rzedowskii (Pinaceae). American Journal of Botany 86: 669676.CrossRefGoogle ScholarPubMed
Demske, D., Mohr, B. & Oberhänsli, H. 2002. Late Pliocene vegetation and climate of the Lake Baikal region, southern East Siberia, reconstructed from palynological data. Palaeogeography, Palaeoclimatology, Palaeoecology 184(1–2): 107129.CrossRefGoogle Scholar
Depape, G. 1922. Recherches sur la flora pliocene de la Vallee du Rhone. Annales Sciences Naturelles Botaniques 10e ser, 4: 73226.Google Scholar
Depape, G. 1928. Le monde des plantes a l’apparition de l’homme en Europe occidentale. Anales Societe Sciences Bruxelles 48: 39101.Google Scholar
Diaz, S., Mercado, C. & Alvarez-Cardenas, S. 2000. Structure and population dynamics of Pinus lagunae M.-F.Passini. Forest Ecology and Management 134: 249256.CrossRefGoogle Scholar
Dixon, J.L. & von Blanckenburg, F. 2012. Soils as pacemakers and limiters of global silicate weathering. Comptes Rendus Geoscience 344(11–12): 597609.CrossRefGoogle Scholar
Dixon, J.L., Hartshorn, A.S., Heimsath, A.M. et al. 2012. Chemical weathering response to tectonic forcing: a soils perspective from the San Gabriel Mountains, California. Earth and Planetary Science Letters 323–324: 4049.CrossRefGoogle Scholar
Dixon, R.K. & Buschena, C.A. 1988. Response of ectomycorrhizal Pinus banksiana and Picea glauca to heavy metals in soil. Plant Soil 105: 265271.CrossRefGoogle Scholar
Doležal, Z. & Romig, T. 2004. Xylota caeruleiventris Zetterstedt (Diptera, Syrphidae) is present in central Europe. Volucella 7: 201203.Google Scholar
Doležal, J., Ishii, H., Vetrova, V.P., Sumida, A. & Hara, T. 2004. Tree growth and competition in a Betula platyphyllaLarix cajanderi post-fire forest in central Kamchatka. Annals of Botany, 94(3), 333343.CrossRefGoogle Scholar
Donahue, J.K. & Mar, L.C. 1995. Observations on Pinus maximartinezii Rzed. Madrono 42: 1925.Google Scholar
Donnelly, D.P., Boddy, L. & Leake, J.R. 2004. Development, persistence and regeneration of foraging ectomycorrhizal mycelial systems in soil microcosms. Mycorrhiza 14: 3745.CrossRefGoogle ScholarPubMed
Douglas, R.B., Parker, V.T. & Cullings, K.W. 2005. Below-ground ectomycorhizal community structure of mature lodgepole pine and mixed conifer stands in Yellowstone National Park. Forest Ecology and Management 208: 303317.CrossRefGoogle Scholar
Dumitrashko, N.V. & Kamanin, L.G. 1946. Paleogeography of Central Siberia and the Baikal Region. Transactions of the Institute of Geography Academy of Sciences USSR 37: 132151.Google Scholar
Dunabeitia, M.K., Hormilla, S., Garcia-Plazaola, J.I., et al. 2004. Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D.Don. Mycorrhiza 14: 1118.CrossRefGoogle Scholar
Durall, D.M., Jones, M.D., Wright, E.F., Kroeger, P. & Coates, K.D. 1999. Species richness of ectomycorrhizal fungi in cutblocks of different sizes in the interior cedar–hemlock forests of northwestern British Columbia: sporocarps and ectomycorrhizae. Canadian Journal of Forest Research 29: 13221332.CrossRefGoogle Scholar
Dvorak, W.S., Jordon, A.P., Hodge, G.P. & Romero, J.L. 2000. Assessing evolutionary relationships of pines in the Oocarpae and Australes subsections using RAPD markers. New Forests 20: 163192.CrossRefGoogle Scholar
Eckert, A.J. 2006. Influence of substrate type and microsite availability on the persistence of foxtail pine (Pinus balfouriana, Pinaceae) in the Klamath Mountains, California. American Journal of Botany 93: 16151624.CrossRefGoogle ScholarPubMed
Eckert, C.G., Samis, K.E. & Lougheed, S.C., 2008. Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Molecular Ecology 17: 11701188.CrossRefGoogle ScholarPubMed
Edwards, M.A. & Hamrick, J.L. 1995. Genetic variation in shortleaf pine, Pinus echinata Mill. (Pinaceae). Forest Genetics 2: 2128.Google Scholar
Edwards-Burke, M.A., Hamrick, J.L. & Price, R.A. 1997. Frequency and direction of hybridization in sympatric populations of Pinus taeda and P. echinata (Pinaceae). American Journal of Botany 84: 879886.CrossRefGoogle ScholarPubMed
Epperson, B.K., Telewski, F.W., Plovanich-Jones, A.E. & Grimes, J.E. 2001. Clinal differentiation and putative hybridization in a contact zone of Pinus ponderosa and P. arizonica (Pinaceae). American Journal of Botany 88: 10521057.CrossRefGoogle Scholar
Epperson, B.K., Chung, M.G., & Telewski, F.K. 2003. Spatial pattern of allozyme variation in a contact zone of Pinus ponderosa and P. arizonica (Pinaceae). American Journal of Botany 90: 2531.CrossRefGoogle Scholar
Erwin, D.M. & Schorn, H.E. 2006. Pinus baileyi (section Pinus, Pinaceae) from the Paleogene of Idaho, USA. American Journal of Botany 93: 197205.CrossRefGoogle ScholarPubMed
Ewers, F.W. 1982. Developmental and cytological evidence for mode of origin of secondary phloem in needle leaves of Pinus longaeva (bristlecone pine) and P. flexilis. Botanische Jahrbücher fur Systematik 103: 5988.Google Scholar
Ewers, F.W. & Schmid, R. 1981. Longevity of needle fascicles in Pinus longaeva (bristlecone pine) and other North American pines. Oecologia 51: 107115.CrossRefGoogle ScholarPubMed
Fady-Welterlen, B. 2005. Is there really more biodiversity in Mediterranean forest ecosystems? Taxon 54: 905.CrossRefGoogle Scholar
Falder, A.B., Rothwell, G.W. Mapes, G., et al. 1998. Pityostrobus milleri sp. nov., a pinaceous cone from the Lower Cretaceous (Aptian) of southwestern Russia. Review of Palaeobotany and Palynology 103(3–4): 253261.CrossRefGoogle Scholar
Farjon, A. 1984. Pines: Drawings and Descriptions of the Genus Pinus. Leiden: E.J. Brill.CrossRefGoogle Scholar
Farjon, A. & Styles, B.T. 1997. Flora Neotropica Monograph 75: Pinus (Pinaceae). New York: Organisation for Flora Neotropical and New York Botanical Garden.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 33: 73110.CrossRefGoogle Scholar
Fernandez-Palacios, J.M., Otto, R., Delgado, J.D., et al. 2011. A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. Journal of Biogeography 38: 226246.CrossRefGoogle Scholar
Feurdean, A. & Bennike, O. 2004. Late Quaternary palaeoecological and palaeoclimatological reconstruction in the Gutaiului Mountains, northwest Romania. Journal of Quaternary Science 19(8): 809827.CrossRefGoogle Scholar
Figueiral, I. & Carcaillet, C. 2005. A review of Late Pleistocene and Holocene biogeography of highland Mediterranean pines (Pinus type sylvestris) in Portugal, based on wood charcoal. Quaternary Science Reviews 24: 24662476.CrossRefGoogle Scholar
Flint, R.F. & Dorsey, H.G., Jr. 1945. Iowan and Tazewell drifts and the North American ice-sheet. American Journal of Science: 243.CrossRefGoogle Scholar
Florin, R. 1951. Evolution in Cordaitales and Conifers. Acta Horti Bergiani 15: 285388.Google Scholar
Florin, R. 1958. On the Jurassic taxads and conifers from north-western Europe and eastern Greenland. Acta Horti Bergiani 16: 257402.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Follieri, M., Magri, D. & Sadori, L. 1988. A 250 000-years pollen record from Valle di Castiglione (Roma). Pollen et Spores 30: 329356.Google Scholar
Forrest, G.I. 1980. Genotypic variation among native Scots pine populations in Scotland based on monoterpene analysis. Forestry 53: 101128.CrossRefGoogle Scholar
Forrest, G.I. 1982. Relationships of some European Scots pine populations to native Scottish woodlands based on monoterpene analysis. Forestry 55: 1937.CrossRefGoogle Scholar
French, H.M., Demitroff, M. & Forman, S.L. 2003. Evidence for late‐Pleistocene permafrost in the New Jersey Pine Barrens (latitude 39°N), eastern USA. Permafrost and Periglacial Processes 14(3): 259274.CrossRefGoogle Scholar
Fuentes, D., Disante, K.B., Valdecantos, A., Cortina, J. & Ramon-Vallejo, V. 2007. Responses of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean forest soils. Environmental Pollution 145: 316323.CrossRefGoogle ScholarPubMed
Fuji, R. & Sakai, H. 2001. Paleoclimatic changes during the last 2.5 myr recorded in the Kathmandu Basin, Central Nepal Himalayas. Journal of Asian Earth Sciences 20: 255266.CrossRefGoogle Scholar
Fujiki, T. & Yasuda, Y. 2004. Vegetation history during the Holocene from Lake Hyangho, northeastern Korea. Quaternary International 123: 6369.CrossRefGoogle Scholar
Gabet, E. & Bookter, A. 2008. A morphometric analysis of gullies scoured by post-fire progressively bulked debris flows in southwest Montana, USA. Geomorphology 96: 298309.CrossRefGoogle Scholar
Gabet, E.J. & Mudd, S.M. 2010. Bedrock erosion by root fracture and tree throw: a coupled biogeomorphic model to explore the humped soil production function and the persistence of hillslope soils. Journal of Geophysical Research: Earth Surface 115(F4).CrossRefGoogle Scholar
Gadd, G.M. 1993. Interactions of fungi with toxic metals. New Phytologist 124(1): 2560.CrossRefGoogle Scholar
Gandolfo, M.A., Nixon, K.C. & Crepet, W.L. 2001. Turonian Pinaceae of the Raritan Formation, New Jersey. Plant Systematics and Evolution 226: 187203.CrossRefGoogle Scholar
Garrett, P.W. 1979. Species hybridization in the genus Pinus. Research paper NE-436. US Department of Agriculture, Forest Service.Google Scholar
Gascho-Landis, A. & Bailey, J.D. 2005. Reconstruction of age structure and spatial arrangement of pinon–juniper woodlands and savannas of Anderson Mesa, northern Arizona. Forest Ecology and Management 204: 221236.CrossRefGoogle Scholar
Gavin, D.G., McLachlan, J.S., Brubaker, L.B. & Young, K.A. 2001. Postglacial history of subalpine forests, Olympic Peninsula, Washington, USA. Holocene 11: 177188.CrossRefGoogle Scholar
Gehring, C.A., Theimer, T.C., Whitham, T.G. & Keim, P. 1998. Ectomycorrhizal fungal community structure of pinyon pines growing in two environmental extremes. Ecology 79: 15621572.CrossRefGoogle Scholar
Gemýcý, Y., Akyol, E. & Akgün, F. 1993. Macro and micro fossil flora of the Șahinali (Aydýn) Neogene Basin. Turkish Journal of Botany 17: 91106.Google Scholar
Genny, D.R., Anderson, I.C. & Alexander, I.J. 2006. Fine-scale distribution of pine ectomycorrhizas and their extrametrical mycelium. New Phytologist 170: 381390.CrossRefGoogle Scholar
Gerasimov, I.P. & Markov, K.K. 1939. Lednikovyj period na territorii SSSR. (The Ice Age in the Territory of the USSR.) Moscow: USSR Academy of Sciences.Google Scholar
Gerloff, L.M., Hills, L.V. & Osborn, G.D. 1995. Post-glacial vegetation history of the Mission Mountains, Montana. Journal of Paleolimnology 14: 269279.CrossRefGoogle Scholar
Gernandt, D.S., Lopez, G.G., Garcia, S.O. & Liston, A. 2005. Phylogeny and classification of Pinus. Taxon 54: 2942.CrossRefGoogle Scholar
Gerson, E.A. & Kelsey, R.G. 2004. Piperidine alkaloids in North American Pinus taxa: implications for chemosystematics. Biochemical Systematics and Ecology 32: 6374.CrossRefGoogle Scholar
Gervais, B.R., MacDonald, G.M., Snyder, J.A. & Kremenetski, C.V. 2002. Pinus sylvestris treeline development and movement on the Kola Peninsula of Russia: pollen and stomate evidence. Journal of Ecology 90: 627638.CrossRefGoogle Scholar
Gifford, E.M. & Foster, A.S. 1989. Morphology and Evolution of Vascular Plants, 3rd ed. New York: W.H. Freeman.Google Scholar
Gil-Pelegrin, E. & Perez, L.V. 1988. Structure of mountain pine (Pinus uncinata Ramond) population at its upper limit in Central Pyrenees. Pirineos 131: 2542.Google Scholar
Glen-Lewin, D.C. and van der Maarel, E. 1992. Patterns and processes in vegetation dynamics. In Glen-Lewin, D. C., Peet, R. K. & Vehlen, T. T. (eds.), Plant Succession Theory and Prediction. London: Chapman & Hall.Google Scholar
Gonzalez-Prieto, S.J. & Villar, M.C. 2003. Soil organic N dynamics and stand quality in Pinus radiata pinewoods of the temperate humid region. Soil Biology and Biochemistry 35: 13951404.CrossRefGoogle Scholar
Gorchakovslii, P.L. & Lalayan, N.T. 1982. Pine forests and sparse arid-petrophytic stands in central Kazakhstan, their characteristics and anthropogenic dynamics (Pinus sylvestris). Soviet Journal of Ecology 13: 7989.Google Scholar
Govindaraju, D., Lewis, P. & Cullis, C. 1992. Phylogenetic analysis of pines using ribosomal DNA restriction fragment length polymorphisms. Plant Systematics and Evolution 179: 141153.CrossRefGoogle Scholar
Graham, A. 1973. History of the arborescent temperate element in the northern Latin American biota. Pp 301314 in Graham, A. (ed.), Vegetation and Vegetational History of Northern Latin America. Amsterdam: Elsevier.Google Scholar
Graham, A. 1989a. Late Tertiary paleoaltitudes and vegetational zonation in Mexico and Central America. Acta Botanica Neerlandica 38: 417424.CrossRefGoogle Scholar
Graham, A. 1989b. Studies in neotropical paleobotany. VII. The lower Miocene communities of Panama—the La Boca Formation. Annals of the Missouri Botanical Garden 76: 5066.CrossRefGoogle Scholar
Graham, A. 1990. A late Tertiary microfossil flora from the Republic of Haiti. American Journal of Botany 77: 911926.CrossRefGoogle Scholar
Graham, A. 1992. Utilization of the Isthmian land bridge during the Cenozoic: paleobotanical evidence for timing, and the selective influence of altitudes and climate. Review of Palaeobotany and Palynology 72: 119128.CrossRefGoogle Scholar
Graham, A. 1993. History of the vegetation: Cretaceous (Maastrichtian)–Tertiary. Flora of North America 1: 5770.Google Scholar
Graham, A. 1998. Studies in neotropical paleobotany. XI. Late Tertiary vegetation and environments of southeastern Guatemala: palynofloras from the Mio-Pliocene Padre Miguel Group and the Pliocene Herreria Formation. American Journal of Botany 85: 14091425.CrossRefGoogle Scholar
Graham, A. 1999. The Tertiary history of the northern temperate element in the northern Latin American biota. American Journal of Botany 86(1): 3238.CrossRefGoogle Scholar
Graham, R.C., Rossi, A.M. & Hubbert, K.R. 2010. Rock to regolith conversion: producing hospitable substrates for terrestrial ecosystems. GSA Today 20(2): 49.CrossRefGoogle Scholar
Grishin, S.Y., Krestov, P. & Okitsu, S. 1996. The subalpine vegetation of Mt. Vysokaya, central Sikhote-Alin. Vegetatio, 127, 155172.CrossRefGoogle Scholar
Grotkopp, E., Rejmanek, M., Sanderson, M.J. & Rost, T.L. 2004. Evolution of genome size in pines (Pinus) and its life-history correlates: supertree analyses. Evolution 58: 17051729.Google ScholarPubMed
Guilderson, T.P., Fairbanks, R.G. & Rubenstone, J.L. 1994. Tropical temperature variations since 20,000 years ago: modulating interhemispheric climate change. Science 263: 663665.CrossRefGoogle Scholar
Gworek, J.R., Vander Wall, S.B. & Brussard, P.F. 2007. Changes in biotic interactions and climate determine recruitment of Jeffrey pine along an elevation gradient. Forest Ecology and Management 239: 5768.CrossRefGoogle Scholar
Hahn, D.A. & Tschinkel, W.R. 1997. Settlement and distribution of colony-founding queens of the arboreal ant, Crematogaster ashmeadi, in a longleaf pine forest. Insectes Sociaux 44: 323336.CrossRefGoogle Scholar
Hall, S.E., Dvorak, W.S., Johnston, J.S., Price, H.J. & Williams, C.G. 2000. Flow cytometry analysis of DNA content for tropical and temperate New World pines. Annals of Botany 86: 10811086.CrossRefGoogle Scholar
Hallam, A. 1984 . Continental humid and arid zones during the Jurassic and Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology 47: 95223.CrossRefGoogle Scholar
Hansen-Bristow, K., Montagne, C. & Schmid, G. 1990. Geology, geomorphology and soils within whitebark pine ecosystems. General technical report. US Department of Agriculture, Forest Service.Google Scholar
Harrington, M.G. 1987. Characteristics of 1-year old natural pinyon seedlings. Research Note RM-477. US Department of Agriculture, Forest Service.Google Scholar
Harrison, R.G. 1993. Hybrid Zones and the Evolutionary Process. Oxford: Oxford University Press.CrossRefGoogle Scholar
Hoeksema, J.D. & Thompson, J.D. 2007. Geographic structure in a widespread plant-mycorrhizal interaction: pines and false truffles. Journal of Evolutionary Biology 20: 11481163.CrossRefGoogle Scholar
Högberg, P. & Johannisson, C. 1993. 15N abundance of forests is correlated with losses of nitrogen. Plant Soil 157: 147150.CrossRefGoogle Scholar
Horton, T.R. & Bruns, T.D. 1998. Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytologist 139: 331339.CrossRefGoogle Scholar
Hubbert, K.R., Graham, R.C. & Anderson, M.A. 2001. Soil and weathered bedrock: components of a Jeffrey pine plantation substrate. Soil Science Society of America Journal 65(4): 12551262.CrossRefGoogle Scholar
Huntley, B., Birks, H.J.B. 1983. An Atlas of Past and Present Pollen Maps for Europe: 0–13000 Years Ago. Cambridge: Cambridge University Press.Google Scholar
Hurst, M.D., Ellis, M.A., Royse, K.R., Lee, K.A. & Freeborough, K. 2013. Controls on the magnitude–frequency scaling of an inventory of secular landslides. Earth Surface Dynamics 1(1): 6778.CrossRefGoogle Scholar
Hutchins, H.E. & Lanner, R.M. 1982. The central role of Clark’s nutcracker in the dispersal and establishment of whitebark pine. Oecologia 55: 192201.CrossRefGoogle ScholarPubMed
Hyvarinen, H. 1975. Absolute and relative pollen diagrams from northernmost Fennoscandia. Fennia 142: 123.Google Scholar
Hyvarinen, H. 1976. Flandrian pollen deposition rates and tree-line history in northernmost Fennoscandia. Boreas 5: 163175.CrossRefGoogle Scholar
Ickert-Bond, S.M. 2000. Cuticle micromorphology of Pinus krempfii Lecomte (Pinaceae) and additional species from southeast Asia. International Journal of Plant Sciences 161: 301317.CrossRefGoogle ScholarPubMed
Inbar, M., Wittenberg, L. & Tamir, M. 1997. Soil erosion and forestry management after wildfire in a Mediterranean woodland, Mt. Carmel, Israel. International Journal of Wildland Fire 7(4): 285294.CrossRefGoogle Scholar
Iwauchi, A. & Hase, Y. 1987. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan: Part 3. Southern part of Kusu Basin (Lower and Middle Pleistocene). Journal of the Geological Society of Japan 93: 469489.Google Scholar
Izhaki, I., Levey, D.J. & Silva, W.R. 2003. Effects of prescribed fire on an ant community in Florida pine savanna. Ecological Entomology 28: 439448.CrossRefGoogle Scholar
Jackson, S.T., Betancourt, J.L., Lyford, M.E., Gray, S.T. & Rylander, K.A. 2005. A 40,000‐year woodrat‐midden record of vegetational and biogeographical dynamics in north‐eastern Utah, USA. Journal of Biogeography 32(6): 10851106.CrossRefGoogle Scholar
Jain, T.B., Graham, R.T. & Morgan, P. 2004. Western white pine growth relative to forest openings. Canadian Journal of Forest Research 34: 21872198.CrossRefGoogle Scholar
Jeffrey, E.C. 1908. On the structure of the leaf in Cretaceous pines. Annals of Botany 23: 207220.CrossRefGoogle Scholar
Jeffrey, E.C. 1910. A new pre-Pinus from Martha’s Vineyard. Proceedings of the Boston Society of Natural History 34: 333338.Google Scholar
Jonsson, L.M., Nilsson, M.-C., Wardle, D. & Zackrisson, O. 2001. Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93: 353364.CrossRefGoogle Scholar
Jorgensen, S., Hamrick, J.L. & Wells, P.V. 2002. Regional patterns of genetic diversity in Pinuis flexilis (Pinaceae) reveal complex species history. American Journal of Botany 89: 792800.CrossRefGoogle ScholarPubMed
Jumponen, A., Mattson, K.G. & Trappe, J.M. 1998. Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil: interactions with soil nitrogen and organic matter. Mycorrhiza 7: 261265.CrossRefGoogle Scholar
Jurko, A. & Kontriš, J. 1984. Euhemerobe Kalk-Kieferngesellschaften der Kleinen Karpaten. Folia geobotanica & phytotaxonomica 19: 157167.CrossRefGoogle Scholar
Kajimoto, T. 2002. Factors affecting seed recruitment and survivorship of the Japanese subalpine stone pine, Pinus pumila, after seed dispersal by nutcrackers. Ecological Research 17: 481491.CrossRefGoogle Scholar
Kelkar, V.M., Geilis, B.W., Becker, D.R., Overby, S.T. & Neary, D.G. 2006. How to recover more value from small pine trees: essential oils and resins. Biomass and Bioenergy 30: 316320.CrossRefGoogle Scholar
Kinloch, B.B., Westfall, R.D. & Forrest, G.I. 1986. Caledonian Scots pine: origins and genetic structure. New Phytologist 104: 703729.CrossRefGoogle ScholarPubMed
Klaus, W. 1989. Mediterranean pines and their history. Plant Systematics and Evolution 162: 133163.CrossRefGoogle Scholar
Klemmedson, J.O. 1995. New Mexican locust and parent material: influence on availability of soil macronutrients. Soil Science Society of America Journal 59(3): 913917.CrossRefGoogle Scholar
Knowlton, F.H. 1901. A fossil nut pine from Idaho. Torreya 1: 113115.Google Scholar
Krám, P., Oulehle, F., Štědrá, V., et al. 2009. Geoecology of a forest watershed underlain by serpentine in central Europe. Northeastern Naturalist 16(sp5): 309328.CrossRefGoogle Scholar
Kremenetski, C.V., Tarasov, P.E. & Cherkinsky, A.E. 1997. Postglacial development of Kazakhstan pine forests. Geographie Physique et Quaternaire 51(3): 391404.CrossRefGoogle Scholar
Kremenetski, C.V., Liu, K.-B. & MacDonald, G.M. 1998. The late Quaternary dynamics of pines in northern Asia. Pp 95106 in Richardson, D.M. (ed.), Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Kroh, G.C., White, J.D., Heath, S.K. & Pinder, J.E. 2000. Colonization of a volcanic mudflow by an upper montane coniferous forest at Lassen Volcanic National Park, California. The American Midland Naturalist 143(1): 126140.CrossRefGoogle Scholar
Kruckeberg, A.R. 1969. Plant life on serpentine and other ferromagnesian rocks in northwestern North America. Syesis 2: 15114.Google Scholar
Kruckeberg, A.R. 1985. California Serpentines: Flora, Vegetation, Geology, Soils, and Management Problems. Berkeley, CA: University of California Press.Google Scholar
Kruckeberg, A.R. 2002. Geology and Plant Life. The Effects of Landforms and Rock Types on Plants. Seattle, WA: University of Washington Press.Google Scholar
Krupa, P. & Kozdrój, J. 2007. Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris). Water, Air, and Soil Pollution 182: 8390.CrossRefGoogle Scholar
Krupkin, A.B., Liston, A. & Strauss, S.H. 1996. Phylogenetic analysis of the hard pines (Pinus subgenus Pinus, Pinaceae) from chloroplast DNA restriction site analysis. American Journal of Botany 83: 489498.CrossRefGoogle Scholar
Kutzbach, J.F. & Guetter, P.J., 1986. The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years. Journal of Atmospheric Science 43: 17261759.2.0.CO;2>CrossRefGoogle Scholar
Kvaček, Z. 2004. Revisions to the Early Oligocene flora of Flörsheim (Mainz Basin, Germany) based on epidermal anatomy. Senckenbergiana Lethaea 84: 173.CrossRefGoogle Scholar
Lacourse, T. 2005. Late Quaternary dynamics of forest vegetation on northern Vancouver Island, British Columbia, Canada. Quaternary Science Reviews 24(1–2): 105121.CrossRefGoogle Scholar
Lacourse, T., Mathewes, R.W. & Fedje, D.W. 2003. Paleoecology of Late-Glacial terrestrial deposits with in situ conifers from the submerged continental shelf of western Canada. Quaternary Research 60(2): 180188.CrossRefGoogle Scholar
Ladd, P.G., Crosti, R. & Pignatti, S. 2005. Vegetative and seedling regeneration after fire in planted Sardinian pinewood compared with that in other areas of Mediterranean‐type climate. Journal of Biogeography 32(1): 8598.CrossRefGoogle Scholar
Laiho, O. 1990. Mykorritsat ja niiden vaikutus metsään. Silva Fennica 24(1).CrossRefGoogle Scholar
Lan, G., Chen, W. & Lei, R. 2007. Spatial distribution pattern, scale and gap characteristics of Pinus armandii population in Qinling Mountains, China. Frontiers of Forestry in China 2: 5559.CrossRefGoogle Scholar
Langlet, O. 1959. A cline or not a cline: a question of Scots pine. Silvae Genetica 8: 1322.Google Scholar
Lanner, R.M. 1982. Adaptations of whitebark pine for seed dispersal by Clark’s nutcracker. Canadian Journal of Forest Research 12: 391402.CrossRefGoogle Scholar
Lanner, R.M. 1988. Dependence of Great Basin bristlecone pine on Clark’s nutcracker for regeneration at high elevations. Arctic and Alpine Research 20: 358362.CrossRefGoogle Scholar
Lanner, R.M. 1990. Biology, taxonomy, evolution and geography of Stone pines of the world. General technical report. US Department of Agriculture, Forest Service.Google Scholar
Lanner, R.M. & Van Devender, R. 1998. The recent history of pinyon pines in the American Southwest. Pp 171180 in Richardson, D.M. (ed.), Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Larson, D.W., Matthes, U., Gerrath, J.A., et al. 2001. Evidence for the widespread occurrence of ancient forests on cliffs. Journal of Biogeography 27: 319331.CrossRefGoogle Scholar
Laughlin, D., Bakker, J. & Fulé, P. 2005. Understorey plant community structure in lower montane and subalpine forests, Grand Canyon National Park, USA. Journal of Biogeography 32(12): 20832102.CrossRefGoogle Scholar
Lazarus, B.E., Richards, J.H., Claassen, V.P., O’Dell, R.E. & Ferrell, M.A. 2011. Species specific plant–soil interactions influence plant distribution on serpentine soils. Plant and Soil 342: 327344.CrossRefGoogle Scholar
Ledig, F.T. 1998. Genetic variation in Pinus. Pp 251280 in Richardson, D.M. (ed.). Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Ledig, F.T. 1999. Genic diversity, genetic structure, and biogeography of Pinus sabiniana Dougl. Diversity and Distributions 5: 7790.CrossRefGoogle Scholar
Ledig, F.T. & Conkle, M.T. 1983. Gene diversity and genetic structure in a narrow endemic, Torrey pine (Pinus torreyana Parry ex Carr.). Evolution 37: 7985.CrossRefGoogle Scholar
Ledig, F.T. & Fryer, J.H. 1972. A pocket of variability in Pinus rigida. Evolution 26: 259266.CrossRefGoogle ScholarPubMed
Ledig, F.T., Capa-Arteaga, M.A., Hodgskiss, P.D., et al. 2001. Genetic diversity and the mating system of a rare Mexican pinyon, Pinus pinceana, and a comparison with Pinus maximartinezii (Pinaceae). American Journal of Botany 88: 19771987.CrossRefGoogle Scholar
Lee, S.-W., Ledig, F.T. & Johnson, D.R. 2002. Genetic variation at allozyme and RAPD markers in Pinus longaeva (Pinaceae) of the White Mountains, California. American Journal of Botany 89: 566577.CrossRefGoogle ScholarPubMed
Lehmkuhl, J.F., Gould, L.E., Cázares, E. & Hosford, D.R. 2004. Truffle abundance and mycophagy by northern flying squirrels in eastern Washington forests. Forest Ecology and Management 200(1–3): 4965.CrossRefGoogle Scholar
LePage, B. & Basinger, J. 1989. Early Tertiary Larix from the Canadian High Arctic. Musk-Ox 37: 103109.Google Scholar
Ligon, J.D. 1978. Reproductive interdependence of pinon jays and pinon pines. Ecological Monographs 48: 111126.CrossRefGoogle Scholar
Lindahl, B.D. & Tunlid, A. 2015. Ectomycorrhizal fungi: potential organic matter decomposers, yet not saprotrophs. New Phytologist 205(4): 14431447.CrossRefGoogle Scholar
Lindahl, B.D., Ihrmark, K., Boberg, J., et al. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist 173: 611620.CrossRefGoogle Scholar
Liston, A., Robinson, W.A., Pinero, D. & Alvarez-Buylla, E.R. 1999. Phylogenetics of Pinus (Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Molecular Phylogenetics and Evolution 11: 95109.CrossRefGoogle Scholar
Liston, A., Gernandt, D.S., Vinning, T.F., Campbell, C.S. & Pinero, D. 2003. Molecular phylogeny of Pincaeae and Pinus. Pp 107114 in Mill, R.R. (ed.), Proceedings of the Fourth International Conifer Conference, Wye, England. Leuven: International Society for Horticultural Science.Google Scholar
Little, E.L. Jr & Critchfield, W.B. 1969. Subdivisions of the genus Pinus (pines). USDA Misc. Publ. 1144.Google Scholar
Little, E.L. Jr. & Righter, F.I. 1965. Botanical descriptions of forty artificial pine hybrids. Technical bulletin 1345. US Department of Agriculture, Forest Service.Google Scholar
Liu, J. & Ye, P. 1977. Studies on the Quaternary spore-pollen assemblages from Shanghai and Zhejiang with reference to their stratigraphic and paleoclimatic significances. Acta Palaeontologica Sinica 16: 1033.Google Scholar
Liu, K.B. 1988. Quaternary history of the temperate forests of China. Quaternary Science Reviews 7(1): 120.CrossRefGoogle Scholar
Liu, K.B., Sun, S. & Jiang, X. 1992. Environmental change in the Yangtze River delta since 12,000 years BP. Quaternary Research 38(1): 3245.CrossRefGoogle Scholar
López, G.G., Kamiya, K. & Harada, K. 2002. Phylogenetic relationships of Diploxylon pines (subgenus Pinus) based on plastid sequence data. International Journal of Plant Science 163: 737747.CrossRefGoogle Scholar
Lu, C. 2006. Roles of animals in seed dispersal of Pinus: a review. Chinese Journal of Ecology 25: 557562.Google Scholar
Luna-Vega, I., Morrone, J.J., Ayala, O.A. & Organista, D.E. 2001. Biogeographical affinities among Neotropical cloud forests. Plant Systematics and Evolution 228: 229239.CrossRefGoogle Scholar
Maas, J.L. & Stuntz, D.E. 1969. Mycoecology on serpentine soil. Mycologia 61: 11061116.CrossRefGoogle ScholarPubMed
MacDonald, G.M. & Cwynar, L.C. 1985. A fossil pollen based reconstruction of the late Quaternary history of lodgepole pine (Pinus contorta ssp. latifolia) in the western interior of Canada. Canadian Journal of Forest Research 15: 10391044.CrossRefGoogle Scholar
MacGintie, H.D. 1969. The Eocene Green River Flora of Northwestern Colorado and Northeastern Utah. Berkley, CA: University of California Press.Google Scholar
Maloney, P.E. & Rizzo, D.M. 2002. Pathogens and insects in a pristine forest ecosystem: the Sierra San Pedro Martir, Baja, Mexico. Canadian Journal of Forest Research 32(3): 448457.CrossRefGoogle Scholar
Marshall, C.J. & Liebherr, J.K. 2000. Cladistic biogeography of the Mexican transition zone. Journal of Biogeography 27(1): 203216.CrossRefGoogle Scholar
Martin-Pinto, P., Vaquerizo, H., Penalver, F., Olaizola, J & Oria de Rueda, J.A. 2006. Early effects of a wildfire on the diversity and production of fungal communities in Mediterranean vegetation types dominated by Cistus ladanifera and Pinus pinaster in Spain. Forest Ecology and Management 225: 269305.CrossRefGoogle Scholar
Masuzawa, T., Mitsuda, H., Tanaka, M., Natori, T. & Watanabe, S. 2005. Alpine plant community on Mt. Apoi, Hokkaido [Japan]: Succession of plant community on the ultrabasic soil. Japanese Journal of Ecology 55: 8589.Google Scholar
Mataix-Solera, J. & Doerr, S.H. 2004. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain. Geoderma 118: 7788.CrossRefGoogle Scholar
McCullough, D.G. 2000. A review of factors affecting the population dynamics of jack pine budworm (Choristoneura pinus pinus Freeman). Population Ecology 42: 243256.CrossRefGoogle Scholar
McCune, B. 1988. Ecological diversity in North American pines. American Journal of Botany 75: 353368.CrossRefGoogle Scholar
McKown, A.D., Stockey, R.A. & Schwegert, C.E. 2002. A new species of Pinus subgenus Pinus subsection Contortae from Pliocene sediments of Ch’ijee’s Bluff, Yukon Territory, Canada. International Journal of Plant Sciences 163: 687697.CrossRefGoogle Scholar
McLeod, T.K. & MacDonald, G.M. 1997. Postglacial range expansion and population growth of Picea mariana, Picea glauca and Pinus banksiana in the western interior of Canada. Journal of Biogeography 24: 865881.CrossRefGoogle Scholar
McMaster, G.S. & Zedler, P.H. 1981. Delayed seed dispersal in Pinus torreyana (Torrey Pine). Oecologia 51: 6266.CrossRefGoogle ScholarPubMed
Mead, J.I., Bell, C.J. & Murray, L.K. 1992. Mictomys borealis (northern bog lemming) and the Wisconsin paleoecology of the east-central Great Basin. Quaternary Research 37(2): 229238.CrossRefGoogle Scholar
Meyer, G.A. & Pierce, J.L. 2003. Climatic controls on fire-induced sediment pulses in Yellowstone National Park and central Idaho: a long-term perspective. Forest Ecology and Management 178(1–2): 89104.CrossRefGoogle Scholar
Meyer, M., North, M.P., Gray, A.N. & Zald, H.S.J. 2007. Influence of soil thickness on stand characteristics in a Sierra Nevada mixed‐conifer forest. Plant Soil 294: 113123.CrossRefGoogle Scholar
Mildowski, A.E., Northmore, K.J., Kemp, S.J., et al. 2015. The mineralogy and fabric of ‘Brickearths’ in Kent, UK and their relationship to engineering behaviour. Bulletin of Engineering Geology and Environment 74: 11871211.CrossRefGoogle Scholar
Millar, C.I. 1983. A steep cline in Pinus muricata. Evolution 37: 311319.CrossRefGoogle Scholar
Millar, C.I. 1993. Impact of the Eocene on the evolution of Pinus L. Annals of the Missouri Botanic Garden 80: 471498.CrossRefGoogle Scholar
Millar, C.I. 1999. Evolution and biogeography of Pinus radiata, with a proposed revision of its Quaternary history. New Zealand Journal of Forestry Science 29: 335365.Google Scholar
Millar, C.I., Strauss, S.H., Cockle, M.T. & Westfall, R.D. 1988. Allozyme differentiation and biosystematics of the Californian closed-cone pines (Pinus subsect. Oocarpae). Systematic Botany 13: 351370.CrossRefGoogle Scholar
Miller, C.N. 1976. Early evolution in the Pinaceae. Review of Palaeobotany and Palynology 21: 101117.CrossRefGoogle Scholar
Miller, C.N. 1977. Mesozoic conifers. Biological Review 43: 218280.Google Scholar
Miller, C.N. 1999. Implications of fossil conifers for the phylogenetic relationships of living families. The Botanical Review 65: 239277.CrossRefGoogle Scholar
Miller, C.N. Jr. 1969. Pinus avonensis, a new species of petrified cones from the Oligocene of western Montana. American Journal of Botany 56: 972978.CrossRefGoogle Scholar
Miller, C.N. Jr. 1972. Pityostrobus palmeri, a new species of petrified conifer cones from the Late Cretaceous of New Jersey. American Journal of Botany 59: 352358.CrossRefGoogle Scholar
Miller, C.N. Jr. 1973. Silicified cones and vegetative remains of Pinus from the Eocene of British Columbia. Contributions from the Museum of Paleontology University of Michigan 24: 101118.Google Scholar
Miller, C.N. Jr. 1974. Pinus wolfei, a new petrified cone from the Eocene of Washington. American Journal of Botany 61: 772777.CrossRefGoogle Scholar
Miller, C.N. Jr. 1976. Early evolution in the Pinaceae. Review of Palaeobotany and Palynology 21: 101117.CrossRefGoogle Scholar
Miller, C.N. Jr. 1977. Mesozoic conifers. Botanical Review 43: 217280.CrossRefGoogle Scholar
Miller, C.N. Jr. 1985. Pityostrobus pubescens, a new species of pinaceous cones from the Late Cretaceous of New Jersey. American Journal of Botany 72: 520529.CrossRefGoogle Scholar
Miller, C.N. Jr. 1988. The origin of modern conifer families. Pp 448486 in Beck, C.B. (ed.). Origin and Evolution of Gymnosperms. New York: Columbia University Press.Google Scholar
Miller, C.N. Jr. 1992a. Silicified Pinus remains from the Miocene of Washington. American Journal of Botany 79: 754760.CrossRefGoogle Scholar
Miller, C.N. Jr. 1992b. Structurally preserved cones of Pinus from the Neogene of Idaho and Oregon. International Journal of Plant Sciences 153: 147154.CrossRefGoogle Scholar
Miller, S.P. & Cumming, J.R. 2000. Effects of serpentine soil factors on Virginia pine (Pinus virginiana) seedlings. Tree Physiology 20: 11291135.CrossRefGoogle ScholarPubMed
Minnich, R.A. 1984. Snow drifting and timberline dynamics on Mount San Gorgonio, California, USA. Arctic and Alpine Research 16(4): 395412.CrossRefGoogle Scholar
Mirov, N.T. 1967. The Genus Pinus. New York: Ronald Press Co.Google Scholar
Mirov, N.T. & Hasbrouck, J. 1976. The Story of Pines. Bloomington, IN: Indiana University Press.Google Scholar
Mohr, J.A., Whitlock, C. & Skinner, C.N. 2000. Postglacial vegetation and fire history, eastern Klamath Mountains, California, USA. The Holocene 10(5): 587601.CrossRefGoogle Scholar
Molina, R. & Trappe, J.M.. 1982. Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. Forest Science 28: 423458.Google Scholar
Moody, J.A. & Martin, D.A. 2001. Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 26(10): 10491070.CrossRefGoogle Scholar
Mooney, K.A. & Tillberg, C.V. 2005. Temporal and spatial variation to ant omnivory in pine forests. Ecology 86: 12251235.CrossRefGoogle Scholar
Moreau, R.E. 1955. Ecological changes in the Palaearctic Region since the Pliocene. Proceedings of the Zoological Society of London 125: 253–295.CrossRefGoogle Scholar
Motzkin, G., Orwig, D.A. & Foster, D.R. 2002. Vegetation and disturbance history of a rare dwarf pitch pine community in western New England, USA. Journal of Biogeography 29: 14551467.CrossRefGoogle Scholar
Mueller, R.C., Scudder, C.M., Porter, M.E., et al. 2005. Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. Journal of Ecology 93: 10851093.CrossRefGoogle Scholar
Nakai, I., Mitsueda, K., Oochata, S. 1995. Affinity relationships based on the inter-specific hybridization in the genus Pinus and natures on the growth of the hybrids. Bulletin Tokyo University Forestry 67: 118.Google Scholar
Nealis, V.G., Lomic, P.V. & Meating, J.H. 1997. Forecasting defoliation by the jack pine budworm. Canadian Journal of Forest Research 27: 11541158.CrossRefGoogle Scholar
Nealis, V.G., Magnussen, S. & Hopkin, A.A. 2003. A lagged, density-dependent relationship between jack pine budworm Chlorisoneura pinus pinus and its host tree Pinus banksiana. Ecological Entomology 28: 183192.CrossRefGoogle Scholar
Němejc, F., Kvaček, Z., Pacltová, B. & Konzalová, M. 2002. Tertiary plants of the Plzeň Basin (West Bohemia). Acta Universitatis Carolinae Geologica 46: 121176.Google Scholar
Nowak, C.L., Nowak, R.S., Tausch, R.J. & Wigand, P.E. 1994. Tree and shrub dynamics in northwestern Great Basin woodland and shrub steppe during the Late‐Pleistocene and Holocene. American Journal of Botany 81(3): 265277.CrossRefGoogle Scholar
Oberhuber, W., Pagitz, K. & Nicolussi, K. 1997. Subalpine tree growth on serpentine soil: a dendroecological analysis. Plant Ecology 130: 213221.CrossRefGoogle Scholar
Ogilvie, R.T. 1990. Distribution and ecology of Whitebark pine in western Canada. General technical report. US Department of Agriculture, Forest Service.Google Scholar
Okitsu, S. 1984. Comparative studies on the Japanese alpine zone, with special reference to the ecology of Pinus pumila thickets. Geographical Review of Japan, Series A 57: 791802.CrossRefGoogle Scholar
Oline, D.K., Mitton, J.B. & Grant, M.C. 2000. Population and subspecific genetic differentiation in the foxtail pine (Pinus balfouriana). Evolution 54: 18131819.Google ScholarPubMed
Ordonez, J.L. & Retana, J. 2004. Early reduction of post-fire recruitment of Pinus nigra by post-dispersal seed predation in different time-since-fire habitats. Ecography 27: 449458.CrossRefGoogle Scholar
Otto, A. & Simoneit, B.R. 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochemica Cosmoschimica Acta 65: 35053527.CrossRefGoogle Scholar
Page, C.N. 1974. Morphology and affinities of Pinus canariensis. Notes from the Royal Botanic Garden, Edinburgh 33: 317323.Google Scholar
Page, C.N. & Gardner, M.F. 1994. Conservation of rare temperate rainforest tree species: a fast growing role for arboreta in Britain and Ireland. Pp 119144 in Perry, A.R. & Ellis, R.G. (eds.), The Common Ground of Wild and Cultivated Plants. Cardiff: National Museum of Wales.Google Scholar
Park, A. 2003. Spatial segregation of pines and oaks under different fire regimes in the Sierra Madre Occidental. Plant Ecology 169: 120.CrossRefGoogle Scholar
Parker, A.J. 1991. Forest/environment relationships in Lassen Volcanic National Park, California, USA. Journal of Biogeography 18: 543552.CrossRefGoogle Scholar
Penny, J.S. 1947. Studies on conifers of the Magothy flora. American Journal of Botany 34: 281296.CrossRefGoogle Scholar
Perez de la Rosa, J.A., Harris, S.A. & Farjon, A. 1995. Noncoding chloroplast DNA variation in Mexican pines. Theoretical and Applied Genetics 91: 11011106.CrossRefGoogle Scholar
Perez-Moreno, J. & Read, D.J. 2000. Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytologist 145(2): 301309.CrossRefGoogle Scholar
Pèrez-Obiol, R. & Julià, R. 1994. Climatic change on the Iberian Peninsula recorded in a 30,000-yr pollen record from Lake Banyoles. Quaternary Research 41(1): 9198.CrossRefGoogle Scholar
Perry, J.P. 1991. The Pines of Mexico and Central America. Portland, OR: Timber Press.Google Scholar
Perry, J.P., Graham, A. & Richardson, D.M. 1998. The history of pines in Mexico and Central America. Pp 137149 in Richardson, D.M. (ed.), Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Phipps, C.J., Osborn, J.M. & Stockey, R.A. 1995. Pinus pollen cones from the middle Eocene Princeton chert (Allenby Formation) of British Columbia, Canada. International Journal of Plant Sciences 156(1): 117124.CrossRefGoogle Scholar
Pilger, E. 1926. Coniferae. Pp 121407 in Engler, A. and Prantl, K. (eds.), Die Naturlichen Pflanzenfamilien, 2nd ed. Leipzig: Wilhelm Engelmann.Google Scholar
Platt, W.J., Doren, R.F. & Armentano, T.V. 2000. Effects of Hurricane Andrew on stands of slash pine (Pinus elliottii var densa) in the everglades region of south Florida (USA). Plant Ecology 146: 4360.CrossRefGoogle Scholar
Ponel, P., Beaulieu, J.L. & Tobolsk, K. 1992. Holocene palaeoenvironments at the timberline in the Taillefer Massif, French Alps: a study of pollen, plant macrofossils and fossil insects. The Holocene 2(2): 117130.CrossRefGoogle Scholar
Prentice, I.C. 1978. Modern pollen spectra from lake sediments in Finland and Finnmark, north Norway. Boreas 7: 131153.CrossRefGoogle Scholar
Price, R.A., Olsen-Stojkovich, J. & Lowenstein, J.M. 1987. Relationships among genera of Pinaceae: an immunological comparison. Systematic Botany 12: 9197.CrossRefGoogle Scholar
Price, R.A., Liston, A. & Strauss, S.H. 1998. Phylogeny & systematics of Pinus. Pp 4968 in Richardson, D.M. (ed.). Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Quezal, P. & Barbero, M. 1992. Le pin de’Alep et les especes voisines: repartition et caracteres ecologiques generaux, sa dynamique recente en France mediterraneene. Foret Mediterraneenne 13: 158170.Google Scholar
Quézel, P. 1980. Biogeography and Ecology of Conifers in the Mediterranean Area. London: CABI.Google Scholar
Radeloff, V.C., Mladenoff, D.J. & Boyce, M.S. 2000. The changing relation of landscape patterns and jack pine budworm populations during an outbreak. Oikos 90: 417430.CrossRefGoogle Scholar
Ramírez-Marcial, N., González-Espinosa, M. & Williams-Linera, G. 2001. Anthropogenic disturbance and tree diversity in montane rain forests in Chiapas, Mexico. Forest Ecology and Management 154(1–2): 311326.CrossRefGoogle Scholar
Read, J. & Hill, R.S. 1988. The dynamics of some rainforest associations in Tasmania. Journal of Ecology 76: 558584.CrossRefGoogle Scholar
Reed, D.J. 1998. The mycorrhizal status of Pinus. Pp 324340 in Richardson, D.M. (ed.). Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Regato-Pajareas, P. & Elena-Rossello, R. 1995. Natural black pine (Pinus nigra subsp. salzmannii) forests of the Iberian eastern mountains: development of the phytoecological basis for their site evaluation. Anales des Sciences Forestieres 52: 589606.CrossRefGoogle Scholar
Rehfeldt, G.E. 1999. Systematics and genetic structure of Ponerosae taxa (Pinaceae) inhabiting the mountain islands of the southwest. American Journal of Botany 86: 741752.CrossRefGoogle ScholarPubMed
Richardson, D.M. (ed.). 1998. Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Richardson, D.M. & Higgins, S.I. 1998. Pines as invaders in the southern hemisphere. Pp 450473 in Richardson, D.M. (ed.), Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Richardson, D.M. & Rejmanek, M. 2004. Conifers as invasive aliens: a global survey and predictive framework. Diversity and Distributions 10: 321331.CrossRefGoogle Scholar
Richardson, D.M. & Rundell, P.W. 1998. Ecology and biogeography of Pinus: an introduction. Pp 346 in Richardson, D.M. (ed.). Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Rincon, A., Alvarez, I.F. & Pera, J. 1999. Ectomycorrhizal fungi of Pinus pinea L. in northeastern Spain. Mycorrhiza 8: 271276.Google Scholar
Robison, C.R. 1977a. Prepinus parlinensis, sp. nov., from the Late Cretaceous of New Jersey. Botanical Gazette 138: 352356.CrossRefGoogle Scholar
Robison, C.R. 1977b. Pinus triphylla and Pinus quinquifolia from the Upper Cretaceous of Massachusetts. American Journal of Botany 64: 726732.CrossRefGoogle Scholar
Rodrigo, A. & Retana, J. 2006. Post-fire recovery of ant communities in sub-Mediterranean Pinus nigra forests. Ecography 29: 231239.CrossRefGoogle Scholar
Roering, J.J. & Gerber, M. 2005. Fire and the evolution of steep, soil-mantled landscapes. Geology 33(5): 349352.CrossRefGoogle Scholar
Rogers, D.L., Millar, C.I. & Westfall, R.D. 1999. Fine-scale genetic structure of whitebark pine (Pinus albicaulis): associations with watershed and growth form. Evolution 53: 7490.Google ScholarPubMed
Rogers, D.L., Matheson, A.C., Vargas-Hernandez, J.J. & Guerra-Santos, J.J. 2006. Genetic conservation of insular populations of Monterey pine (Pinus radiata D. Don). Biodiversity and Conservation 15: 779798.CrossRefGoogle Scholar
Rolland, C., Schueller, J. & Cooper, J. 1995. Croissance comparee du pin a crochets et de l’epicea (Pinus uncinata Ram. et Picea abies Karst.) sur delle calcaire karstifiee en moyenne montagne temperee (Vecors, France). Revue de Geographie Alpine 83: 1732.CrossRefGoogle Scholar
Romero, A., Luna, M., Garcia, E. & Passini, M.F. 2000. Phenetic analysis of the Mexican midland pinyon pines, Pinus cembroides and Pinus johannis. Botanical Journal of the Linnean Society 133: 181194.CrossRefGoogle Scholar
Ruddiman, W.F. & Kutzbach, J.E. 1991. Plateau uplift and climatic change. Scientific American 264(3): 6675.CrossRefGoogle Scholar
Rushforth, K. 1987. Conifers. London: Christopher Helm Ltd.Google Scholar
Rzedowski, J. 1964. Una especie nueva de pino piñonero del estado de Zacatecas (Mexico). Ciencia 23: 1720.Google Scholar
Saenz-Romero, C., Guzman-Reyna, R.R. & Rehfeldt, G.E. 2006. Altitudinal genetic variation amongst Pinus oocarpa populations in Michoacan, Mexico: implications for seed zoning, conservation, tree breeding and global warming. Forest Ecology and Management 229: 340350.CrossRefGoogle Scholar
Safford, H.D. & Harrison, S. 2004. Fire effects on plant diversity in serpentine vs. sandstone chaparral. Ecology 85: 539548.CrossRefGoogle Scholar
Saki, K. 1996. Pinus mutoi (Pinacaeae), a new species of permineralized seed cone from the Upper Cretaceous of Hokkaido, Japan. American Journal of Botany 83: 16301636.CrossRefGoogle Scholar
Samano, S., & Tomback, D.F. 2003. Cone opening phenology, seed dispersal, and seed predation in southwestern White pine (Pinus strobiformis) in southern Colorado. Ecoscience 10: 319326.CrossRefGoogle Scholar
Saporta, G. de. 1865. Etudes sur la vegetation de sud-est de la France a l’epoque Tertiaire. Annales Sciences Naturelles Botaniques 5e ser, 4: 1264, 9: 5–62.Google Scholar
Sass, O., Heel, M., Leistner, I., et al. 2012. Disturbance, geomorphic processes and recovery of wildfire slopes in North Tyrol. Earth Surface Processes and Landforms 37(8): 883894.CrossRefGoogle Scholar
Sastad, S.M. 1995. Fungi–vegetation relationships in a Pinus sylvestris forest in central Norway. Canadian Journal of Botany 73: 807816.CrossRefGoogle Scholar
Saylor, L.C. & Koenig, R.L. 1967. The slash x sand pine hybrid. Silvae Geneticae 16: 134.Google Scholar
Schiller, G. 1982. Significance of bedrock as a site factor for Aleppo pine (Pinus halepensis). Forest Ecology and Management 4: 213223.CrossRefGoogle Scholar
Schiller, G. & Grunwald, C. 1987a. Resin monoterpene in range-wide provenance trials of Pinus halepensis Mill. in Israel. Silvae Genetica 36: 109114.Google Scholar
Schiller, G. & Grunwald, C. 1987b. Cortex resin monoterpene composition in Pinus brutia provenances grown in Israel. Biochemical Systematics and Ecology 15: 389394.CrossRefGoogle Scholar
Schiller, G., Conkle, M.T. & Grunwald, C. 1986. Local differentiation among Mediterranean populations of Aleppo pine and their isoenzymes. Silvae Genetica 35: 1119.Google Scholar
Schmidtling, R.C. 2003. The southern pines during the Pleistocene. Pp 203207 in Mill, R.R. (ed.), Proceedings of the Fourth International Conifer Conference, Wye, England. Leuven: International Society for Horticultural Science.Google Scholar
Schmidtling, R.C. & Hipkins, V. 1998. Genetic diversity in longleaf pine (Pinus palustris Mill): influence of historical and prehistorical events. Canadian Journal of Forest Research 28: 11351145.CrossRefGoogle Scholar
Scholl, A.E. & Taylor, A.H. 2006. Regeneration patterns in old-growth red fir–western white pine forests in the northern Sierra Nevada, Lake Tahoe, USA. Forest Ecology and Management 235(1–3): 143154.CrossRefGoogle Scholar
Schulman, E. 1958. Bristlecone pine, oldest known living thing. National Geographical Magazine 113: 354372.Google Scholar
Schwilk, D.W. & Ackerly, D.D. 2001. Flammability and serotiny as strategies: correlated evolution in pines. Oikos 94: 326336.CrossRefGoogle Scholar
Seal, J.N. & Tschinkel, W.R. 2006. Colony productivity of the fungus-gardening ant Trachymyrmex septentrionalis (Hymenoptera: Formicidae) in a Florida pine forest. Annals of the Entomological Society of America 99: 673682.CrossRefGoogle Scholar
Segura, G. & Snook, L.C. 1992. Stand dynamics and regeneration patterns of a pinyon pine forest in east central Mexico. Forest Ecology and Management 47: 175194.CrossRefGoogle Scholar
Senjo, M., Kimura, K., Watano, Y., Ueda, K. & Shimizu, T. 1999. Extensive mitochondrial introgression from Pinus pumila to P. parviflora ver. pentaphylla (Pinaceae). Journal of Plant Research 112: 97105.CrossRefGoogle Scholar
Setala, H. 2000. Reciprocal interactions between Scots pine and soil food web structure in the presence and absence of ectomycorrhizae. Oecologia 125: 109118.CrossRefGoogle Scholar
Shang, H., Cui, J.Z. & Li, C.S. 2001. Pityostrobus yixianensis sp. nov., a pinaceous cone from the Lower Cretaceous of north-east China. Botanical Journal of the Linnean Society 136(4): 427437.CrossRefGoogle Scholar
Shaw, G.R. 1909. The Pines of Mexico. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Shaw, G.R. 1914. The Genus Pinus. Boston, MA: Houghton Mifflin.Google Scholar
Shaw, G.R. 1924. Notes on the genus Pinus. Journal of the Arnold Arboretum 5: 225227.CrossRefGoogle Scholar
Smith, S.Y. & Stockey, R.A. 2001. A new species of Pityostrobus from the Lower Cretaceous of California and its bearing on the evolution of Pinaceae. International Journal of Plant Sciences 162: 669681.CrossRefGoogle Scholar
Snyder, J.A., Macdonald, G.M., Forman, S.L., Tarasov, G.A. & Mode, W.N. 2000. Postglacial climate and vegetation history, north‐central Kola Peninsula, Russia: pollen and diatom records from Lake Yarnyshnoe‐3. Boreas 29(4): 261271.CrossRefGoogle Scholar
Sowell, J.B., Koutnik, D.L. & Lansing, A.J. 1982. Cuticular transpiration of whitebark pine (Pinus albicaulis) within a Sierra Nevadan timberline ecotone, USA. Arctic and Alpine Research 14: 97103.CrossRefGoogle Scholar
Spaulding, W.G. 1983. Vegetation and Climates of the Last 45,000 Years in the Vicinity of the Nevada Test Site, South-Central Nevada . Seattle, WA: Washington University.Google Scholar
Stead, J.W. 1983. A study of variation and taxonomy of the Pinus pseudostrobus complex. Commonwealth Forestry Review 62: 2535.Google Scholar
Stebbins, G.L. 1959. The role of hybridisation in evolution. Proceedings of the American Philosophical Society 103: 231251.Google Scholar
Stefanova, I. & Ammann, B. 2003. Lateglacial and Holocene vegetation belts in the Pirin Mountains (southwestern Bulgaria). The Holocene 13(1): 97107.CrossRefGoogle Scholar
Stefanović, S., Jager, M., Deutsch, J., Broutin, J. & Masselot, M. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. America Journal of Botany 85: 688697.CrossRefGoogle Scholar
Stevens, S.L. & Fry, D.L. 2005. Spatial distribution of regeneration patches in an old-growth Pinus jeffreyi : mixed conifer forest in northwestern Mexico. Journal of Vegetation Science 16: 693702.Google Scholar
Stockey, R. & Wiebe, N. 2008. Lower Cretaceous conifers from Apple Bay, Vancouver Island: Picea-like leaves, Midoriphyllum piceoides gen. et sp. nov. (Pinaceae). Botany 86: 649657.CrossRefGoogle Scholar
Stockey, R.A. 1984. Middle Eocene Pinus remains from British Columbia. Botanical Gazette 145: 262274.CrossRefGoogle Scholar
Stockey, R.A. & Ueda, Y. 1986. Permineralised pinaceous leaves from the Upper Cretaceous of Hokkaido. American Journal of Botany 73: 11571162.CrossRefGoogle Scholar
Stopes, M.C. & Kershaw, E.M. 1910. The anatomy of Cretaceous pine leaves. Annals of Botany 24: 395402.CrossRefGoogle Scholar
Strauss, S.H. & Doerksen, A.H. 1990. Restriction fragment analysis of pine phylogeny. Evolution 44: 10811096.CrossRefGoogle ScholarPubMed
Strong, W.L. & Hills, L.V. 2005. Late‐glacial and Holocene palaeovegetation zonal reconstruction for central and north‐central North America. Journal of Biogeography 32(6): 10431062.CrossRefGoogle Scholar
Sung, S.W., Kin, K. & Hill, R.S. 2004. Cuticle micromorphology of leaves of Pinus (Pinaceae) from North America. Botanical Journal of the Linnean Society 144: 303320.Google Scholar
Suzán-Azpiri, H., Sánchez-Rámos, G., Martínez-Avalos, J.G., et al. 2002. Population structure of Pinus nelsoni Shaw, an endemic pinyon pine in Tamaulipas, Mexico. Forest Ecology and Management 165(1–3): 193203.CrossRefGoogle Scholar
Szmidt, A.E. 1982. Genetic variation in isolated populations of stone pine (Pinus cembra L.). Silvae Fennica 16: 196200.Google Scholar
Szmidt, A.E. & Wang, X.-R. 1993. Molecular systematics and genetic differentiation of Pinus sylvestris (L.) and P. densiflora (Sieb. & Zucc.). Theoretical and Applied Genetics 86: 159165.CrossRefGoogle ScholarPubMed
Szmidt, A.E., Wang, X.-R. & Changtragoon, S. 1996. Contrasting patterns of genetic diversity in two tropical pines: Pinus kesiya (Royle ex Gordon) and P. merkusii (Jungh et De Vriese). Theoretical and Applied Genetics 92: 14321442.CrossRefGoogle Scholar
Tao, J.R. & Du, N.Q. 1987. Miocene flora from Markam County and fossil record of Betulaceae. Acta Botanica Sinica 29: 649655.Google Scholar
Thayer, T.C. & Vander Wall, S.B. 2005. Interactions between Steller’s jays and yellow pine chipmunks over scatter-hoarded sugar pine seeds. Journal of Animal Ecology 74: 365374.CrossRefGoogle Scholar
Thompson, R.S. & Mead, J.I. 1982. Late Quaternary environments and biogeography in the Great Basin. Quaternary Research 17(1): 3955.CrossRefGoogle Scholar
Tidwell, W.D., Parker, L.R. & Folkman, V.K. 1986. Pinuxylon woolardii sp. nov., a new petrified taxon of Pinaceae from the Miocene basalts of eastern Oregon (USA). American Journal of Botany 73: 15171524.CrossRefGoogle Scholar
Tinner, W. & Kaltenrieder, P. 2005. Rapid responses of high‐mountain vegetation to early Holocene environmental changes in the Swiss Alps. Journal of Ecology 93(5): 936947.CrossRefGoogle Scholar
Tomback, D.F. 1982. Dispersal of whitebark pine seeds by Clark’s nutcracker: a mutualism hypothesis. Journal of Animal Ecology 51: 451467.CrossRefGoogle Scholar
Tomback, D.F. & Linhart, Y.B. 1990. The evolution of bird-dispersed pines. Evolutionary Ecology 4: 185219.CrossRefGoogle Scholar
Tomback, D.F., Holtmeier, F.K., Mattes, H., Carsey, K.S. & Powell, M.L. 1993. Tree clusters and growth form distribution in Pinus cembra, a bird-dispersed pine. Arctic and Alpine Research 25: 374381.CrossRefGoogle Scholar
Tschinkel, W.R. 1988. Distribution of the fire ants Solenopteris invicta and S. geminata (Hymenoptera: Formicidae) in northern Florida in relation to habitat and disturbance. Annals of the Entomological Society of America 81: 7681.CrossRefGoogle Scholar
Tschinkel, W.R. & Hess, C.A. 1999. Arboreal ant community of a pine forest in northern Florida. Annals of the Entomological Society of America 92: 6370.CrossRefGoogle Scholar
Tsuji, S.I., Minaki, M. & Suzuki, M. 1984. Plant fossil assemblage of the latest Pleistocene at Ninomiya-cho, southern Tochigi Prefecture, central Japan. The Quaternary Research (Daiyonki-kenkyu) 23(1): 2129.CrossRefGoogle Scholar
Tsukada, M. 1967. Vegetation in subtropical formosa during the pleistocene glaciations and the Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 3: 4964.CrossRefGoogle Scholar
Tsukada, M. 1983. Vegetation and climate during the last glacial maximum in Japan. Quaternary Research 19(2): 212235.CrossRefGoogle Scholar
Tucker, J.W. Jr, Robinson, W.D. & Grand, J.B. 2006. Breeding productivity of Bachman’s sparrows in fire-managed longleaf pine forests. Wilson Journal of Ornithology 118: 131137.CrossRefGoogle Scholar
Turley, D.B., Chaudhry, Q., Watkins, R.W., Clark, J.H. & Deswarte, F.E.I. 2006. Chemical products from temperate forest tree species: developing strategies for exploitation. Industrial Crops and Products 24: 238243.CrossRefGoogle Scholar
Tyndall, R.W. & Farr, P.M. 1989. Vegetation structure and flora of a serpentine pine-cedar savanna in Maryland. Castanea 54: 191199.Google Scholar
Ucar, G. & Balaban, M. 2004. Volatile needle extractives of Anatolian black pine varieties: P. nigra subsp. pallasiana var. pallasiana and var. pyramidata. Biochemical Systematics and Ecology 32: 983992.CrossRefGoogle Scholar
Underwood, J.C. & Miller, C.N. 1980. Pinus buchananii, a new species based on petrified cone from the Oligocene of Washington. American Journal of Botany 67: 11321135.CrossRefGoogle Scholar
Urban, A., Puschenreiter, M., Strauss, J. & Gorfer, M. 2008. Diversity and structure of ectomycorrhizal and co-associated fungal communities in a serpentine soil. Mycorrhiza 18: 339354.CrossRefGoogle Scholar
Van Tichelen, K.K., Colpaert, J.V. & Vangronsveld, J. 2001. Ectomycorrhizal protection of Pinus sylvestris against copper toxicity New Phytologist 150: 203213.CrossRefGoogle Scholar
Vander Wall, S.B. 2003. Effects of seed size of wind-dispersed pines (Pinus) on secondary seed dispersal and the caching behaviour of rodents. Oikos 100: 2534.CrossRefGoogle Scholar
Vander Wall, S.B. & Balda, R.P. 1977. Co-adaptations of the Clark’s nutcracker and the pinyon pine for efficient seed harvest and dispersal. Ecological Monographs 47: 2737.CrossRefGoogle Scholar
Vander Wall, S.B. & Joyner, J.W. 1998. Secondary dispersal by the wind of winged pine seeds across the ground surface. American Midland Naturalist 139: 365373.CrossRefGoogle Scholar
Vargas, C.F., López, A., Sánchez, H. & Rodríguez, B. 2002. Allozyme analysis of host selection by bark beetles in central Mexico. Canadian Journal of Forest Research 32(1): 2430.CrossRefGoogle Scholar
Varol, O. 2006. Floristic features of Pinus pinea forests in Kahramanmaras (Eastern-Mediterranean region of Turkey). Ekoloji 15: 17.Google Scholar
Veblen, T.T., Hadley, K.S. & Reid, M.S. 1991. Disturbance and stand development of a Colorado subalpine forest. Journal of Biogeography 18: 707716.CrossRefGoogle Scholar
Vidakovik, M. 1991. Conifers, Morphology and Variation. Zavod: Graficki Zavod Hrvatske (English translation from Croatian by Maja Soljan).Google Scholar
Viedma, O., Quesada, J., Torres, I., De Santis, A. & Moreno, J.M. 2015. Fire severity in a large fire in a Pinus pinaster forest is highly predictable from burning conditions, stand structure, and topography. Ecosystems 18: 237250.CrossRefGoogle Scholar
Visser, S. 1995. Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytologist 129: 389401.CrossRefGoogle Scholar
Wang, X.-Q., Tank, D.C. & Sang, T. 2000. Phylogeny and divergence times in Pinaceae: evidence from three genomes. Molecular Biology and Evolution 17: 773781.CrossRefGoogle ScholarPubMed
Wang, X.-R. & Szmidt, A.E. 1990. Evolutionary analysis of Pinus densata (Masters), a putative tertiary hybrid. 2. A study using species-specific chloroplast DNA markers. Theoretical and Applied Genetics 80: 641647.CrossRefGoogle Scholar
Wang, X.-R. & Szmidt, A.E. 1993. Chloroplast DNA-based phylogeny of Asian Pinus species (Pinaceae). Plant Systematics and Evolution 188: 197211.CrossRefGoogle Scholar
Wang, X.-R. & Szmidt, A.E. 1994. Hybridisation and chloroplast DNA variation in a Pinus species complex from Asia. Evolution 48: 10201031.CrossRefGoogle Scholar
Wang, X.-R., Tsumura, Y., Yoshimaru, H., Nagasaka, K. & Szmidt, A.F. 1999. Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, MATK, RPL20–RPS18 spacer, and TRNV intron sequences. American Journal of Botany 86: 17421753.CrossRefGoogle ScholarPubMed
Webb, III, T. 1987. The appearance and disappearance of major vegetational assemblages: long-term vegetational dynamics in eastern North America. Vegetatio, 69(1–3), 177187.CrossRefGoogle Scholar
Wells, O.O., Switzer, G.L. & Schmidtling, R.C. 1991. Geographic variation in Mississippi loblolly pine and sweetgum. Silvae Geneticae 40: 105119.Google Scholar
Wells, P.V. & Stewart, J.D. 1987. Cordilleran-boreal taiga and fauna on the central Great Plains of North America, 14,000–18,000 years ago. American Midland Naturalist 118: 94106.CrossRefGoogle Scholar
West, L. & Jones, R.H. 2000. Responses of understory tree seedlings to alteration of the soil fungal community in mid-and late-successional forests. Forest Ecology and Management 134(1–3): 125135.CrossRefGoogle Scholar
Wheeler, E.A. & Arnette, C.G. 1994. Identification of Neogene woods from Alaska-Yukon. Quaternary International.22–23: 91102.CrossRefGoogle Scholar
Wheeler, N.C. & Guries, R.P. 1982. Biogeography of lodgepole pine. Canadian Journal of Botany 60: 18051814.CrossRefGoogle Scholar
Whitlock, C. 1993. Postglacial vegetation and climate of Grand Teton and Southern Yellowstone National Park. Ecological Monographs 63: 173198.CrossRefGoogle Scholar
Whitmore, T.C. 1984. Tropical Rainforest of the Far East, 2nd ed. Oxford: Clarendon Press.Google Scholar
Wieser, G. & Leo, M. 2012. Whole-tree water-use by Pinus cenbra at the treeline in the central Tyrolean Alps. Plant Ecology and Diversity 5: 8188.CrossRefGoogle Scholar
Willis, K.J., Bennet, K.D. & Birks, H.J.B. 1998. The late Quaternary dynamics of pines in Europe. Pp 107121 in Richardson, D.M. (ed.), Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Wittenberg, L., Malkinson, D., Beeri, O., Halutzy, A. & Tesler, N. 2007. Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel. Catena 71(1): 7683.CrossRefGoogle Scholar
Woillard, G.M. 1978. Grande Pile peat bog: a continuous pollen record for the last 140,000 years. Quaternary Research 9(1): 121.CrossRefGoogle Scholar
Wolfe, J.A. 1971. Tertiary climatic fluctuations and methods of analysis of tertiary floras. Palaeogeography, Palaeoclimatology, Palaeoecology 9(1): 2757.CrossRefGoogle Scholar
Wolfe, J.A. 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. American Science 66: 694703.Google Scholar
Wolfe, J.A. 1987. An overview of the origins of the modern vegetation and flora of the northern Rocky Mountains. Annals of the Missouri Botanical Garden. 74(4): 785803.CrossRefGoogle Scholar
Wright, J.W. 2007. Local adaptation to serpentine soils in Pinus ponderosa. Plant and Soil 293: 209217.CrossRefGoogle Scholar
Wu, J., Krutovskii, K.V. & Strauss, S.H. 1999. Nuclear DNA diversity, population differentiation, and phylogenetic relationships in the California closed-cone pines based on RAPD and allozyme markers. Genome 42: 893908.CrossRefGoogle Scholar
Wurzburger, N. & Bledsoe, C.S. 2001. Comparison of ericoid and ectomycorrhizal colonization and ectomycorrhizal morphotypes in mixed conifer and pygmy forests on the northern California coast. Canadian Journal of Botany 79: 12021210.CrossRefGoogle Scholar
Xiaodong, Y. & Shugart, H.H., 2005. FAREAST: A forest gap model to simulate dynamics and patterns of eastern Eurasian forests. Journal of Biogeography 32(9): 16411658.CrossRefGoogle Scholar
Yi, T.M., Li, C.S. & Jiang, X.M. 2005. Conifer woods of the Pliocene age from Yunnan, China. Journal of Integrative Plant Biology 47(3): 264270.CrossRefGoogle Scholar
Yonebayashi, C. & Minaki, M. 1997. Late Quaternary vegetation and climatic history of Eastern Nepal. Journal of Biogeography 24(6): 837843.CrossRefGoogle Scholar
Yoo, K., Ji, J., Aufdenkampe, A. & Klaminder, J. 2011. Rates of soil mixing and associated carbon fluxes in a forest versus tilled agricultural field: implications for modeling the soil carbon cycle. Journal of Geophysical Research: Biogeosciences 116(G1).CrossRefGoogle Scholar
Yu, H., Ge, S., Huang, R.-F. & Jiang, H.-Q. 2000. A preliminary study on genetic variation and relationships of Pinus yunnanensis and its closely related species. Acta Botanica Sinica 42: 107110.Google Scholar
Zhang, Z.-Y. & Li, D.-Z. 2004. Molecular phylogeny of section Parrya of Pinus (Pinaceae) based on chloroplast matK gene sequence data. Acta Botanica Sinica 46: 171179.Google Scholar
Zheng, J., Jiang, F. & Zeng, D. 2003. Eco-value level classification and ecosystem management strategy of broad-leaved Korean pine forest in Changbai Mountain. Chinese Journal of Applied Ecology 14: 839844.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Pinus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Pinus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Pinus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.008
Available formats
×