Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T20:30:16.488Z Has data issue: false hasContentIssue false

Chapter 69 - Microcachrys

Podocarpales: Microcachrydaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Low-creeping, much-branched evergreen shrubs, with opposite and decussate pairs of small scale leaves on shoots of tetragonal sectional shape. Linearly ranked minute leaves are arrayed along shoots which have a tendency to produce markedly spear-shaped branchlet clusters. Female cones at maturity are conspicuously red and fleshy, their external aspects finely puckered, resembling the exterior of a small, mature strawberry.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 542 - 554
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archangelsky, S. 1963. A new Mesozoic flora from Tico, Santa Cruz province, Argentina. Bulletin of the British Museum Natural History Geology 8: 492.Google Scholar
Askin, R.A. 1989. Endemism and heterochronicity in the Late Cretaceous (Campanian) to Paleocene palynoflora of Seymour Island, Antarctica: implications for origins, dispersal and palaeoclimates of southern floras. Pp 107119 in Crane, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Blackburn, D.T. & Sluiter, I.R. 1994. The Oligo-Miocene coal floras of southeastern Australia. Pp 328367 in Hill, R.S. (ed.), Australian Vegetation History: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Brodribb, T. & Hill, R.S. 1999. The importance of xylem constraints in the distribution of conifer species. New Phytologist 143: 365372.CrossRefGoogle Scholar
Cantrill, D.J. 1991. Broad leaved coniferous foliage from the Lower Cretaceous of southern Victoria, Australia. Alcheringa 15: 177190.CrossRefGoogle Scholar
Cantrill, D.J. 1992. Araucarian foliage from the Lower Cretaceous of southern Victoria, Australia. International Journal of Plant Sciences 153: 622645.CrossRefGoogle Scholar
Cantrill, D.J. 2000. A Cretaceous (Aptian) flora from President Head, Snow Island, Antarctica. Palaeontographica B, 253: 153191.CrossRefGoogle Scholar
Cantrill, D.J. & Falcon-Lang, H.J. 2001. Cretaceous (Late Albian) Coniferales of Alexander Island, Antarctica. Part 2. Foliage, reproductive structures and roots. Review of Palaeobotany and Palynology 115: 119145.CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2002. Cretaceous patterns of floristic change in the Antarctic Peninsula. Pp 141152 in Crame, J.A. & Owen, A.W. (eds.), Palaeobiogeography and Biodiversity Change: The Ordovician and Mesozoic-Cenozoic Radiations. London: Geological Society of London.Google Scholar
Cantrill, D.J. & Poole, I. 2012. The Vegetation of Antarctica through Geological Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cantrill, D.J., Wanntorp, L. & Drinnan, A.N. 2011. Mesofossil flora from the Late Cretaceous of New Zealand. Cretaceous Research 32: 164173.CrossRefGoogle Scholar
Carpenter, R.J., Bannister, J.M., Jordan, G.J. & Lee, D.E. 2010. Leaf fossils of Proteaceae tribe Persoonieae from the Late Oligocene–Early Miocene of New Zealand. Australian Systematic Botany 23: 115.CrossRefGoogle Scholar
Carpenter, R.J., Jordan, G.J., Mildenhall, D.C. & Lee, D.E. 2011. Leaf fossils of the Ancient Tasmanian relict Microcachrys (Podocarpaceae) from New Zealand. American Journal of Botany 98: 11641172.CrossRefGoogle Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Cookson, I.C. 1947. Plant microfossils from the lignites of Kerguelen Archipelago. Report of the British, Australian and New Zealand Antarctic Expedition A 2: 127142.Google Scholar
Cookson, I.C. & Pike, K.M. 1954. The fossil occurrence of Phyllocladus and two other podocarpaceous types in Australia. Australian Journal of Botany 2: 6067.CrossRefGoogle Scholar
Costin, A.B. 1981. Vegetation of high mountains in Australia. Pp 717731 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Couper, R.A. 1953. Upper Mesozoic and Cainozoic spores and pollen grains from New Zealand. New Zealand Geological Survey Paleontological Survey Paleontological Bulletin 22.Google Scholar
Couper, R.A. 1960. Southern Hemisphere Mesozoic and Tertiary Podocarpaceae and Fagaceae and their palaeogeographic significance. Proceedings of the Royal Society of London B. 152: 491500.Google Scholar
Dettmann, M.E. 1981. The Cretaceous flora. Pp 355375 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.CrossRefGoogle Scholar
Dettmann, M.E. 1989. Antarctic: Cretaceous Cradle of austral temperate rainforests? Pp 89105 in Crane, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Dettmann, M.E. 1994. Cretaceous vegetation: the microfossil record. Pp 143170 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Dettmann, M.E. & Jarzen, D.M. 1990. The Antarctic/Australasian rift valley: late Cretaceous cradle of northeastern Australasian relicts? Review of Palaeobotany and Palynology 65: 131144.CrossRefGoogle Scholar
Dettmann, M.E. & Jarzen, D.M. 1991. Pollen evidence of Late Cretaceous differentiation of Proteaceae in southern polar forests. Canadian Journal of Botany 69: 901906.CrossRefGoogle Scholar
Dettmann, M.E. & Playford, G. 1969. Palynology of the Australian Cretaceous: a review. Pp 174210 in Campbell, K.S.W. (ed.), Stratigraphy and Palaeontology: Essays in Honour of Dorothy Hill. Canberra: Australian National University Press.Google Scholar
Dettmann, M.E. & Thomson, M.R.A. 1987. Cretaceous palymorphs from the James Ross Island areas, Antarctica: a pilot study. British Antarctic Survey Bulletin 77: 1359.Google Scholar
Dettmann, M.E., Molnar, R.E., Douglas, J.G., et al. 1992. Australian Cretaceous terrestrial faunas and floras: biostratigraphical and biogeographic implications. Cretaceous Research 13: 207262.CrossRefGoogle Scholar
Di Pasquo, M. & Martin, J.E. 2013. Palyno assemblages associated with a theropod dinosaur from Snow Hill Island Formation (lower Maastrichtian) at the Naze, James Ross Island, Antarctica. Cretaceous Research 45: 135154.CrossRefGoogle Scholar
Douglas, J.G. 1969. The Mesozoic floras of Victoria: Parts 1 & 2. Memoirs of the Geological Survey of Victoria 28: 1310.Google Scholar
Douglas, J.G. 1994. Cretaceous vegetation: the macrofossil record. Pp 171188 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Douglas, J.G. & Williams, G.E. 1982. Southern polar forests: the Early Cretaceous floras of Victoria and their palaeoclimatic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 39: 171185.CrossRefGoogle Scholar
Doweld, A.B. & Reveal, J.L. 1999. Validation of new suprageneric names in Pinophyta. Phytologia 84 (5): 363367.Google Scholar
Drinnan, N. & Chambers, T.C. 1986. Flora of the Lower Cretaceous Koonwarra Fossil Bed (Korumburra Group), South Gippsland, Victoria. Pp 177 in Jell, P.A. & Roberts, J. (eds.), Plants and Invertebrates from the Koonwarra Fossil Bed, South Gippsland, Victoria. Association of Australasian Palaeontologists.Google Scholar
Falcon-Lang, H.J. & Cantrill, D.J. 2002. Terrestrial paleoecology of the Cretaceous (early Aptian) Cerro Negro Formation, South Shetland Islands, Antarctica: a record of polar vegetation in a volcanic arc environment. Palaios 17: 709725.2.0.CO;2>CrossRefGoogle Scholar
Filatoff, J. 1975. Jurassic palynology of the Perth Basin, Western Australia. Palaeontographica Abt. B. 154: 1113.Google Scholar
Fleming, C.A. 1963. Age of the New Zealand biota. Proceedings of the New Zealand Ecological Society 10.Google Scholar
Gibbs, L.S. 1920. Notes of the phytogeography and flora of the mountain summit plateaux of Tasmania. Journal of Ecology 8: 117, 89–117.CrossRefGoogle Scholar
Gould, R.E. 1975. The succession of Australian pre-Tertiary megafossil floras. Botanical Review 41: 453483.CrossRefGoogle Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hill, R.S. 1994. The history of selected Australian taxa. Pp 390420 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Hill, R.S. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society London B 359: 15371549.CrossRefGoogle ScholarPubMed
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Jansen, R.K. & Ruhlman, T.A. 2012. Plastid genomes of seed plants. Pp 103126 in Bock, R. & Knoop, V. (eds.), Genomics of Chloroplasts and Mitochondria. Dordrecht: Springer.CrossRefGoogle Scholar
Jordan, G.J. 1995. Extinct conifers and conifer diversity in the Early Pleistocene of western Tasmania. Review of Palaeobotany and Palynology 84: 375387.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: a comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle ScholarPubMed
Khan, A.M. 1976. Palynology of Tertiary sediments for Papua New Guinea. II. Gymnosperm pollen from Upper Tertiary sediments. Australian Journal of Botany 24: 783791.CrossRefGoogle Scholar
Kirkpatrick, J.B. & Dickinson, K.J.M. 1984. The impact of fire on Tasmanian alpine vegetation and soils. Australian Journal of Botany 32: 613629.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle ScholarPubMed
Lee, D.E., Lee, W.G. & Mortimer, N. 2001. Where and why have all the flowers gone? Depletion and turnover in the New Zealand Cenozoic angiosperm flora in relation to palaeogeography and climate. Australian Journal of Botany 49(3): 341356.CrossRefGoogle Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Macphail, M.K. 1979. Vegetation and climates in southern Tasmania since the last glaciation. Quaternary Research 11: 306341.CrossRefGoogle Scholar
Martin, H.A. 1994. Australian Tertiary phytogeography: evidence from palynology. Pp 104142 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
McLoughlin, S., Carpenter, R.J., Jordan, G.J. & Hill, R.S. 2008. Seed ferns survived the end-Cretaceous mass extinction in Tasmania. American Journal of Botany 95: 465471.CrossRefGoogle ScholarPubMed
Melikan, A.P. & Bobrov, A.V.F.C. 2000. Morphology of female reproductive structures and the experience of building of phylogenetic system of the orders Podocarpales, Cephalotaxales and Taxales. Botanichekij Zhurnal 85: 5068 (in Russian).Google Scholar
Mildenhall, D.C. 1978. Cranwellia costata n.sp. and Podosporites erugatus n.sp. from middle Pliocene (–early Pleistocene) sediments, South Island, New Zealand. Journal of the Royal Society of New Zealand 8: 253274.CrossRefGoogle Scholar
Mildenhall, D.C. & Byrami, M.L. 2003. A redescription of Podosporites parvus (Couper) Mildenhall emend. Mildenhall & Byrami from the Early Pleistocene, and late extinction of plant taxa in northern New Zealand. New Zealand Journal of Botany 41: 147160.CrossRefGoogle Scholar
Nelson, E.C. 1981. Phytogeography of southern Australia. Pp 733759 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.Google Scholar
Page, C.N., Collinson, M.E. & Van Konijnenburg-Van Cittert, J.H.A. 2014. Lygodium hians (Pteridophyta-Schizaeales): an endemic unusual ground-clothing member of a modern climbing fern genus in New Caledonia. Adansonia 36: 2643.CrossRefGoogle Scholar
Parrish, J.T., Daniel, I.L., Kennedy, E.M. & Spicer, R.A. 1998. Palaeoclimatic significance of mid-Cretaceous floras from the Middle Clarence Valley, New Zealand. Palaios 13: 149159.CrossRefGoogle Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Rao, A.R. 1943. Jurassic spores and sporangia from the Rajmahal Hills, Bihar. Proceedings of the Indian National Academy of Sciences 13: 181197.Google Scholar
Reveal, J.L. & Doweld, A.B. 2002. (‘1545’) Proposal to conserve the family name Microcachrydaceae (Pinophyta). Taxon 51: 573.CrossRefGoogle Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Spicer, R.A. & Chapman, J.L. 1990. Climate change and the evolution of high-latitude terrestrial vegetation and floras. Trends in Ecology and Evolution 5: 279284.CrossRefGoogle ScholarPubMed
Stones, M. & Curtis, W. 1967. The Endemic Flora of Tasmania Part 1. London: The Ariel Press.Google Scholar
Truswell, E.M. 1991. Antarctica: a history of terrestrial vegetation. Pp 499537 in Tinget, R.J. (ed.), The Geology of Antarctica. Oxford: Clarendon Press.Google Scholar
Vishnu-Mittre, . 1959. Studies on the fossil flora of Nipania (Rajmahal Series), Bihar: Coniferales. Palaeobotanist 6(2): 82112.Google Scholar
Wells, P.M. & Hill, R.S. 1989. Leaf morphology of the imbricate-leaved Podocarpaceae. Australian Systematic Botany 2: 369386.CrossRefGoogle Scholar
Zachos, J., Oaganini, M., Sloan, I., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686693.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Microcachrys
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.033
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Microcachrys
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.033
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Microcachrys
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.033
Available formats
×