Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T19:38:14.488Z Has data issue: false hasContentIssue false

Chapter 36 - Libocedrus

Cupressales: Cupressaceae S.S.

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Monoecious evergreen trees, with a typically conical, tapering crown. The bright yellow–green scale-like foliage is moderately large, with scale leaves arrayed regimentally into often horizontally spreading and remarkably regularly mostly flattened fern-like sprays.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 611 - 621
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clarkson, B.D., Patel, R.N. & Clarkson, B.R. 1988. Composition and structure of forest overwhelmed at Pureora, central North Island, New Zealand, during the Taupo eruption (c. AD 130). Journal of the Royal Society of New Zealand 18: 417436.CrossRefGoogle Scholar
Clayton-Greene, K.A. 1977. Structure and origin of Libocedrus bidwillii stands in the Waikato District, New Zealand. New Zealand Journal of Botany 15: 1928.CrossRefGoogle Scholar
Cullen, L.E., Duncan, R.P., Wells, A. & Stewart, G.H. 2003. Floodplain and regional scale variation in earthquake effects of forests, Westland, New Zealand. Journal of the Royal Society of New Zealand 33: 693701.CrossRefGoogle Scholar
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 196–185.CrossRefGoogle Scholar
De Laubenfels, D.J. 1972. Gymnospermes. Pp 1167 in Aubréville, A. & Leroy, J.F. (eds.), Flore de la Nouvele-Calédonie et Dépendances. Paris: Museum National D’Histoire Naturelle, Laboratoire de Phanerogamie.Google Scholar
Doweld, A. 2001. De genre Libocedrus Endl. (Cupressaceae). Novosti Sistematiki Vysshikh Rastenii 33: 4144 (in Russian with Latin diagnosis).Google Scholar
Eckenwalder, J.E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madroño 23: 237256.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Florin, R. 1930. Die Koniferengattung Libocedrus Endl. in Ostaisien. Svensk Botanisk Tidskrift 24: 117131.Google Scholar
Fowler, A.M., Palmer, J. & Fenwick, P. 2008. An assessment of the potential for centennial-scale reconstruction of atmospheric circulation from selected New Zealand tree-ring chronologies. Palaeogeography, Palaeoclimatology, Palaeoecology 265: 238254.CrossRefGoogle Scholar
Gadek, P.A. & Quinn, C.J. 1983. Biflavones of the subfamily Callitroideae, Cupressceae. Phytochemistry 22: 969972.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Haase, P. 1986. A study of a Libocedrus bidwillii population at Pegleg Flat, Arthur’s Pass, New Zealand. New Zealand Journal of Ecology 9: 153156.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hill, R.S. & Carpenter, R.J. 1989. Tertiary gymnosperms from Tasmania: Cupressaceae. Alcheringa 13: 89102.CrossRefGoogle Scholar
Hizumae, M., Kondo, T., Shibata, F. & Ishoizuka, R. 2001. Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia (Tokyo) 66: 307311.CrossRefGoogle Scholar
Holloway, I.T. 1954. Forests and climates in the South Island of New Zealand. Transactions of the Royal Society of New Zealand 82: 329410.Google Scholar
Horrocks, M. & Ogden, J. 1998a. Fine resolution palynology of Gibson’s Swamp, central North Island, New Zealand, since c.1300 B.P. New Zealand Journal of Botany 36: 273283.CrossRefGoogle Scholar
Horrocks, M. & Ogden, J. 1998b. The effects of the Taupo tephra eruption of c. 1718 B.P. on the vegetation of Mt Hauhungatahi, central North Island, New Zealand. Journal of Biogeography 25: 649660.CrossRefGoogle Scholar
Horrocks, M. & Ogden, J. 2000. Evidence for Lateglacial and Holocene tree-line fluctuations from pollen diagrams from the subalpine zone on Mt. Tongariro National Park, New Zealand. Holocene 10: 6173.CrossRefGoogle Scholar
Horrocks, M., Ogden, J., Nichol, S.L., Alloway, B.V. & Sutton, D.G. 1999. The palynology and sedimentology of a coastal swamp at Awana, Great Barrier Island, New Zealand, from 7000 yr B.P. to present. Journal of the Royal Society of New Zealand 29: 213233.CrossRefGoogle Scholar
Horrocks, M., Nichol, S.L., Gregory, M.R., Creese, R. & Augustinus, P.C. 2001. A Holocene pollen and sediment record of Whangape harbour, far northern New Zealand. Journal of the Royal Society of New Zealand 31: 411424.CrossRefGoogle Scholar
Jaffré, T. 1980. Etudes ecologique du peuplement vegetal des sols derives de roches ultrabasiques en Nouvelle-Caledonie. Trav. et Doc. ORSTOM, Paris 124: 273.Google Scholar
Jaffré, T. 1995. Distribution and ecology of the conifers of New Caledonia. Pp 171196 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Melbourne: Melbourne University Press.Google Scholar
Jaffré, T., Morat, P.H., Veillon, J.-M. & Mackee, H.S. 1987. Changements dans la vegetation de la Nouvelle Caledonia au cours du Tertaire: la vegetation et la flore des roches ultrabasiques. Adansonia 4: 365391.Google Scholar
Lusk, C.H. & Ogden, J. 1992. Age structure and dynamics of a podocarp-broadleaf forest in Tongariro National Park, New Zealand. Journal of Ecology 80: 379393.CrossRefGoogle Scholar
Markham, K.R., Franke, A., Molloy, B.P.J. & Webby, R.F. 1990. Flavenoid profiles of New Zealand Libocedrus and related genera. Phytochemistry 29: 501507.CrossRefGoogle Scholar
McIver, E.E. and Basinger, J.F. 1987. Mesocyparis borealis gen. et sp. nov.: fossil Cupressaceae from the early Tertiary of Saskatchewan, Canada. Canadian Journal of Botany 65(11):23382351.CrossRefGoogle Scholar
Norton, D.A. 1983. Population dynamics of subalpine Libocedrus bidwillii forests in the Crop River Valley, Westland, New Zealand. New Zealand Journal of Botany 21: 127134.CrossRefGoogle Scholar
Norton, D.A., Palmer, J.G. & Ogden, J. 1987. Dendrochronological studies in New Zealand 1: an evaluation of tree age estimates based on increment cores. New Zealand Journal of Botany 25: 373384.CrossRefGoogle Scholar
Ogden, J. & Stewart, G.H. 1995. Community dynamics of the New Zealand conifers. Pp 81119 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Washington, DC: Smithsonian Institution Press.Google Scholar
Ogden, J., Fordham, R.A., Pilkington, S. & Serra, R.G. 1991. Forest gap formation and closure along an altitudinal gradient in Tongariro National Park, New Zealand. Journal of Vegetation Science 2: 165172.CrossRefGoogle Scholar
Ogden, J., Fordham, R.A., Horrocks, M., Pilkington, S. & Serra, R.G. 2005. Long term dynamics of the long-lived conifer Libocedrus bidwillii after a volcanic eruption 2000 years ago. Journal of Vegetation Science 16: 321330.Google Scholar
Page, C.N. 2004. Adaptive ancientness of vascular plants to exploitation of low-nutrient substrates: a neobotanical overview. Pp 445466 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. Amsterdam: Elsevier Academic Press.Google Scholar
Palmer, J.G. & Xiong, L. 2004. New Zealand climate over the last 500 years reconstructed from Libocedrus bidwillii Hook. f. tree-ring chronologies. Holocene 14: 282289.CrossRefGoogle Scholar
Paull, R. & Hill, R.S. 2009. Libocedrus macrofossils from Tasmania (Australia). International Journal of Plant Sciences 170: 381399.CrossRefGoogle Scholar
Peltzer, D.A., Allen, R.B. & Rogers, G.M. 2005. Dieback and recruitment of the forest dominants Nothofagus fusca and Libocedrus bidwillii, central North Island, New Zealand. Science for Conservation 255: 533.Google Scholar
Pole, M. 1997. Miocene conifers from the Manuherikia Group, New Zealand. Journal of the Royal Society of New Zealand 27: 355370.CrossRefGoogle Scholar
Pole, M. 1998. Paleocene gymnosperms from Mount Somers, New Zealand. Journal of the Royal Society of New Zealand 28: 375403.CrossRefGoogle Scholar
Pole, M. 2007a. Conifer and cycad distribution in the Miocene of southern New Zealand. Australian Journal of Botany 55: 143164.CrossRefGoogle Scholar
Pole, M. 2007b. Plant-macrofossil assemblages during Pliocene uplift, South Island, New Zealand. Australian Journal of Botany 55: 118142.CrossRefGoogle Scholar
Pole, M. 2007c. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan-Regatte Point, Tasmania. Palaeontologica Electronica 10(3): 10.3.16A.Google Scholar
Rogers, G. 1989. Beech and conifer community interactions in the Maowhango Ecological Region, North Island, New Zealand. New Zealand Journal of Ecology 12: 4761.Google Scholar
Shaw, W.B. 1983. Tropical cyclones: determinants of pattern and structure in New Zealand’s indigenous forests. Pacific Science 35: 405414.Google Scholar
Soons, J.M., Moar, N.T., Shulmeister, J., Wilson, H.D. & Carter, J.A. 2002. Quaternary vegetation and climate changes on Banks Peninsula, South Island, New Zealand. Global and Planetary Change 33: 301314.CrossRefGoogle Scholar
Sparks, R.J., Melhuish, W.H., McKee, J.W.A., et al. 1995. 14C calibration in the Southern Hemisphere and the date of the last Taupo eruption: evidence from tree-ring sequences. Radiocarbon 37: 155163.CrossRefGoogle Scholar
Stewart, G.H. & Rose, A.B. 1989. Conifer regeneration failure in New Zealand: dynamics of montane Libocedrus bidwillii stands. Vegetatio 79: 4149.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1989. Cone and ovule development in Callitris (Cupressaceae-Callitroideae). Botanical Gazette 150: 387390.CrossRefGoogle Scholar
Thorn, V.C. 2001. Oligocene and Early Miocene phytoliths from CRP-2/2A and CRP-3, Victoria Land basin, Antarctica. Terra Antarctica 8: 407422.Google Scholar
Tomlinson, P.B., Takaso, T. & Cameron, E.K. 1993. Cone development in Libocedrus (Cupressaceae): phenological and morphological aspects. American Journal of Botany 80: 649659.Google Scholar
Veblen, T.T. & Stewart, G.H. 1982. On the conifer regeneration gap in New Zealand: the dynamics of Libocedrus bidwillii on South Island. Journal of Ecology 70: 413434.CrossRefGoogle Scholar
Wardle, P. 1963. The regeneration gap of New Zealand gymnosperms. New Zealand Journal of Botany 1: 301315.CrossRefGoogle Scholar
Wardle, P. 1978. Regeneration status of some New Zealand conifers, with particular reference to Libocedrus bidwillii in Westland National Park. New Zealand Journal of Botany 16: 471477.CrossRefGoogle Scholar
Wells, A., Duncan, R.P. & Stewart, G.H. 2001. Forest dynamics in Westland, New Zealand: the importance of large, infrequent earthquake-induced disturbance. Journal of Ecology 89: 10061018.CrossRefGoogle Scholar
Whang, S.S. & Hill, R.S. 1999. Late Palaeocene Cupressaceae macrofossils at Lake Bungarby, New South Wales. Australian Systematic Botany 12: 241254.CrossRefGoogle Scholar
Wilmshurst, J.M. & McGlone, M.S. 1996. Forest disturbance in the central North Island, New Zealand, following the 1850 BP Taupo eruption. Holocene 6: 399411.CrossRefGoogle Scholar
Xiong, L. & Palmer, J.G. 2000. Reconstruction of New Zealand temperatures back to AD 1720 using Libocedrus bidwillii tree-rings. Climatic Change 45: 339359.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Libocedrus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.040
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Libocedrus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.040
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Libocedrus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.040
Available formats
×