Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T11:18:29.792Z Has data issue: false hasContentIssue false

Chapter 57 - Afrocarpus

Podocarpales: Podocarpaceae S.S.

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Large, evergreen trees, when mature with tall columnar trunks and narrow, willow-like foliage, with, unusually, each leaf rather similar on both surfaces.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 385 - 398
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, N.P., Muller, E.M. & Mill, R.R. 2004. A yellowwood by any other name: molecular systematics and the taxonomy of Podocarpus and the Podocarpaceae in southern Africa. South African Journal of Science 100: 629632.Google Scholar
Beentje, H.J. 1990. The forests of Kenya. Mitteilungen aus dem Institut für Allgemeine Botanik Hamburg 23: 265286.Google Scholar
Brenan, J.P.M. & Greenway, P.J. 1949. Check-lists of the Forest Trees and Shrubs of the British Empire. No. 5. Tanganyika Territory. Oxford: Imperial Forestry Institute.Google Scholar
Buchholz, J.T. 1936. Embryogeny of species of Podocarpus of the subgenus Stachycarpus. Botanical Gazette 98: 135146.CrossRefGoogle Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2012. The Vegetation of Antarctica Throughout Geological Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Cunningham, W.D., Dalziel, I.W.D., Lee, T.Y., & Lawver, L.A. 1995. Southernmost South-America Antarctic peninsula relative plate motions since 84 Ma: implications for the tectonic evolution of the Scotia Arc region. Journal of Geophysical Research: Solid Earth 100: 82578266.CrossRefGoogle Scholar
De Laubenfels, D.J. 1969. A revision of the Malesian and Pacific rainforest conifers. I. Podocarpaceae, in part. Journal of the Arnold Arboretum 50: 315369.CrossRefGoogle Scholar
De Ferré, Y., Rouane, M.L. & Woltz, P. 1975. Plantales des Podocarpacees. Travaux du laboratoire forestier de Toulouse 3: 116.Google Scholar
Flory, W.S. 1936. Chromosome numbers and phylogeny in the gymnosperms. Journal of the Arnold Arboretum. 17: 8389.CrossRefGoogle Scholar
Gaussen, H. 1974. Les Gymnospermes actuelles et fossiles. Fascicule XIII. Les Podocarpines sauf les Podocarpus. Travaux du laboratoire forestier de Toulouse 2(3).Google Scholar
Geldenhuys, C.J. 1993. Reproductive biology and population structures of Podocarpus falcatus and P. latifolius in southern Cape forests. Botanical Journal of the Linnean Society 112: 5974.CrossRefGoogle Scholar
Glidewell, S.M., Möller, M., Duncan, G. et al. 2002. NMR imaging as a tool for non-invasive taxonomy: comparison of female cones of two Podocarpaceae. New Phytologist 154: 197207.CrossRefGoogle Scholar
Hair, J.B. 1963. Cytogeographical relationships of the southern podocarps. Pp 401414 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu, HI: Bishop Museum Press.Google Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Herbert, J., Hollingsworth, P.M., Gardner, M.F., et al. 2002. Conservation genetics and phylogenetics of New Caledonian Retrophyllum (Podocarpaceae) species. New Zealand Journal of Botany 40: 175188.CrossRefGoogle Scholar
Hill, R.S. & Pole, M.S. 1992. Leaf and shoot morphology of extant Afrocarpus, Nageia and Retrophyllum (Podocarpaceae) species, and species with similar leaf arrangement, from Tertiary sediments in Australasia. Australian Systematic Botany 5: 337358.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle ScholarPubMed
Leistner, O.A., Smith, G.F. & Glen, H.F. 1995. Notes of Podocarpus in southern Africa and Madagascar (Podocarpaceae). Bothalia 25: 233236.CrossRefGoogle Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Martin, A.R.H. 1959. South African palynological studies. I. Statistical and morphological variation in the pollen of the South African species of Podocarpus. Grana Palynologica 2: 4068.CrossRefGoogle Scholar
Masters, M.T. 1895. A general view of the genus Cupressus. Journal of the Linnean Society, Botany 31: 312363.CrossRefGoogle Scholar
McLoughlin, S., Tosolini, A.-M.P.N., Agalingum, N.S. & Drinnan, A.N. 2002. The Early Cretaceous (Neocomian) flora and fauna of the lower Strzelecki Group, Gippsland Basin, Victoria, Australia. Association of Australasian Palaeontologists Memoirs 26: 1144.Google Scholar
McNaughton, J. & Tyson, P.D. 1979. A preliminary assessment of Podocarpus falcatus for dendrochronological and dendroclimatic studies. South African Forestry Journal 111: 2933.CrossRefGoogle Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Midgley, J. & Bond, W. 1989. Leaf size and inflorescence size may be allometrically related traits. Oecologia 78(3): 427429.CrossRefGoogle ScholarPubMed
Midgley, J.J., Bond, W.J. & Geldenhuys, C.J. 1995 The ecology of southern African conifers. Pp 6480 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Melbourne: Melbourne University Press.Google Scholar
Mill, R.R. 2003. Towards a biogeography of the Podocarpaceae. Pp 137147 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Mill, R.R., Moller, M., Glidewell, S.M., Masson, D. & Williamson, B. 2004. Comparative anatomy and morphology of fertile complexes of Prumnopitys and Afrocarpus species (Podocarpaceae) as revealed by histology and NMR imaging, and their relevance to systematics. Botanical Journal of the Linnean Society 145: 295316.CrossRefGoogle Scholar
Morley, R.J. 2011. Dispersal and paleoecology of tropical podocarps. Pp 2141 in Turner, B.L. & Cemusak, L. (eds.), Ecology of the Podocarpaceae in Tropical Forests. Washington, DC: Smithsonian Institution Scholarly Press.Google Scholar
Nagalingum, N.S., Drinnan, A.N. & McLoughlin, S. 2005. A new fossil conifer Bellarinea richardsii from the Early Cretaceous Strzelechi Group, southeastern Victoria. Proceedings of the Royal Society of Victoria 117: 112.Google Scholar
Page, C.N. 1990a. Taxaceae. Pp 348353 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. 1990b. Podocarpaceae. Pp 332346 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Quinn, C.J. 1970. Generic boundaries in the Podocarpaceae. Proceedings of the Linnean Society of New South Wales 94: 166172.Google Scholar
Quinn, C.J. & Price, R.A. 2003. Phylogeny of the Southern Hemisphere conifers. Pp 129136 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Schoonraad, E. 1977. Die Morfologie van die vroulike strobilus en embriologie van die genus Podocarpus L’Herit. ex Pers. in Suid-Afrika. Doctoral dissertation, University of Pretoria.Google Scholar
Schoonraad, E. & van der Schjiff, H.P. 1975. Distribution and some interesting morphological aspects of the South African Podocarpaceae. Boissiera 24: 135144.Google Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Stiff, M.L. 1952. The geographical distribution and cytology of the Coniferales. PhD thesis, University of Virginia.Google Scholar
Tahara, M. 1937. Contributions to the morphology of Sciadopitys verticillata. Cytologia 1937: 1419.CrossRefGoogle Scholar
Walkom, R.B. 1919. On a collection of Jurassic plants from Bexhill, near Lismore, New South Wales. Proceedings of the Linnean Society of New South Wales 44: 180190.Google Scholar
White, M.E. 1986. The Greening of Gondwana. Frenchs Forrest, NSW: Reed Books.Google Scholar
White, M.E. 1993. The Greening of Gondwana. Chatswood, NSW: A. H. & A.W. Reed.Google Scholar
Zachos, J., Oaganini, M., Sloan, I., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686693.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Afrocarpus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Afrocarpus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Afrocarpus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.021
Available formats
×