Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-14T19:22:00.225Z Has data issue: false hasContentIssue false

20 - What Laboratory and Field Approaches Bring to Bear for Understanding the Evolution of Ursid Cognition

from Part II - Evolution of Memory Processes

Published online by Cambridge University Press:  26 May 2022

Mark A. Krause
Affiliation:
Southern Oregon University
Karen L. Hollis
Affiliation:
Mount Holyoke College, Massachusetts
Mauricio R. Papini
Affiliation:
Texas Christian University
Get access

Summary

Integrating an appreciation of natural behavior into laboratory studies, and laboratory techniques into field studies allows researchers to examine and control proximate factors while identifying adaptive problems faced by particular species. This focus reveals both important similarities and differences across phylogenetic lineages. Carnivores other than canids have been relatively neglected in the study of cognition. An examination of members of the ursid family reveals the important role of foraging ecology in shaping learning and memory in both wild and captive settings. Whereas top-down approaches tend to be anthropocentric, a bottom-up approach focused on the unique capacities and traits of individual species bears the most fruit in terms of understanding the selective pressures responsible for the emergence and maintenance of those traits.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amici, F., Cacchione, T., & Bueno-Guerra, N. (2017). Understanding of object properties by sloth bears. melursus ursinusursinus. Animal Behaviour, 134, 217222. http://dx.doi.org/10.1016/j.anbehav.2017.10.028Google Scholar
Amici, F., Holland, R., & Cacchione, T. (2019). Sloth bears (Melursus ursinus) fail to spontaneously solve a novel problem even if social cues and relevant experience are provided. Journal of Comparative Psychology, 133, 373379. http://dx.doi.org/10.1037/com0000167Google Scholar
Arden, R., Bensky, M. K., & Adams, M. J. (2016). A review of cognitive abilities in dogs, 1911 through 2016: More individual differences, please! Current Directions in Psychological Science, 25, 307312. http://dx.doi.org/10.1177/0963721416667718CrossRefGoogle Scholar
Bacon, E. S., & Burghardt, G. M. (1976). Learning and color discrimination in the American black bear. Ursus, 3, 2736.Google Scholar
Bacon, E. S., & Burghardt, G. M. (1983). Food preferences in the American black bear: An experimental approach. Ursus, 5, 102105. https://doi.org/10.2307/3872525Google Scholar
Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M., & Holekamp, K. E. (2016). Brain size predicts problem-solving ability in mammalian carnivores. PNAS Proceedings of the National Academy of Sciences of the United States of America, 113, 25322537. http://dx.doi.org/10.1073/pnas.1505913113CrossRefGoogle ScholarPubMed
Beran, M. J., & Highfill, L. E. (2011). Paying more attention to what (some) nonhuman animals and (some) humans can do: An introduction to the special issue on individual differences in comparative psychology. International Journal of Comparative Psychology, 24, 13.CrossRefGoogle Scholar
Boesch, C. (2020). Listening to the appeal from the wild. Animal Behavior and Cognition, 7, 257263. https://doi.org/10.26451/abc.07.02.15.2020CrossRefGoogle Scholar
Borrego, N. (2017). Big cats as a model system for the study of the evolution of intelligence. Behavioural Processes, 141, 261266. http://dx.doi.org/10.1016/j.beproc.2017.03.010CrossRefGoogle Scholar
Byrne, R. (1997). The technical intelligence hypothesis: An additional evolutionary stimulus to intelligence? In Whiten, A. & Byrne, R. (Eds.), Machiavellian intelligence II: Extensions and evaluations (pp. 289311). Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511525636.012Google Scholar
Carter, G. G., Schino, G., & Farine, D. (2019). Challenges in assessing the roles of nepotism and reciprocity in cooperation networks. Animal Behaviour, 150, 255271. http://dx.doi.org/10.1016/j.anbehav.2019.01.006Google Scholar
Carter, G. G., & Wilkinson, G. S. (2013). Food sharing in vampire bats: Reciprocal help predicts donations more than relatedness or harassment. Proceedings of the Royal Society, B, 280, 20122573. https://doi.org/10.1098/rspb.2012.2573Google Scholar
Colvin, T. R. (1975). Aversive conditioning black bear to honey utilizing lithium chloride. Proceedings of the Annual Conference of the Southeastern Association of Game and Fish Commissions, 29, 450453.Google Scholar
Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6, 178189. https://doi.org/10.1002/(SICI)1520-6505(1998)6:5%3C178::AID-EVAN5%3E3.0.CO;2-8Google Scholar
Dunbar, R. I. M. (2009). The social brain hypothesis and its implications for social evolution. Annals of Human Biology, 36, 562572. https://doi.org/10.1080/03014460902960289CrossRefGoogle ScholarPubMed
Dungl, E., Schratter, D., & Huber, L. (2008). Discrimination of face-like patterns in the giant panda (Ailuropoda melanoleuca). Journal of Comparative Psychology, 122, 335e343. https://doi.org/10.1037/0735-7036.122.4.335CrossRefGoogle ScholarPubMed
Eaton, T., Hutton, R., Leete, J., Lieb, J., Robeson, A., & Vonk, J. (2018). Bottoms-up: Rejecting top-down human-centered approaches in comparative psychology. International Journal of Comparative Psychology, 31. https://escholarship.org/uc/item/11t5q9wtGoogle Scholar
Elbroch, M. L., Levy, M., Lubell, M., Quigley, H., & Caragiulo, A. (2017). Adaptive social strategies in a solitary carnivore. Science Advances, 3, e1701218. https://doi.org/10.1126/sciadv.1701218CrossRefGoogle Scholar
Gillin, C. M., Hammond, F. M., & Peterson, C. M. (1994). Evaluation of an aversive conditioning technique used on female grizzly bears in the Yellowstone Ecosystem. International Conference on Bear Restoration and Management, 9, 503512.Google Scholar
Gittleman, J. L. (1986). Carnivore brain size, behavioral ecology, and phylogeny. Journal of Mammalogy, 67, 2336. https://doi.org/10.2307/1380998Google Scholar
Hamilton, J., & Vonk, J. (2015). Do dogs (Canis lupus familiaris) recognize kin? Behavioural Processes, 119, 123134. https://doi.org/10.1016/j.beproc.2015.08.004Google Scholar
Hartmann, D., Davila-Ross, M., Wong, S. T., Call, J., & Scheumann, M. (2017). Spatial transposition tasks in Indian sloth bears (melursus ursinus) and Bornean sun bears (helarctos malayanus euryspilus). Journal of Comparative Psychology, 131, 290303. http://dx.doi.org/10.1037/com0000077CrossRefGoogle ScholarPubMed
Hepper, P. G. (1994). Long-term retention of kinship recognition established during infancy in the domestic dog. Behavioural Processes, 33, 314. http://dx.doi.org/10.1016/0376-6357(94)90056-6Google Scholar
Hertel, A. G., Leclerc, M., Warren, D., Pelletier, F., Zedrosser, A., & Mueller, T. (2019). Don’t poke the bear: Using tracking data to quantify behavioural syndromes in elusive wildlife. Animal Behaviour, 147, 91104. http://dx.doi.org/10.1016/j.anbehav.2018.11.008CrossRefGoogle Scholar
Hertel, A. G., Steyaert, S. M. J. G., Zedrosser, A., Mysterud, A., Lodberg-Holm, H., Gelink, H. W., Kindberg, J., & Swenson, J. E. (2016). Bears and berries: Species-specific selective foraging on a patchily distributed food resource in a human-altered landscape. Behavioral Ecology and Sociobiology, 70, 831842. http://dx.doi.org/10.1007/s00265-016-2106-2CrossRefGoogle Scholar
Holekamp, K. E., Dantzer, B., Stricker, G., Shaw Yoshida, K. C., & Benson-Amram, S. (2015). Brains, brawn and sociality: A hyaena’s tale. Animal Behaviour, 103, 237248. http://dx.doi.org/10.1016/j.anbehav.2015.01.023Google Scholar
Humphrey, N. K. (1976). The social function of intellect. In Bateson, P. P. G. & Hinde, R. A. (Eds.), Growing points in ethology (pp. 303317). Cambridge University Press.Google Scholar
Johnson-Ulrich, Z. (2017). Predictors of behavioral flexibility and problem-solving in carnivora (Order No. 10615355). Available from Dissertations & Theses @ Oakland University. (1980794459).Google Scholar
Johnson-Ulrich, Z., Vonk, J., Humbyrd, M., Crowley, M., Wojtkowski, E., Yates, F., & Allard, S. (2016). Picture object recognition in an American black bear (Ursus americanus). Animal Cognition, 19, 12371242. https://doi.org/10.1007/s10071-016-1011-4Google Scholar
Jolly, A. (1965). Lemur social behavior and primate intelligence. Science, 153, 501506. https://doi.org/10.1126/science.153.3735.501CrossRefGoogle Scholar
Lea, S. E. G., & Osthaus, B. (2018). In what sense are dogs special? Canine cognition in comparative context. Learning & Behavior, 46, 335363. http://dx.doi.org/10.3758/s13420-018-0349-7CrossRefGoogle ScholarPubMed
Marshall-Pescini, S., Schwarz, J. F. L., Kostelnik, I., Virányi, Z., & Range, F. (2017). Importance of a species’ socioecology: Wolves outperform dogs in a conspecific cooperation task. Proceedings of the National Academy of Sciences, 114, 1179311798. https://doi.org/10.1073/pnas.1709027114CrossRefGoogle Scholar
Mazur, R., & Seher, V. (2008). Socially learned foraging behaviour in wild black bears, Ursus americanus. Animal Behaviour, 75, 15031508. https://doi.org/10.1016/j.anbehav.2007.10.027Google Scholar
McComb, K., Packer, C., & Pusey, A. (1994). Roaring and numerical assessment in contests between groups of female lions Panthera leo. Animal Behaviour, 47, 379387. http://dx.doi.org/10.1006/anbe.1994.1052CrossRefGoogle Scholar
Milton, K. (1981). Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. American Anthropologist, 83, 534548. https://doi.org/10.1525/aa.1981.83.3.02a00020CrossRefGoogle Scholar
Mitchell, M. S., & Powell, R. A. (2007). Optimal use of resources structures home ranges and spatial distribution of black bears. Animal Behaviour, 74, 219230. http://dx.doi.org/10.1016/j.anbehav.2006.11.017CrossRefGoogle Scholar
Morehouse, A. T., Graves, T. A., Mikle, N., & Boyce, M. S. (2016). Nature vs. nurture: Evidence for social learning of conflict behaviour in grizzly bears. PLoS ONE, 11, 15. https://doi.org/10.1371/journal.pone.0165425Google Scholar
Noyce, K. V., & Garshelis, D. L. (2011). Seasonal migrations of black bears (Ursus americanus): Causes and consequences. Behavioral Ecology and Sociobiology, 65, 823835. http://dx.doi.org/10.1007/s00265-010-1086-xCrossRefGoogle Scholar
Ordiz, A., Kindberg, J., Saebo, S., Swenson, J., & Stoen, O. (2014). Brown bear circadian behavior reveals human environmental encroachment, Biological Conservation, 173, 19. https://doi.org/10.1016/j.biocon.2014.03.006CrossRefGoogle Scholar
Ostojić, L., & Clayton, N. S. (2014). Behavioural coordination of dogs in a cooperative problem-solving task with a conspecific and a human partner. Animal Cognition, 17, 445459. https://doi.org/10.1007/s10071-013-0676-1Google Scholar
Perdue, B. M., Snyder, R. J., Pratte, J., Marr, M. J., & Maple, T. L. (2009). Spatial memory recall in the giant panda (Ailuropoda melanoleuca). Journal of Comparative Psychology, 123, 275279. https://doi.org/10.1037/a0016220CrossRefGoogle ScholarPubMed
Perdue, B. M., Snyder, R., Zhihe, Z., Marr, J., & Maple, T. (2011) Sex differences in spatial ability: A test of the range size hypothesis in order carnivore. Animal Behaviour, 7, 380383. https://doi.org/10.1098/rsbl.2010.1116Google Scholar
Polson, J. E. (1983). Application of aversion techniques for the reduction of losses to beehives by black bears in Northeastern Saskatchewan, SRC Publication No. C-805-13-E-83.Google Scholar
Range, F., & Virányi, Z. (2015). Tracking the evolutionary origins of dog-human cooperation: The “canine cooperation hypothesis”. Frontiers in Psychology, 5, 2. https://doi.org/10.3389/fpsyg.2014.01582Google Scholar
Ripperger, S. P., Carter, G. G., Duda, N., Koelpin, A., Cassens, B., Kapitza, R., Josic, D., Berrío-Martínez, J., Page, R. A., & Mayer, F. (2019). Vampire bats that cooperate in the lab maintain their social networks in the wild. Current Biology, 23, 41394144. https://doi.org/10.1016/j.cub.2019.10.024CrossRefGoogle Scholar
Ripperger, S. P., Page, R. A., Mayer, F., & Carter, G. G. (2020). Evidence for unfamiliar kin recognition in vampire bats. BioRxiv. https://doi.org/10.1101/2019.12.16.874057Google Scholar
Rogers, L. L., Mansfield, S. A., Hornby, K., Hornby, S., Debruyn, T. D., Mize, M., Clark, R., & Burghardt, G. M. (2014). Black bear reactions to venomous and non‐venomous snakes in eastern North America. Ethology, 120, 641651. http://dx.doi.org/10.1111/eth.12236Google Scholar
Sakai, S. T., Arsznov, B. M., Lundrigan, B. L., & Holekamp, K. E. (2011). Brain size and social complexity: A computed tomography study in hyaenidae. Brain, Behavior and Evolution, 77, 91104. http://dx.doi.org/10.1159/000323849Google Scholar
Samuel, L., Arnesen, C., Zedrosser, A., & Rosell, F. (2020). Fears from the past? The innate ability of dogs to detect predator scents. Animal Cognition, 23, 721729. http://dx.doi.org/10.1007/s10071-020-01379-yGoogle Scholar
Schubiger, M. N., Fichtel, C., & Burkart, J. M. (2020). Validity of cognitive tests for non-human animals: Pitfalls and prospects. Frontiers in Psychology, 11, 1835. https://doi.org/10.3389/fpsyg.2020.01835Google Scholar
Silk, J., Brosnan, S. F., Vonk, J., Henrich, J., Povinelli, D. J., Shapiro, S., Richardson, A., Lambeth, S. P., & Mascaro, J. (2005). Chimpanzees are indifferent to the welfare of unrelated group members. Nature, 437, 13571359. https://doi.org/10.1038/nature04243Google Scholar
Silverman, I., Choi, J., & Peters, M. (2007). The hunter-gatherer theory of sex differences in spatial abilities: Data from 40 countries. Archives of Sexual Behavior, 36, 261268. http://dx.doi.org/10.1007/s10508-006-9168-6Google Scholar
Smith, M. E., Linnell, J. D., Odden, J., & Swenson, J. E. (2000). Review of methods to reduce livestock depradation: I. Guardian animals. Acta Agriculturae Scandinavica, Section A-Animal Science, 50, 279290. https://doi.org/10.1080/090647000750069476Google Scholar
Sol, D. (2009). The cognitive-buffer hypothesis for the evolution of large brains. In Dukas, R. & Ratcliffe, J. M. (Eds.), Cognitive ecology II (pp. 111136). University of Chicago Press.CrossRefGoogle Scholar
Stevens, J. R., & Gilby, I. C. (2004). A conceptual framework for nonkin food sharing: Timing and currency of benefits. Animal Behaviour, 67, 603614. http://dx.doi.org/10.1016/j.anbehav.2003.04.012Google Scholar
Stevens, J. R., & Stephens, D. W. (2002). Food sharing: A model of manipulation by harassment. Behavioral Ecology, 13, 393400. http://dx.doi.org/10.1093/beheco/13.3.393CrossRefGoogle Scholar
Stillfried, M., Belant, J. L., Svoboda, N. J., Beyer, D. E., & Kramer-Schadt, S. (2015). When top predators become prey: Black bears alter movement behaviour in response to hunting pressure. Behavioural Processes, 120, 3039. http://dx.doi.org/10.1016/j.beproc.2015.08.003CrossRefGoogle ScholarPubMed
Støen, O., Bellemain, E., Sæbø, S., & Swenson, J. E. (2005). Kin-related spatial structure in brown bears Ursus arctos. Behavioral Ecology and Sociobiology, 59, 191197. http://dx.doi.org/10.1007/s00265-005-0024-9CrossRefGoogle Scholar
Stringham, S. F. (2012). Salmon fishing by bears and the dawn of cooperative predation. Journal of Comparative Psychology, 126, 329338. http://dx.doi.org/10.1037/a0028238CrossRefGoogle ScholarPubMed
Suraci, J. P., Clinchy, M., Roberts, D. J., & Zanette, L. Y. (2017). Eavesdropping in solitary large carnivores: Black bears advance and vocalize toward cougar playbacks. Ethology, 123, 593599. http://dx.doi.org/10.1111/eth.12631Google Scholar
Tarou, L. R. (2004). An examination of the role of associative learning and spatial memory in foraging of two species of bear (family: Ursidae) (Ailuropoda melanoleuca, Tremarctos ornatus). Dissertation Abstracts International: Section B: The Sciences and Engineering, 64, 5260.Google Scholar
Ternent, M. A., & Garshelis, D. L. (1999). Taste-aversion conditioning to reduce nuisance activity by black bears in a Minnesota military reservation. Wildlife Society Bulletin, 720–728.Google Scholar
Udell, M. A. R. (2018). A new approach to understanding canine social cognition. Learning & Behavior, 46, 329330. http://dx.doi.org/10.3758/s13420-018-0334-1Google Scholar
Udell, M. A. R., & Vitale Shreve, K. R. (2017). Editorial: Feline behavior and cognition. Behavioural Processes, 141, 259260. http://dx.doi.org/10.1016/j.beproc.2017.04.005Google Scholar
Virányi, Z., & Range, F. (2014). On the way to a better understanding of dog domestication: Aggression and cooperativeness in dogs and wolves. In Kaminski, J. & Marshall-Pescini, S. (Eds.), The social dog: Behaviour and cognition (pp. 3562). Academic Press.Google Scholar
Vonk, J. (2016). Bigger brains may make better problem-solving carnivores. Learning and Behavior, 44, 99100. https://doi.org/10.3758/s13420-016-0222-5Google Scholar
Vonk, J. (2018). Social strategies in a not-so-social pumas. Learning and Behavior, 46, 105106. https://doi.org/10.3758/s13420-017-0312-zCrossRefGoogle Scholar
Vonk, J., Allard, S., Torgerson-White, L., Bennett, C., Galvan, M., McGuire, M. M., Hamilton, J., Johnson-Ulrich, Z., & Lieb, J. (2015). Manipulating spatial and visual cues in a win-stay foraging task in captive grizzly bears (Ursus arctos horribilus). In Thayer, E. A. (Ed.), Spatial, long-and short-term memory: Functions, differences and effects of injury (pp. 4760). Nova Publishers.Google Scholar
Vonk, J., & Beran, M. J. (2012). Bears “count” too: Quantity estimation and comparison in black bears (Ursus americanus). Animal Behaviour, 84, 231238. https://doi.org/10.1016/j.anbehav.2012.05.001Google Scholar
Vonk, J., Edge, J., Pappas, J., Robeson, A., & Jordan, A. (2020). Cross species comparisons: When comparing apples to oranges is fruitful. In Shackelford, T. K. (Ed.), The Sage handbook of evolutionary psychology (pp. 285310). Sage.Google Scholar
Vonk, J., & Jett, S. E. (2018). “Bear-ly” learning: Limits of abstraction in black bear cognition. Animal Behavior and Cognition, 5, 6878. https://doi.org/10.26451/abc.05.01.06.2018Google Scholar
Vonk, J., Jett, S. E., & Mosteller, K. W. (2012). Concept formation in American black bears (Ursus americanus). Animal Behaviour, 84, 953964. https://doi.org/10.1016/j.anbehav.2012.07.020Google Scholar
Vonk, J. & Johnson-Ulrich, Z. (2014). Social and non-social category discriminations in a chimpanzee (Pan troglodytes) and American black bears (Ursus americanus). Learning and Behavior, 42, 231245. https://doi.org/10.3758/s13420-014-0141-2Google Scholar
Vonk, J., & Leete, J. (2017). Carnivore concepts: Categorization in carnivores “bears” further study. International Journal of Comparative Psychology, 30. http://escholarship.org/uc/item/61363164CrossRefGoogle Scholar
de Waal, F. B., & Ferrari, P. F. (2010). Towards a bottom-up perspective on animal and human cognition. Trends in Cognitive Sciences, 14, 201207. https://doi.org/10.1016/j.tics.2010.03.003Google Scholar
Waroff, A. J., Fanucchi, L., Robbins, C. T., & Nelson, O. L. (2017). Tool use, problem-solving, and the display of stereotypic behaviors in the brown bear (Ursus arctos). Journal of Veterinary Behavior: Clinical Applications and Research, 17, 6268. https://doi.org/10.1016/j.jveb.2016.11.003Google Scholar
Wynne, C. D. L. (2016). What is special about dog cognition? Current Directions in Psychological Science, 25, 345350. http://dx.doi.org/10.1177/0963721416657540CrossRefGoogle Scholar
Wilkinson, G. S. (1988). Reciprocal altruism in bats and other mammals. Ethology & Sociobiology, 9, 85100. https://doi.org/10.1016/0162-3095(88)90015-5Google Scholar
Zamisch, V., & Vonk, J. (2012). Spatial memory in captive American black bears (Ursus americanus). Journal of Comparative Psychology, 126, 372387. https://doi.org/10.1037/a0028081CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×