Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T05:53:26.707Z Has data issue: false hasContentIssue false

15 - How Learning Affects Evolution

from Part I - Evolution of Learning Processes

Published online by Cambridge University Press:  26 May 2022

Mark A. Krause
Affiliation:
Southern Oregon University
Karen L. Hollis
Affiliation:
Mount Holyoke College, Massachusetts
Mauricio R. Papini
Affiliation:
Texas Christian University
Get access

Summary

Animal learning may play several important roles in evolution. Here we discuss how: (1) learning can provide an additional form of inheritance, (2) learning can instigate plasticity-first evolution, (3) learning can influence niche construction, and (4) learning can generate developmental bias. Evidence for these evolutionary effects of learning has accumulated rapidly over the last two decades, yet their significance for biological evolution remains poorly appreciated.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahms, B., Hazen, E. L., Aikens, E. O., Savoca, M. S., Goldbogen, J. A., Bograd, S. J., Jacox, M. G., Irvine, L. M., Palacios, D. M., & Mate, B. R. (2019). Memory and resource tracking drive blue whale migrations. Proceedings of the National Academy of Sciences, 116, 55825587. https://doi.org/10.1073/pnas.1819031116Google Scholar
Ancel, L. W. (2000). Undermining the Baldwin expediting effect: Does phenotypic plasticity accelerate evolution? Theoretical Population Biology, 58, 307319. https://doi.org/10.1006/tpbi.2000.1484Google Scholar
Aoki, K., & Feldman, M. W. (2014). Evolution of learning strategies in temporally and spatially variable environments: A review of theory. Theoretical Population Biology, 91, 319. https://doi.org/10.1016/j.tpb.2013.10.004Google Scholar
Aoki, M. (2001). Toward a comparative institutional analysis. MIT Press.CrossRefGoogle Scholar
Aplin, L. M. (2019). Culture and cultural evolution in birds: A review of the evidence. Animal Behaviour, 147, 179187. https://doi.org/10.1016/j.anbehav.2018.05.001Google Scholar
Atton, N. (2013). Investigations into Stickleback Social Learning [PhD dissertation, University of St Andrews].Google Scholar
Baldwin, J. M. (1896). A new factor in evolution. The American Naturalist, 30(354), 441451.Google Scholar
Beltman, J. B., Haccou, P., & ten Cate, C. (2003). The impact of learning foster species' song on the evolution of specialist avian brood parasitism. Behavioral Ecology, 14(6), 917923. https://doi.org/10.1093/beheco/arg082Google Scholar
Beltman, J., Haccou, P., & ten Cate, C. (2004). Learning and colonization of new niches: A first step toward speciation. Evolution, 58, 3546. https://doi.org/10.1554/03-339Google Scholar
Boivin, N. L., Zeder, M. A., Fuller, D. Q., Crowther, A., Larson, G., Erlandson, J. M., Denham, T., & Petraglia, M. D. (2016). Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions. Proceedings of the National Academy of Sciences, 113(23), 63886396. https://doi.org/10.1073/pnas.1525200113Google Scholar
Bonduriansky, R. & Day, T. (2018). Extended heredity. Princeton University Press.Google Scholar
Borenstein, E., Meilijson, I., & Ruppin, E. (2006). The effect of phenotypic plasticity on evolution in multipeaked fitness landscapes. Journal of Evolutionary Biology, 19(5), 15551570. https://doi.org/10.1111/j.1420-9101.2006.01125.xGoogle Scholar
Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process. University of Chicago Press.Google Scholar
Brown, C., & Laland, K. N. (2001). Social learning and life skills training for hatchery reared fish. Journal of Fish Biology, 59(3), 471493. https://doi.org/10.1111/j.1095-8649.2001.tb02354.xCrossRefGoogle Scholar
Brown, C., & Laland, K. N. (2003). Social learning in fishes: A review. Fish and Fisheries, 4(3), 280288. https://doi.org/10.1046/j.1467-2979.2003.00122.xGoogle Scholar
Carroll, E. L., Baker, C. S., Watson, M., Alderman, R., Bannister, J., Gaggiotti, O. E., Gröcke, D. R., Patenaude, N., & Harcourt, R. (2015). Cultural traditions across a migratory network shape the genetic structure of southern right whales around Australia and New Zealand. Scientific Reports, 5(1), 16182. https://doi.org/10.1038/srep16182CrossRefGoogle ScholarPubMed
ten Cate, C., & Rowe, C. (2007). Biases in signal evolution: learning makes a difference. Trends in Ecology and Evolution, 22, 380387. https://doi.org/10.1016/j.tree.2007.03.006Google Scholar
Cavalli-Sforza, L. L., & Feldman, M. W. (1973). Models for cultural inheritance I. Group mean and within group variation. Theoretical Population Biology, 4(1), 4255. https://doi.org/10.1016/0040-5809(73)90005-1Google Scholar
Cavalli-Sforza, L. L., & Feldman, M. W. (1981). Cultural transmission and evolution: A quantitative approach. Princeton University Press.Google Scholar
Clark, A. D., Deffner, D., Laland, K. N., Odling-Smee, J., & Endler, J. (2019). Niche construction affects the variability and strength of natural selection. The American Naturalist, 195(1), 1630. https://doi.org/10.5061/dryad.g66n3h5Google Scholar
Coolen, I., Bergen, Y. V., Day, R. L., & Laland, K. N. (2003). Species difference in adaptive use of public information in sticklebacks. Proceedings of the Royal Society B: Biological Sciences, 270, 24132419. https://doi.org/10.1098/rspb.2003.2525Google Scholar
Curio, E. (1988). Cultural transmission of enemy recognition by birds. In Zentall, T. R. & Galef, B. G. (Eds.), Social learning: Psychological and biological perspectives (pp. 7597). Lawrence Erlbaum Associates, Inc.Google Scholar
Currie, T. E., Greenhill, S. J., Gray, R. D., Hasegawa, T., & Mace, R. (2010). Rise and fall of political complexity in island South-East Asia and the Pacific. Nature, 467(7317), 801804. https://doi.org/10.1038/nature09461Google Scholar
Danchin, É. G. J., Blanchet, S., Mery, F., & Wagner, R. H. (2010). Do invertebrates have culture? Communicative & Integrative Biology, 3(4), 303305. https://doi.org/10.4161/cib.3.4.11970CrossRefGoogle ScholarPubMed
Danchin, É. G. J., Charmantier, A., Champagne, F. A., Mesoudi, A., Pujol, B., & Blanchet, S. (2011). Beyond DNA: Integrating inclusive inheritance into an extended theory of evolution. Nature Reviews Genetics, 12, 475486. https://doi.org/10.1038/nrg3028CrossRefGoogle ScholarPubMed
Davies, N. B., & Welbergen, J. A. (2009). Social transmission of a host defense against cuckoo parasitism. Science, 324(5932), 13181320. https://doi.org/10.1126/science.1172227Google Scholar
Dean, L. G., Kendal, R. L., Schapiro, S. J., Thierry, B., & Laland, K. N. (2012). Identification of the social and cognitive processes underlying human cumulative culture. Science, 335, 11141118. https://doi.org/10.1126/science.1213969CrossRefGoogle ScholarPubMed
Deneubourg, J. L., Pasteels, J. M., & Verhaeghe, J. C. (1983). Probabilistic behaviour in ants: A strategy of errors? Journal of Theoretical Biology, 105(2), 259271. https://doi.org/10.1016/S0022-5193(83)80007-1Google Scholar
Dornhaus, A., & Chittka, L. (1999). Evolutionary origins of bee dances. Nature, 401(6748), 38. https://doi.org/10.1038/43372Google Scholar
Dunbar, R. I. M., & Shultz, S. (2017). Why are there so many explanations for primate brain evolution? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1727), 20160244. https://doi.org/10.1098/rstb.2016.0244CrossRefGoogle ScholarPubMed
Durham, W. H. (1991). Coevolution: Genes, culture, and human diversity. Stanford University Press.Google Scholar
Edelaar, P., Jovani, R., & Gomez-Mestre, I. (2017). Should I change or should I go? Phenotypic plasticity and matching habitat choice in the adaptation to environmental heterogeneity. The American Naturalist, 190(4), 506520. https://doi.org/10.1086/693345CrossRefGoogle ScholarPubMed
Fisher, J. B., & Hinde, R. A. (1949). Opening of milk bottles by birds. British Birds, XLII, 347357.Google Scholar
Flack, J. C., Girvan, M., de Waal, F. B. M., & Krakauer, D. C. (2006). Policing stabilizes construction of social niches in primates. Nature, 439, 426429. https://doi.org/10.1038/nature04326CrossRefGoogle ScholarPubMed
Foote, A. D., Vijay, N., Ávila-Arcos, M. C., Baird, R. W., Durban, J. W., Fumagalli, M., Gibbs, R. A., Hanson, M. B., Korneliussen, T. S., Martin, M. D., Robertson, K. M., Sousa, V. C., Vieira, F. G., Vinař, T., Wade, P., Worley, K. C., Excoffier, L., Morin, P. A., Gilbert, M. T. P., & Wolf, J. B. W. (2016). Genome-culture coevolution promotes rapid divergence of killer whale ecotypes. Nature Communications, 7, 11693. https://doi.org/10.1038/ncomms11693CrossRefGoogle ScholarPubMed
Forsman, J. T., & Seppänen, J.-T. (2011). Learning what (not) to do: Testing rejection and copying of simulated heterospecific behavioural traits. Animal Behaviour, 81(4), 879883. https://doi.org/10.1016/j.anbehav.2011.01.029Google Scholar
Fragaszy, D. M. (2011). Community resources for learning: How capuchin monkeys construct technical traditions. Biological Theory, 6(3), 231240. https://doi.org/10.1007/s13752-012-0032-8Google Scholar
Frank, S. A. (2011). Natural selection. II. Developmental variability and evolutionary rate. Journal of Evolutionary Biology, 24(11), 23102320. https://doi.org/10.1111/j.1420-9101.2011.02373.xGoogle Scholar
Galef, B. G., & Beck, M. (1985). Aversive and attractive marking of toxic and safe foods by Norway rats. Behavioral and Neural Biology, 43(3), 298310. https://doi.org/10.1016/s0163-1047(85)91645-0Google Scholar
Galef, B. G., & Buckley, L. L. (1996). Use of foraging trails by Norway rats. Animal Behaviour, 51, 765771. https://doi.org/10.1006/anbe.1996.0081Google Scholar
Galef, B. G., & Heiber, L. (1976). Role of residual olfactory cues in the determination of feeding site selection and exploration patterns of domestic rats. Journal of Comparative and Physiological Psychology, 90, 727739. https://doi.org/10.1037/h0077243CrossRefGoogle ScholarPubMed
Gerbault, P., Liebert, A., Itan, Y., Powell, A., Currat, M., Burger, J., Swallow, D. M., & Thomas, M. G. (2011). Evolution of lactase persistence: An example of human niche construction. Philosophical Transactions of the Royal Society B: Biological sciences, 366, 863877. https://doi.org/10.1098/rstb.2010.0268CrossRefGoogle ScholarPubMed
Gerhart, J., & Kirschner, M. (1997). Cells, embryos & evolution. Wiley.Google Scholar
Goodall, J. (1986). The chimpanzees of Gombe: patterns of behavior. Harvard University Press.Google Scholar
Griffiths, P. E. (2002). What is innateness? The Monist, 85, 7085. https://doi.org/10.5840/monist20028518Google Scholar
Griffin, A. S., & Guez, D. (2014). Innovation and problem solving: A review of common mechanisms. Behavioural Processes, 109, 121134. https://doi.org/10.1016/j.beproc.2014.08.027Google Scholar
Gunst, N., Boinski, S., & Fragaszy, D. (2008). Acquisition of foraging competence in wild brown capuchins (Cebus apella), with special reference to conspecifics’ foraging artefacts as an indirect social influence. Behaviour, 145, 195229. https://doi.org/10.1163/156853907783244701CrossRefGoogle Scholar
Gunst, N., Boinski, S., & Fragaszy, D. (2010). Development of skilled detection and extraction of embedded prey by wild brown capuchin monkeys (Cebus apella apella). Journal of Comparative Psychology, 124, 194204. https://doi.org/10.1037/a0017723Google Scholar
Henrich, J. (2016). The secret of our success: How culture is driving human evolution, domesticating our species, and making us smarter. Princeton University Press.Google Scholar
Herrmann, E., Call, J., Hernàndez-Lloreda, M. V., Hare, B., & Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science, 317(5843), 13601366. https://doi.org/10.1126/science.1146282Google Scholar
Hinton, G. E., & Nowlan, S. J. (1987). How learning can guide evolution. Complex systems, 1, 495502.Google Scholar
Hoelzel, A. R., & Moura, A. E. (2016). Killer whales differentiating in geographic sympatry facilitated by divergent behavioural traditions. Heredity, 117, 481482. https://doi.org/10.1038/hdy.2016.112Google Scholar
Hoppitt, W., & Laland, K. N. (2013). Social learning: An introduction to mechanisms, methods, and models. Princeton University Press.Google Scholar
Jesmer, B. R., Merkle, J. A., Goheen, J. R., Aikens, E. O., Beck, J. L., Courtemanch, A. B., Hurley, M. A., McWhirter, D. E., Miyasaki, H. M., Monteith, K. L., & Kauffman, M. J. (2018). Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science, 361, 10231025. https://doi.org/10.1126/science.aat0985CrossRefGoogle ScholarPubMed
Jones, B. C., & DuVal, E. H. (2019). Mechanisms of social influence: A meta-analysis of the effects of social information on female mate choice decisions [Systematic Review]. Frontiers in Ecology and Evolution, 7, 390. https://doi.org/10.3389/fevo.2019.00390Google Scholar
Kaplan, H., Hill, K., Lancaster, J., & Hurtado, A. M. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology: Issues, News, and Reviews, 9, 156185. https://doi.org/10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7Google Scholar
Kawai, M. (1965). Newly-acquired pre-cultural behavior of the natural troop of Japanese monkeys on Koshima islet. Primates, 6, 130. https://doi.org/10.1007/BF01794457Google Scholar
Kendal, J., Tehrani, J. J., & Odling-Smee, J. (2011). Human niche construction in interdisciplinary focus. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 785792. https://doi.org/10.1098/rstb.2010.0306Google Scholar
Kendal, R. L., Boogert, N. J., Rendell, L., Laland, K. N., Webster, M., & Jones, P. L. (2018). Social learning strategies: Bridge-building between fields. Trends in Cognitive Sciences, 22, 651665. https://doi.org/10.1016/j.tics.2018.04.003Google Scholar
Lachlan, R. F., & Slater, P. J. B. (1999). The maintenance of vocal learning by gene-culture interaction: The cultural trap hypothesis. Proceedings of the Royal Society B: Biological Sciences, 266, 701706. https://doi.org/10.1098/rspb.1999.0692Google Scholar
Laland, K. N. (1994a). Sexual selection with a culturally transmitted mating preference. Theoretical Population Biology, 45, 115. https://doi.org/10.1006/tpbi.1994.1001Google Scholar
Laland, K. N. (1994b). On the evolutionary consequences of sexual imprinting. Evolution, 48, 477489. https://doi.org/10.1111/j.1558-5646.1994.tb01325.x.Google Scholar
Laland, K. N. (2004). Social learning strategies. Animal Learning & Behavior, 32, 414. https://doi.org/10.3758/BF03196002Google Scholar
Laland, K. N. (2017). Darwin’s Unfinished Symphony: How culture made the human mind. Princeton University Press.Google Scholar
Laland, K. N., Matthews, B., & Feldman, M. W. (2016). An introduction to niche construction theory. Evolutionary Ecology, 30, 191202. https://doi.org/10.1007/s10682-016-9821-zCrossRefGoogle ScholarPubMed
Laland, K. N., & O’Brien, M. J. (2011). Cultural niche construction: An introduction. Biological Theory, 6, 191202. https://doi.org/10.1007/s13752-012-0026-6Google Scholar
Laland, K. N., Odling-Smee, J., & Feldman, M. W. (2001). Cultural niche construction and human evolution. Journal of Evolutionary Biology, 14, 2233. https://doi.org/10.1073/pnas.96.18.10242Google Scholar
Laland, K. N., Odling-Smee, J., & Myles, S. (2010). How culture shaped the human genome: Bringing genetics and the human sciences together. Nature Reviews Genetics, 11, 137148. https://doi.org/10.1038/nrg2734Google Scholar
Laland, K. N., & Plotkin, H. C. (1991). Excretory deposits surrounding food sites facilitate social learning of food preferences in Norway rats. Animal Behaviour, 41, 9971005. https://doi.org/10.1016/S0003-3472(05)80638-4Google Scholar
Laland, K. N., Toyokawa, W., & Oudman, T. (2019). Animal learning as a source of developmental bias. Evolution & Development, 22, 126142. https://doi.org/10.1111/ede.12311Google Scholar
Le, Q. V., Isbell, L. A., Matsumoto, J., Nguyen, M., Hori, E., Maior, R. S., Tomaz, C., Tran, A. H., Ono, T., & Nishijo, H. (2013). Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. Proceedings of the National Academy of Sciences, 110, 19000. https://doi.org/10.1073/pnas.1312648110Google ScholarPubMed
Leadbeater, E., & Chittka, L. (2007). Social learning in insects – From miniature brains to consensus building. Current Biology, 17, R703R713. https://doi.org/10.1016/j.cub.2007.06.012Google Scholar
Leadbeater, E., & Dawson, E. H. (2017). A social insect perspective on the evolution of social learning mechanisms. Proceedings of the National Academy of Sciences, 114, 7838. https://doi.org/10.1073/pnas.1620744114Google Scholar
Lefebvre, L., Whittle, P., Lascaris, E., & Finkelstein, A. (1997). Feeding innovations and forebrain size in birds. Animal Behaviour, 53, 549560. https://doi.org/10.1006/anbe.1996.0330CrossRefGoogle Scholar
Levis, N. A., & Pfennig, D. W. (2016). Evaluating ‘plasticity-first’ evolution in nature: Key criteria and empirical approaches. Trends in Ecology and Evolution, 31, 563574. https://doi.org/10.1016/j.tree.2016.03.012Google Scholar
Lewontin, R. C. (1983). Gene, organism, and environment. In Bendall, D. S. (Ed.), Evolution from molecules to men (pp. 273285). Cambridge University Press.Google Scholar
Marler, P., & Tamura, M. (1964). Culturally transmitted patterns of vocal behavior in sparrows. Science, 146(3650), 14831486. https://doi.org/10.1126/science.146.3650.1483Google Scholar
Mason, J. R., & Reidinger, R. F. (1982). Observational learning of food aversions in red-winged blackbirds (Agelaius phoeniceus). The Auk, 99, 548554. https://doi.org/10.1093/auk/99.3.548Google Scholar
Mercader, J., Barton, H., Gillespie, J., Harris, J., Kuhn, S., Tyler, R., & Boesch, C. (2007). 4,300-Year-old chimpanzee sites and the origins of percussive stone technology. Proceedings of the National Academy of Sciences, 104, 3043. https://doi.org/10.1073/pnas.0607909104Google Scholar
Mills, R., & Watson, R. A. (2006). On crossing fitness valleys with the Baldwin effect. In Rocha, L. M., Bedau, M., Floreano, D., Goldstone, R., Vespignani, A., & Yaeger, L. (Eds.), Proceedings of the tenth international conference on the simulation and synthesis of living systems (pp. 493499). MIT Press.Google Scholar
Mineka, S., & Cook, M. (1988). Social learning and the acquisition of snake fear in monkeys. In Galef, B. G. & Zentall, T. R. (Eds.), Social learning: Psychological and biological perspectives (pp. 5173). Lawrence Erlbaum.Google Scholar
Musgrave, S., Morgan, D., Lonsdorf, E., Mundry, R., & Sanz, C. (2016). Tool transfers are a form of teaching among chimpanzees. Scientific Reports, 6, 34783. https://doi.org/10.1038/srep34783Google Scholar
Muthukrishna, M., & Henrich, J. (2016). Innovation in the collective brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1690), 20150192. https://doi.org/10.1098/rstb.2015.0192Google Scholar
Navarrete, A. F., Reader, S. M., Street, S. E., Whalen, A., & Laland, K. N. (2016). The coevolution of innovation and technical intelligence in primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1690), 20150186. https://doi.org/10.1098/rstb.2015.0186Google Scholar
Nicolakakis, N., Sol, D., & Lefebvre, L. (2003). Behavioural flexibility predicts species richness in birds, but not extinction risk. Animal Behaviour, 65, 445452. https://doi.org/10.1006/anbe.2003.2085Google Scholar
O’Brien, M. J., & Laland, K. N. (2012). Genes, culture, and agriculture: An example of human niche construction. Current Anthropology, 53, 434470. https://doi.org/10.1086/666585Google Scholar
Odling-Smee, F., Laland, K., & Feldman, M. (2003). Niche construction: The neglected process in evolution. Princeton University Press.Google Scholar
Odling-Smee, J., Erwin, D. H., Palkovacs, E. P., Feldman, M. W., & Laland, K. N. (2013). Niche construction theory: A practical guide for ecologists. The Quarterly Review of Biology, 88, 328. https://doi.org/10.1086/669266Google Scholar
Olsson, A., & Phelps, E. A. (2007). Social learning of fear. Nature Neuroscience, 10, 10951102. https://doi.org/10.1038/nn1968Google Scholar
Oudman, T., Laland, K., Ruxton, G., Tombre, I., Shimmings, P., & Prop, J. (2020). Young birds switch but old birds lead: how barnacle geese adjust migratory habits to environmental change. Frontiers in Ecology and Evolution, 7, 502). https://doi.org/10.3389/fevo.2019.00502Google Scholar
Overington, S. E., Morand-Ferron, J., Boogert, N. J., & Lefebvre, L. (2009). Technical innovations drive the relationship between innovativeness and residual brain size in birds. Animal Behaviour, 78, 10011010. https://doi.org/10.1016/j.anbehav.2009.06.033Google Scholar
Paenke, I., Sendhoff, B., & Kawecki, Tadeusz J. (2007). Influence of plasticity and learning on evolution under directional selection. The American Naturalist, 170, E47E58. https://doi.org/10.1086/518952Google Scholar
Price, T. D., Qvarnström, A., & Irwin, D. E. (2003). The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society B: Biological Sciences, 270, 14331440. https://doi.org/10.1098/rspb.2003.2372Google Scholar
Reader, S. M., Hager, Y., & Laland, K. N. (2011). The evolution of primate general and cultural intelligence. Philosophical Transactions of the Royal Society B, 366, 10171027. https://doi.org/10.1098/rstb.2010.0342Google Scholar
Reader, S. M., & Laland, K. N. (2002). Social intelligence, innovation, and enhanced brain size in primates. Proceedings of the National Academy of Sciences, 99, 4436. https://doi.org/10.1073/pnas.062041299Google Scholar
Reader, S. M., & Laland, K. N. (2003). Animal innovation: An introduction. In Reader, S. M. & Laland, K. N. (Eds.), Animal innovation (pp. 335). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198526223.003.0001Google Scholar
Reader, S. M., Morand-Ferron, J., & Flynn, E. (2016). Animal and human innovation: Novel problems and novel solutions. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150182. https://doi.org/10.1098/rstb.2015.0182CrossRefGoogle ScholarPubMed
Rendell, L., Boyd, R., Cownden, D., Enquist, M., Eriksson, K., Feldman, M. W., Fogarty, L., Ghirlanda, S., Lillicrap, T., & Laland, K. N. (2010). Why copy others? Insights from the social learning strategies tournament. Science, 328, 208213. https://doi.org/10.1126/science.1184719Google Scholar
Rendell, L., Fogarty, L., & Laland, K. N. (2011). Runaway cultural niche construction. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 823835. https://doi.org/10.1098/rstb.2010.0256Google Scholar
Rendell, L., & Whitehead, H. (2001). Culture in whales and dolphins. Behavioral and Brain Sciences, 24, 309324; discussion 324–382. https://doi.org/10.1017/s0140525x0100396xGoogle Scholar
Richerson, P., & Henrich, J. (2012). Tribal social instincts and the cultural evolution of institutions to solve collective action problems. Cliodynamics: The Journal of Theoretical and Mathematical History, 3, 3880. http://dx.doi.org/10.2139/ssrn.1368756Google Scholar
Riesch, R., Barrett-Lennard, L., Ellis, G., Ford, J., & Deecke, V. (2012). Cultural traditions and the evolution of reproductive isolation: Ecological speciation in killer whales? Biological Journal of the Linnean Society, 106, 117. https://doi.org/10.1111/j.1095-8312.2012.01872.xGoogle Scholar
Russon, A. E. (2003). Innovation and creativity in forest-living rehabilitant orangutans. In Reader, S. M. & Laland, K. N. (Eds.), Animal innovation (pp. 279306). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198526223.003.0013CrossRefGoogle Scholar
Ryan, P. A., Powers, S. T., & Watson, R. A. (2016). Social niche construction and evolutionary transitions in individuality. Biology & Philosophy, 31, 5979. https://doi.org/10.1007/s10539-015-9505-zGoogle Scholar
Sargeant, B. L., & Mann, J. (2009). Developmental evidence for foraging traditions in wild bottlenose dolphins. Animal Behaviour, 78, 715721. https://doi.org/10.1016/j.anbehav.2009.05.037Google Scholar
Sarin, S., & Dukas, R. (2009). Social learning about egg-laying substrates in fruitflies. Proceedings of the Royal Society B: Biological Sciences, 276, 43234328. https://doi.org/10.1098/rspb.2009.1294Google Scholar
Seppänen, J.-T., Forsman, J. T., Mönkkönen, M., Krams, I., & Salmi, T. (2011). New behavioural trait adopted or rejected by observing heterospecific tutor fitness. Proceedings of the Royal Society B: Biological sciences, 278, 17361741. https://doi.org/10.1098/rspb.2010.1610Google Scholar
Sherry, D., & Galef, B. (1984). Cultural transmission without imitation: Milk bottle opening by birds. Animal Behaviour, 32, 937938. https://doi.org/10.1016/S0003-3472(84)80185-2Google Scholar
Slagsvold, T., & Wiebe, K. (2007). Learning the ecological niche. Proceedings of the Royal Society B: Biological Sciences, 274, 1923. https://doi.org/10.1098/rspb.2006.3663Google Scholar
Snell-Rood, E. C., Kobiela, M. E., Sikkink, K. L., & Shephard, A. M. (2018). Mechanisms of plastic rescue in novel environments. Annual Review of Ecology, Evolution, and Systematics, 49, 331354. https://doi.org/10.1146/annurev-ecolsys-110617-062622Google Scholar
Sol, D., & Lefebvre, L. (2000). Behavioural flexibility predicts invasion success in birds introduced to New Zealand. Oikos, 90, 599605. https://doi.org/10.1034/j.1600-0706.2000.900317.xGoogle Scholar
Sol, D., Stirling, D. G., & Lefebvre, L. (2005). Behavioral drive or behavioral inhibition in evolution: Subspecific diversification in Holarctic passerines. Evolution, 59, 26692677. https://doi.org/10.1111/j.0014-3820.2005.tb00978.xGoogle Scholar
Staddon, J. E. R. (2016). Adaptive behavior and learning (2nd ed.). Cambridge University Press.Google Scholar
Stephenson, G. (1967). Cultural acquisition of a specific learned response among rhesus monkeys. In Starek, D., Schneider, R., & Kuhn, H.J. (Eds.), Progress in Primatology (pp. 279288). Gustav Fisher Verlag.Google Scholar
Stickland, T. R., Britton, N. F., & Franks, N. R. (1995). Complex trails and simple algorithms in ant foraging. Proceedings of the Royal Society B: Biological Sciences, 260, 5358. https://doi.org/10.1098/rspb.1995.0058Google Scholar
Street, S. E., Navarrete, A. F., Reader, S. M., & Laland, K. N. (2017). Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates. Proceedings of the National Academy of Sciences, 114, 7908. https://doi.org/10.1073/pnas.1620734114Google Scholar
Suboski, M. D., Bain, S., Carty, A. E., McQuoid, L. M., Seelen, M. I., & Seifert, M. (1990). Alarm reaction in acquisition and social transmission of simulated-predator recognition by zebra danio fish (Brachydanio rerio). Journal of Comparative Psychology, 104, 101112. https://doi.org/10.1037/0735-7036.104.1.101Google Scholar
Sutherland, W. J. (1998). Evidence for flexibility and constraint in migration systems. Journal of Avian Biology, 29, 441446. https://doi.org/10.2307/3677163CrossRefGoogle Scholar
Thorogood, R., & Davies, N. B. (2012). Cuckoos combat socially transmitted defenses of reed warbler hosts with a plumage polymorphism. Science, 337(6094), 578580. https://doi.org/10.1126/science.1220759Google Scholar
Tombre, I. M., Oudman, T., Shimmings, P., Griffin, L., & Prop, J. (2019). Northward range expansion in spring-staging barnacle geese is a response to climate change and population growth, mediated by individual experience. Global Change Biology, 25, 36803693. https://doi.org/10.1111/gcb.14793CrossRefGoogle ScholarPubMed
Uller, T., Moczek, A. P., Watson, R. A., Brakefield, P. M., & Laland, K. N. (2018). Developmental bias and evolution: A regulatory network perspective. Genetics, 209, 949. https://doi.org/10.1534/genetics.118.300Google Scholar
Varela, S. A. M., Matos, M., & Schlupp, I. (2018). The role of mate-choice copying in speciation and hybridization. Biological Reviews, 93, 13041322. https://doi.org/10.1111/brv.12397Google Scholar
Verzijden, M. N., & ten Cate, C. (2007). Early learning influences species assortative mating preferences in Lake Victoria cichlid fish. Biology Letters, 3, 134136. https://doi.org/10.1098/rsbl.2006.0601Google Scholar
Verzijden, M. N., ten Cate, C., Servedio, M. R., Kozak, G. M., Boughman, J. W., & Svensson, E. I. (2012). The impact of learning on sexual selection and speciation. Trends in Ecology and Evolution, 27, 511519. https://doi.org/10.1016/j.tree.2012.05.007Google Scholar
Waddington, C. H. (1953). Genetic assimilation of an acquired character. Evolution, 7, 118126. https://doi.org/10.1111/j.1558-5646.1953.tb00070.xGoogle Scholar
West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.Google Scholar
Whalen, A., Cownden, D., & Laland, K. (2015). The learning of action sequences through social transmission. Animal Cognition, 18, 10931103. https://doi.org/10.1007/s10071-015-0877-xGoogle Scholar
Whitehead, H., Laland, K. N., Rendell, L., Thorogood, R., & Whiten, A. (2019). The reach of gene–culture coevolution in animals. Nature Communications, 10(1), 110. https://doi.org/10.1038/s41467-019-10293-yGoogle Scholar
Whitehead, H., and Rendell, L. (2014). The cultural lives of whales and dolphins. University of Chicago Press.Google Scholar
Whiten, A. (2017). A second inheritance system: The extension of biology through culture. Interface Focus, 7, 20160142. https://doi.org/10.1098/rsfs.2016.0142Google Scholar
Whiten, A., Goodall, J., McGrew, W. C., Nishida, T., Reynolds, V., Sugiyama, Y., Tutin, C. E., Wrangham, R. W., & Boesch, C. (1999). Cultures in chimpanzees. Nature, 399, 682685. https://doi.org/10.1038/21415Google Scholar
Wilkinson, G. S. (1992). Information transfer at evening bat colonies. Animal Behaviour, 44, 501518. https://doi.org/10.1016/0003-3472(92)90059-IGoogle Scholar
Yamagishi, T., & Hashimoto, H. (2016). Social niche construction. Current Opinion in Psychology, 8, 119124. https://doi.org/10.1016/j.copsyc.2015.10.003CrossRefGoogle ScholarPubMed
Zohar, O., & Terkel, J. (1996). Social and environmental factors modulate the learning of pine-cone stripping techniques by black rats, Rattus rattus. Animal Behaviour, 51(3), 611618. https://doi.org/10.1006/anbe.1996.0065Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×