Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T05:54:05.207Z Has data issue: false hasContentIssue false

Part I - Evolution of Learning Processes

Published online by Cambridge University Press:  26 May 2022

Mark A. Krause
Affiliation:
Southern Oregon University
Karen L. Hollis
Affiliation:
Mount Holyoke College, Massachusetts
Mauricio R. Papini
Affiliation:
Texas Christian University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Amano, H., & Maruyama, I. N. (2011). Aversive olfactory learning and associative long-term memory in Caenorhabditis elegans. Learning & Memory, 18, 654665. https://doi.org/10.1101/lm.2224411CrossRefGoogle ScholarPubMed
Ardiel, E. L., Giles, A. C., Yu, A. J., Lindsay, T. H., Lockery, S. R., & Rankin, C. H. (2016). Dopamine receptor DOP-4 modulates habituation to repetitive photoactivation of a C. elegans polymodal nociceptor. Learning & Memory, 23, 495503. https://doi.org/10.1101/lm.041830.116Google Scholar
Ardiel, E. L., McDiarmid, T. A., Timbers, T. A., Lee, K. C. Y., Safaei, J., Pelech, S. L., & Rankin, C. H. (2018). Insights into the roles of CMK-1 and OGT-1 in interstimulus interval-dependent habituation in Caenorhabditis elegans. Proceedings of the Royal Society B: Biological Sciences, 285, 20182084. https://doi.org/10.1098/rspb.2018.2084Google Scholar
Ardiel, E. L., Yu, A. J., Giles, A. C., & Rankin, C. H. (2017). Habituation as an adaptive shift in response strategy mediated by neuropeptides. npj Science of Learning, 2, 9. https://doi.org/10.1038/s41539–017-0011-8Google Scholar
Bargmann, C. I. (2006). Chemosensation in C. elegans. WormBook, ed. The C. elegans research community. https://doi.org/10.1895/wormbook.1.123.1, www.wormbook.org.Google Scholar
Beck, C. D., & Rankin, C. H. (1995). Heat shock disrupts long-term memory consolidation in Caenorhabditis elegans. Learning & Memory, 2(3–4), 161177. https://doi.org/10.1101/lm.2.3-4.161CrossRefGoogle ScholarPubMed
Beets, I., Janssen, T., Meelkop, E., Temmerman, L., Suetens, N., Rademakers, S., … Schoofs, L. (2012). Vasopressin/oxytocin-related signaling regulates gustatory associative learning in C. elegans. Science, 338, 543545. https://doi.org/10.1126/science.1226860Google Scholar
Bernhard, N., & van der Kooy, D. (2000). A behavioral and genetic dissection of two forms of olfactory plasticity in Caenorhabditis elegans: Adaptation and habituation. Learning and Memory, 7, 199212. https://doi.org/10.1101/lm.7.4.199Google Scholar
Biron, D., Wasserman, S., Thomas, J. H., Samuel, A. D. T., & Sengupta, P. (2008). An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior. Proceedings of the National Academy of Sciences, 105, 1100211007. https://doi.org/10.1073/pnas.0805004105CrossRefGoogle ScholarPubMed
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77(1), 7194. www.ncbi.nlm.nih.gov/pubmed/4366476CrossRefGoogle ScholarPubMed
Byrne, J. H., & Hawkins, R. D. (2015). Nonassociative learning in invertebrates. Cold Spring Harbor Perspectives in Biology, 7, a021675. https://doi.org/10.1101/cshperspect.a021675Google Scholar
The C. elegans Sequencing Consortium. (1998). Genome sequence of the nematode C. elegans: A platform for investigating biology. Science, 282, 20122018. https://doi.org/10.1126/science.282.5396.2012CrossRefGoogle Scholar
Chen, Z., Hendricks, M., Cornils, A., Maier, W., Alcedo, J., & Zhang, Y. (2013). Two insulin-like peptides antagonistically regulate aversive olfactory learning in C. elegans. Neuron, 77, 572585. https://doi.org/10.1016/j.neuron.2012.11.025CrossRefGoogle ScholarPubMed
Cheung, B. H. H., Cohen, M., Rogers, C., Albayram, O., & De Bono, M. (2005). Experience-dependent modulation of C. elegans behavior by ambient oxygen. Current Biology, 15, 905917. https://doi.org/10.1016/j.cub.2005.04.017Google Scholar
Chew, Y. L., Tanizawa, Y., Cho, Y., Zhao, B., Yu, A. J., Ardiel, E. L., … Schafer, W. R. (2018). An afferent neuropeptide system transmits mechanosensory signals triggering sensitization and arousal in C. elegans. Neuron, 99, 12331246.e6. https://doi.org/10.1016/j.neuron.2018.08.003Google Scholar
Clark, D. A., Biron, D., Sengupta, P., & Samuel, A. D. T. (2006). The AFD sensory neurons encode multiple functions underlying thermotactic behavior in Caenorhabditis elegans. Journal of Neuroscience, 26, 74447451. https://doi.org/10.1523/JNEUROSCI.1137-06.2006CrossRefGoogle ScholarPubMed
Das, S., Sadanandappa, M. K., Dervan, A., Larkin, A., Lee, J. A., Sudhakaran, I. P., … Ramaswamia, M. (2011). Plasticity of local GABAergic interneurons drives olfactory habituation. Proceedings of the National Academy of Sciences, 108(36): E646E654. https://doi.org/10.1073/pnas.1106411108Google Scholar
Fenk, L. A., & de Bono, M. (2017). Memory of recent oxygen experience switches pheromone valence in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 114, 41954200. https://doi.org/10.1073/pnas.1618934114Google Scholar
Gray, J. M., Hill, J. J., & Bargmann, C. I. (2005). A circuit for navigation in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 102, 31843191. https://doi.org/10.1073/pnas.0409009101Google Scholar
Groves, P. M., & Thompson, R. F. (1970). Habituation: A dual-process theory. Psychological Review, 77(5), 419450. www.ncbi.nlm.nih.gov/pubmed/4319167CrossRefGoogle ScholarPubMed
Hart, A. C., Kass, J., Shapiro, J. E., & Kaplan, J. M. (1999). Distinct signaling pathways mediate touch and osmosensory responses in a polymodal sensory neuron. Journal of Neuroscience, 19, 19521958. https://doi.org/10.1523/jneurosci.19-06-01952.1999Google Scholar
Hedgecock, E. M., & Russell, R. L. (1975). Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 72, 40614065. https://doi.org/10.1073/pnas.72.10.4061Google Scholar
Hong, M., Ryu, L., Ow, M. C., Kim, J., Je, A. R., Chinta, S., … Kim, K. (2017). Early pheromone experience modifies a synaptic activity to influence adult pheromone responses of C. elegans. Current Biology, 27, 3168–3177.e3. https://doi.org/10.1016/j.cub.2017.08.068CrossRefGoogle ScholarPubMed
Hukema, R. K., Rademakers, S., & Jansen, G. (2008). Gustatory plasticity in C. elegans involves integration of negative cues and NaCl taste mediated by serotonin, dopamine, and glutamate. Learning and Memory, 15, 829836. https://doi.org/10.1101/lm.994408CrossRefGoogle Scholar
Jin, X., Pokala, N., & Bargmann, C. I. (2016). Distinct circuits for the formation and retrieval of an imprinted olfactory memory. Cell, 164, 632643. https://doi.org/10.1016/j.cell.2016.01.007Google Scholar
Kano, T., Brockie, P. J., Sassa, T., Fujimoto, H., Kawahara, Y., Iino, Y., … Maricq, A. V. (2008). Memory in Caenorhabditis elegans is mediated by NMDA-type ionotropic glutamate receptors. Current Biology, 18, 10101015. https://doi.org/10.1016/j.cub.2008.05.051CrossRefGoogle ScholarPubMed
Kauffman, A. L., Ashraf, J. M., Corces-Zimmerman, M. R., Landis, J. N., & Murphy, C. T. (2010). Insulin signaling and dietary restriction differentially influence the decline of learning and memory with age. PLoS Biology, 8, e1000372. https://doi.org/10.1371/journal.pbio.1000372Google Scholar
Kindt, K. S., Quast, K. B., Giles, A. C., De, S., Hendrey, D., Nicastro, I., … Schafer, W. R. (2007). Dopamine mediates context-dependent modulation of sensory plasticity in C. elegans. Neuron, 55, 662676. https://doi.org/10.1016/j.neuron.2007.07.023CrossRefGoogle ScholarPubMed
Kodama, E., Kuhara, A., Mohri-Shiomi, A., Kimura, K. D., Okumura, M., Tomioka, M., … Mori, I. (2006). Insulin-like signaling and the neural circuit for integrative behavior in C. elegans. Genes and Development, 20, 29552960. https://doi.org/10.1101/gad.1479906Google Scholar
Kuhara, A., & Mori, I. (2006). Molecular physiology of the neural circuit for calcineurin-dependent associative learning in Caenorhabditis elegans. Journal of Neuroscience, 26, 93559364. https://doi.org/10.1523/JNEUROSCI.0517-06.2006Google Scholar
Kuhara, A., Okumura, M., Kimata, T., Tanizawa, Y., Takano, R., Kimura, K. D., … Mori, I. (2008). Temperature sensing by an olfactory neuron in a circuit controlling behavior of C. elegans. Science, 320, 803807. https://doi.org/10.1126/science.1148922CrossRefGoogle Scholar
Landry, C. D., Kandel, E. R., & Rajasethupathy, P. (2013). New mechanisms in memory storage: PiRNAs and epigenetics. Trends in Neurosciences, 36, 534542. https://doi.org/10.1016/j.tins.2013.05.004CrossRefGoogle ScholarPubMed
Lau, H. L., Timbers, T. A, Mahmoud, R., & Rankin, C. H. (2013). Genetic dissection of memory for associative and non-associative learning in Caenorhabditis elegans. Genes, Brain and Behavior, 12, 210223. https://doi.org/10.1111/j.1601-183X.2012.00863.xGoogle Scholar
Lee, K., & Mylonakis, E. (2017). An intestine-derived neuropeptide controls avoidance behavior in Caenorhabditis elegans. Cell Reports, 20, 25012512. https://doi.org/10.1016/j.celrep.2017.08.053Google Scholar
Li, C., Timbers, T. A., Rose, J. K., Bozorgmehr, T., McEwan, A., & Rankin, C. H. (2013). The FMRFamide-related neuropeptide FLP-20 is required in the mechanosensory neurons during memory for massed training in C. elegans. Learning & Memory, 20, 103108. https://doi.org/10.1101/lm.028993.112CrossRefGoogle ScholarPubMed
Lim, J. P., Fehlauer, H., Das, A., Saro, G., Glauser, D. A., Brunet, A., & Goodman, M. B. (2018). Loss of CaMKI function disrupts salt aversive learning in C. elegans. Journal of Neuroscience, 38, 61146129. https://doi.org/10.1523/JNEUROSCI.1611-17.2018CrossRefGoogle ScholarPubMed
Lorenz, K. Z. (1981). The foundations of ethology. Springer Vienna. https://doi.org/10.1007/978-3-7091-3671-3Google Scholar
Mita, K., Yamagishi, M., Fujito, Y., Lukowiak, K., & Ito, E. (2014). An increase in insulin is important for the acquisition conditioned taste aversion in Lymnaea. Neurobiology of Learning and Memory, 116, 132138. https://doi.org/10.1016/j.nlm.2014.10.006Google Scholar
Mohri, A., Kodama, E., Kimura, K. D., Koike, M., Mizuno, T., & Mori, I. (2005). Genetic control of temperature preference in the nematode Caenorhabditis elegans. Genetics, 169, 14371450. https://doi.org/10.1534/genetics.104.036111CrossRefGoogle ScholarPubMed
Moore, R. S., Kaletsky, R., & Murphy, C. T. (2019). Piwi/PRG-1 Argonaute and TGF-β mediate transgenerational learned pathogenic avoidance. Cell, 177, 18271841.e12. https://doi.org/10.1016/j.cell.2019.05.024CrossRefGoogle ScholarPubMed
Mori, I., & Ohshima, Y. (1995). Neural regulation of thermotaxis in Caenorhabditis elegans. Nature, 376(6538), 344348. https://doi.org/10.1038/376344a0Google Scholar
Morrison, G. E., & van der Kooy, D. (2001). A mutation in the AMPA-type glutamate receptor, glr-1, blocks olfactory associative and nonassociative learning in Caenorhabditis elegans. Behavioral Neuroscience, 115, 640649. https://doi.org/10.1037/0735-7044.115.3.640Google Scholar
Morrison, G. E., Wen, J. Y. M., Runciman, S., & van der Kooy, D. (1999). Olfactory associative learning in Caenorhabditis elegans is impaired in lrn-1 and lrn-2 mutants. Behavioral Neuroscience, 113, 358367. https://doi.org/10.1037//0735-7044.113.2.358Google Scholar
Nishijima, S., & Maruyama, I. N. (2017). Appetitive olfactory learning and long-term associative memory in Caenorhabditis elegans. Frontiers in Behavioral Neuroscience, 11, 80. https://doi.org/10.3389/fnbeh.2017.00080Google Scholar
Nuttley, W. M., Atkinson-Leadbeater, K. P., & van der Kooy, D. (2002). Serotonin mediates food-odor associative learning in the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 99, 1244912454. https://doi.org/10.1073/pnas.192101699CrossRefGoogle Scholar
Nuttley, W. M., Harbinder, S., & van der Kooy, D. (2001). Regulation of distinct attractive and aversive mechanisms mediating benzaldehyde chemotaxis in Caenorhabditis elegans. Learning and Memory, 8, 170181. https://doi.org/10.1101/lm.36501Google Scholar
Ohnishi, N., Kuhara, A., Nakamura, F., Okochi, Y., & Mori, I. (2011). Bidirectional regulation of thermotaxis by glutamate transmissions in Caenorhabditis elegans. EMBO Journal, 30, 13761388. https://doi.org/10.1038/emboj.2011.13CrossRefGoogle ScholarPubMed
Peymen, K., Watteyne, J., Borghgraef, C., Van Sinay, E., Beets, I., & Schoofs, L. (2019). Myoinhibitory peptide signaling modulates aversive gustatory learning in Caenorhabditis elegans. PLOS Genetics, 15, e1007945. https://doi.org/10.1371/journal.pgen.1007945CrossRefGoogle ScholarPubMed
Pierce-Shimomura, J. T., Faumont, S., Gaston, M. R., Pearson, B. J., & Lockery, S. R. (2001). The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans. Nature, 410, 694698. https://doi.org/10.1038/35070575Google Scholar
Pinsker, H., Kupfermann, I., Castellucci, V., & Kandel, E. (1970). Habituation and dishabituation of the gill-withdrawal reflex in Aplysia. Science, 167, 17401742. https://doi.org/10.1126/science.167.3926.1740Google Scholar
Ramaswami, M. (2014). Network plasticity in adaptive filtering and behavioral habituation. Neuron, 82, 12161229. https://doi.org/10.1016/j.neuron.2014.04.035CrossRefGoogle ScholarPubMed
Rankin, C. H., Abrams, T., Barry, R. J., Bhatnagar, S., Clayton, D. F., Colombo, J., … Thompson, R. F. (2009). Habituation revisited: An updated and revised description of the behavioral characteristics of habituation. Neurobiology of Learning and Memory, 92, 135138. https://doi.org/10.1016/j.nlm.2008.09.012Google Scholar
Rankin, C. H., Beck, C. D., & Chiba, C. M. (1990). Caenorhabditis elegans: A new model system for the study of learning and memory. Behavioural Brain Research, 37, 8992. https://doi.org/10.1016/0166-4328(90)90074-OCrossRefGoogle Scholar
Rankin, C. H., & Broster, B. S. (1992). Factors affecting habituation and recovery from habituation in the nematode Caenorhabditis elegans. Behavioral Neuroscience, 106, 239249. https://doi.org/10.1037/0735-7044.106.2.239CrossRefGoogle ScholarPubMed
Rankin, C. H., & Wicks, S. R. (2000). Mutations of the Caenorhabditis elegans brain-specific inorganic phosphate transporter eat-4 affect habituation of the tap-withdrawal response without affecting the response itself. Journal of Neuroscience, 20, 43374344.Google Scholar
Remy, J. J., & Hobert, O. (2005). Neuroscience: An interneuronal chemoreceptor required for olfactory imprinting in C. elegans. Science, 309, 787790. https://doi.org/10.1126/science.1114209CrossRefGoogle Scholar
Rose, J. K., Kaun, K. R., Chen, S. H., & Rankin, C. H. (2003). GLR-1, a non-NMDA glutamate receptor homolog, is critical for long-term memory in Caenorhabditis elegans. Journal of neuroscience, 23, 95959599. https://doi.org/10.1523/JNEUROSCI.23-29-09595.2003CrossRefGoogle ScholarPubMed
Rose, J. K., Kaun, K. R., & Rankin, C. H. (2002). A new group-training procedure for habituation demonstrates that presynaptic glutamate release contributes to long-term memory in Caenorhabditis elegans. Learning and Memory, 9, 130137. https://doi.org/10.1101/lm.46802Google Scholar
Rose, J. K., & Rankin, C. H. (2006). Blocking memory reconsolidation reverses memory-associated changes in glutamate receptor expression. Journal of Neuroscience, 26, 1158211587. https://doi.org/10.1523/JNEUROSCI.2049-06.2006CrossRefGoogle ScholarPubMed
Saeki, S., Yamamoto, M., & Iino, Y. (2001). Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. Journal of Experimental Biology, 204(10), 17571764. https://doi.org/10.1242/jeb.204.10.1757CrossRefGoogle ScholarPubMed
Sakai, N., Iwata, R., Yokoi, S., Butcher, R. A., Clardy, J., Tomioka, M., & Iino, Y. (2013). A sexually conditioned switch of chemosensory behavior in C. elegans. PLoS ONE, 8(7): e68676. https://doi.org/10.1371/journal.pone.0068676CrossRefGoogle ScholarPubMed
Sammut, M., Cook, S. J., Nguyen, K. C. Q., Felton, T., Hall, D. H., Emmons, S. W., … Barrios, A. (2015). Glia-derived neurons are required for sex-specific learning in C. elegans. Nature, 526(7573), 385390. https://doi.org/10.1038/nature15700CrossRefGoogle ScholarPubMed
Schulenburg, H., & Félix, M. A. (2017). The natural biotic environment of Caenorhabditis elegans. Genetics, 206, 5586. https://doi.org/10.1534/genetics.116.195511Google Scholar
Sulston, J. E., Schierenberg, E., White, J. G., & Thomson, J. N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental Biology, 100, 64119. https://doi.org/10.1016/0012-1606(83)90201-4Google Scholar
Timbers, T. A., Giles, A. C., Ardiel, E. L., Kerr, R. A., & Rankin, C. H. (2013). Intensity discrimination deficits cause habituation changes in middle-aged Caenorhabditis elegans. Neurobiology of Aging, 34, 621631. https://doi.org/10.1016/j.neurobiolaging.2012.03.016Google Scholar
Timbers, T. A., & Rankin, C. H. (2011). Tap withdrawal circuit interneurons require CREB for long-term habituation in Caenorhabditis elegans. Behavioral Neuroscience, 125, 560566. https://doi.org/10.1037/a0024370CrossRefGoogle ScholarPubMed
Tomioka, M., Adachi, T., Suzuki, H., Kunitomo, H., Schafer, W. R., & Iino, Y. (2006). The Insulin/PI 3-Kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans. Neuron, 51, 613625. https://doi.org/10.1016/j.neuron.2006.07.024CrossRefGoogle ScholarPubMed
Torayama, I., Ishihara, T., & Katsura, I. (2007). Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone. Journal of Neuroscience, 27, 741750. https://doi.org/10.1523/JNEUROSCI.4312-06.2007CrossRefGoogle ScholarPubMed
Wen, J. Y. M., Kumar, N., Morrison, G., Rambaldini, G., Runciman, S., Rousseau, J., & Van Der Kooy, D. (1997). Mutations that prevent associative learning in C. elegans. Behavioral Neuroscience, 111, 354368. https://doi.org/10.1037/0735-7044.111.2.354CrossRefGoogle ScholarPubMed
White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 314, 1340.Google Scholar
Wicks, S. R., & Rankin, C. H. (1995). Integration of mechanosensory stimuli in Caenorhabditis elegans. Journal of Neuroscience, 15, 24342444.Google Scholar
Wu, T., Duan, F., Yang, W., Liu, H., Caballero, A., Fernandes de Abreu, D. A., … Zhang, Y. (2019). Pheromones modulate learning by regulating the balanced signals of two insulin-like peptides. Neuron, 104, 10951109.e5. https://doi.org/10.1016/j.neuron.2019.09.006Google Scholar
Yamazoe-Umemoto, A., Fujita, K., Iino, Y., Iwasaki, Y., & Kimura, K. D. (2015). Modulation of different behavioral components by neuropeptide and dopamine signalings in non-associative odor learning of Caenorhabditis elegans. Neuroscience Research, 99, 2233. https://doi.org/10.1016/j.neures.2015.05.009Google Scholar
Zhang, X., & Zhang, Y. (2012). DBL-1, a TGF-β, is essential for Caenorhabditis elegans aversive olfactory learning. Proceedings of the National Academy of Sciences USA, 109, 1708117086. https://doi.org/10.1073/pnas.1205982109Google Scholar
Zhang, Y., Lu, H., & Bargmann, C. I. (2005). Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature, 438, 179184. https://doi.org/10.1038/nature04216CrossRefGoogle ScholarPubMed

References

Almaguer-Melian, W., Rojas-Reyes, Y., Alvare, A., Rosillo, J. C., Frey, J. U., & Bergado, J. A. (2005). Long-term potentiation in the dentate gyrus in freely moving rats is reinforced by intraventricular application of norepinephrine, but not oxotremorine. Neurobiology of Learning & Memory, 83, 7278. https://doi.org/10.1016/j.nlm.2004.08.002Google Scholar
Bailey, C. H., Giustetto, M., Huang, Y. Y., Hawkins, R. D., & Kandel, E. R. (2000). Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory? Nature Reviews Neuroscience, 1, 1120. https://doi.org/10.1038/35036191CrossRefGoogle ScholarPubMed
Baldwin, J. M. (1896). A new factor in evolution. American Naturalist, 30, 441451.Google Scholar
Berriman, J. S., Kay, M. C., Reed, D. C., Rassweiler, A., Goldstein, D. A., & Wright, W. G. (2015). Shifts in attack behavior of an important kelp forest predator within marine reserves. Marine Ecology Progress Series, 522, 193201. https://doi.org/10.3354/meps11157Google Scholar
Bertness, M. D., Garrity, S. D., & Levings, S. C. (1981). Predation pressure and gastropod foraging: A tropical-temperate comparison. Evolution, 35, 9951007. https://doi.org/10.2307/2407870Google Scholar
Blumstein, D. T. (2006). The multipredator hypothesis and the evolutionary persistence of antipredator behavior. Ethology, 112, 209217. https://doi.org/10.1111/j.1439-0310.2006.01209.xGoogle Scholar
Bornancin, L., Bonnard, I., Mills, S., & Banaigs, B. (2017). Chemical mediation as a structuring element in marine gastropod predator–prey interactions. Natural Product Reports, 34, 644676. https://doi.org/10.1039/C6NP00097ECrossRefGoogle ScholarPubMed
Bouchet, P., Rocroi, J.-P., Hausdorf, B., Kaim, A., Kano, Y., Nützel, A., Parkhaev, Pavel, Schrödl, Michael, & Strong, E. E. (2017). Revised classification, nomenclator and typification of gastropod and monoplacophoran families. Malacologia, 61, 1526. https://doi.org/10.4002/040.061.0201Google Scholar
Byers, J. A. (1997). American pronghorn: Social adaptations and the ghosts of predators past. University of Chicago Press.Google Scholar
Byrne, J. H., & Kandel, E. R. (1996). Presynaptic facilitation revisited: State and time dependence. Journal of Neuroscience, 16, 425435. https://doi.org/10.1523/JNEUROSCI.16-02-00425Google Scholar
Carefoot, T. H. (1987). Aplysia: Its biology and ecology. Oceanography & Marine Biology, 25, 167284. <Go to ISI>://WOS:A1987K531000005Google Scholar
Carew, T. J. (2000). Behavioral neurobiology: The cellular organization of natural behavior. Sinauer.Google Scholar
Carew, T. J., Hawkins, R. D., & Kandel, E. R. (1983). Differential classical conditioning of a defensive withdrawal reflex in Aplysiida californica. Science, 219, 397400. https://doi.org/10.1126/science.6681571Google Scholar
Chitwood, R. A., Li, Q., & Glanzman, D. L. (2001). Serotonin facilitates AMPA-type responses in isolated siphon motor neurons of Aplysia in culture. Journal of Physiology-London, 534, 501510. https://doi.org/10.1111/j.1469-7793.2001.00501.xCrossRefGoogle ScholarPubMed
Cimino, G., & Ghiselin, M. T. (2009). Chemical defense and the evolution of opisthobranch gastropods. Proceedings of the California Academy of Sciences, 60, 175.Google Scholar
Cleary, L. J., Byrne, J. H., & Frost, W. N. (1995). Role of interneurons in defensive withdrawal reflexes in Aplysia. Learning & Memory, 2, 133151. https://doi.org/10.1101/lm.2.3.133CrossRefGoogle ScholarPubMed
Cleary, L. J., Lee, W. L., & Byrne, J. H. (1998). Cellular correlates of long-term sensitization in Aplysia. Journal of Neuroscience, 18, 59885998. https://doi.org/10.1523/JNEUROSCI.18-15-05988CrossRefGoogle ScholarPubMed
Crook, R. J., Dickson, K., Hanlon, R. T., & Walters, E. T. (2014). Nociceptive sensitization reduces predation risk. Current Biology, 24, 11211125. https://doi.org/10.1016/j.cub.2014.03.043Google Scholar
Derby, C. D. (2007). Escape by inking and secreting: Marine molluscs avoid predators through a rich array of chemicals and mechanisms. Biological Bulletin, 213, 274289. https://doi.org/10.2307/25066645Google Scholar
Derby, C. D., & Aggio, J. F. (2011). The neuroecology of chemical defenses. Integrative & Comparative Biology, 51, 771780. https://doi.org/10.1093/icb/icr063Google Scholar
Ding, L., & Perkel, D. J. (2004). Long-term potentiation in an avian basal ganglia nucleus essential for vocal learning. Journal of Neuroscience, 24, 488494. https://doi.org/10.1523/JNEUROSCI.4358-03.2004Google Scholar
Eliot, L. S., Hawkins, R. D., Kandel, E. R., & Schacher, S. (1994). Pairing-specific, activity-dependent presynaptic facilitation at Aplysia sensory-motor neuron synapses in isolated cell-culture. Journal of Neuroscience, 14, 368383. https://doi.org/10.1523/JNEUROSCI.14-01-00368Google Scholar
Erixon, N. J., Demartini, L. J., & Wright, W. G. (1999). Dissociation between sensitization and learning-related neuromodulation in an aplysiid species. Journal of Comparative Neurology, 408, 506514.3.0.CO;2-P>CrossRefGoogle Scholar
Estes, J. A., & Steinberg, P. D. (1988). Predation, herbivory, and kelp evolution. Paleobiology, 14, 1936. https://doi.org/10.1017/S0094837300011775Google Scholar
Frost, W. N., Clark, G. A., & Kandel, E. R. (1988). Parallel processing of short-term memory for sensitization in Aplysia. Journal of Neurobiology, 19, 297334. https://doi.org/10.1002/neu.480190402Google Scholar
Futuyma, D., & Kirkpatrick, M. (2017). Evolution. Sinauer.Google Scholar
Gillette, R. (2006). Evolution and function in serotonergic systems. Integrative & Comparative Biology, 46, 838846. https://doi.org/10.1093/icb/icl024Google Scholar
Glanzman, D. L. (1995). The cellular basis of classical conditioning in Aplysia californica: It’s less simple than you think. Trends in Neurosciences, 18, 3036. https://doi.org/10.1016/0166-2236(95)93947-VGoogle Scholar
Glanzman, D. L. (2008). New tricks for an old slug: The critical role of postsynaptic mechanisms in learning and memory in Aplysia. In Sossin, W. S., Lacaille, J. C., Castellucci, V. F., & Belleville, S. (Eds.), Essence of memory (Vol. 169, pp. 277292). Elsevier. https://doi.org/10.1016/S0079-6123(07)00017-9Google Scholar
Glanzman, D. L. (2010). Common mechanisms of synaptic plasticity in vertebrates and invertebrates. Current Biology, 20(1), R31R36.Google Scholar
Glanzman, D. L., Mackey, S. L., Hawkins, R. D., Dyke, A. M., Lloyd, P. E., & Kandel, E. R. (1989). Depletion of serotonin in the nervous system of Aplysia reduces the behavioral enhancement of gill withdrawal as well as the heterosynaptic facilitation produced by tail shock. Journal of Neuroscience, 9, 42004213. https://doi.org/10.1523/JNEUROSCI.09-12-04200.1989Google Scholar
Harley, C. W. (2007). Norepinephrine and the dentate gyrus. In Scharfman, H. E. (Ed.), Dentate Gyrus: A Comprehensive Guide to Structure, Function, and Clinical Implications (Vol. 163, pp. 299318). Elsevier. https://doi.org/10.1016/S0079-6123(07)63018-0Google Scholar
Himstead, A., & Wright, W. G. (2018). Precise foraging schedule in an intertidal euopisthobranch mollusk. Marine & Freshwater Behaviour and Physiology, 51, 131141. https://doi.org/10.1080/10236244.2018.1505430CrossRefGoogle Scholar
Hoover, B. A., Nguyen, H., Thompson, L., & Wright, W. G. (2006). Associative memory in three aplysiids: Correlation with heterosynaptic modulation. Learning & Memory, 13, 820826. https://doi.org/10.1101/lm.284006Google Scholar
Jami, S. A., Wright, W. G., & Glanzman, D. L. (2007). Differential classical conditioning of the gill-withdrawal reflex in Aplysia recruits both NMDA receptor-dependent enhancement and NMDA receptor-dependent depression of the reflex. Journal of Neuroscience, 27, 30643068. https://doi.org/10.1523/jneurosci.2581-06.2007Google Scholar
Jing, J., Vilim, F. S., Cropper, E. C., & Weiss, K. R. (2008). Neural analog of arousal: Persistent conditional activation of a feeding modulator by serotonergic initiators of locomotion. Journal of Neuroscience, 28, 1234912361. https://doi.org/10.1523/jneurosci.3855-08.2008Google Scholar
Kandel, E. R. (1976). Cellular basis of behavior: An introduction to behavioral neurobiology. Freeman.Google Scholar
Kandel, E. R. (2012). The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Molecular Brain, 5: 14. https://doi.org/10.1186/1756-6606-5-14.Google Scholar
Kandel, E. R., Klein, M., Hochner, B., Shuster, M., Siegelbaum, S. A., Hawkins, R. D., Glanzman, D. L., Castellucci, V. F., and Abrams, T. W. (1987). Synaptic modulation and learning: New insights into synaptic transmission from the study of behavior. In Edelman, G. & Gall, W. E. (Eds.), Synaptic function (pp. 472518). John Wiley & Sons. https://doi.org/10.1002/hup.470050111Google Scholar
Kandel, E. R., & Schwartz, J. H. (1982). Molecular biology of learning: Modulation of transmitter release. Science, 218, 433443. https://doi.org/10.1126/science.6289442Google Scholar
Kay, A. (1979). Hawaiian marine shells. Bernice Pauahi Bishop Museum.Google Scholar
Krug, P. J. (2011). Patterns of speciation in marine gastropods: A review of the phylogenetic evidence for localized radiations in the sea. American Malacological Bulletin, 29, 169186. https://doi.org/10.4003/006.029.0210Google Scholar
Lahti, D. C., Johnson, N. A., Ajie, B. C., Otto, S. P., Hendry, A. P., Blumstein, D. T., Coss, R. G., Donohue, K., and Foster, S. A. (2009). Relaxed selection in the wild. Trends in Ecology & Evolution, 24, 487496. https://doi.org/10.1016/j.tree.2009.03.010Google Scholar
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155184. https://doi.org/10.1146/annurev.neuro.23.1.155Google Scholar
Lynch, M. A. (2004). Long-term potentiation and memory. Physiological Reviews, 84, 87136. https://doi.org/10.1152/physrev.00014.2003Google Scholar
Mackey, S., & Carew, T. J. (1983). Locomotion in Aplysia: Triggering by serotonin and modulation by bag-cell extract. Journal of Neuroscience, 3, 14691477. https://doi.org/10.1523/JNEUROSCI.03-07-01469.1983Google Scholar
Marcus, E. A., Nolen, T. G., Rankin, C. H., & Carew, T. J. (1988). Behavioral dissociation of dishabituation, sensitization and inhibition in Aplysia. Science, 241, 210213. https://doi.org/10.1126/science.3388032Google Scholar
Marinesco, P., & Carew, T. J. (2002). Serotonin release evoked by tail nerve stimulation in the CNS of Aplysia: Characterization and relationship to heterosynaptic plasticity. Journal of Neuroscience, 22, 22992312. https://doi.org/10.1523/JNEUROSCI.22-06-02299.2002Google Scholar
Marinesco, S., Duran, K. L., & Wright, W. G. (2003). Evolution of learning in three aplysiid species: Differences in heterosynaptic plasticity contrast with conservation in serotonergic pathways. Journal of Physiology-London, 550, 241253. https://doi.org/10.1113/jphysiol.2003.038356Google Scholar
Marinesco, S., Wickremasinghe, N., Kolkman, K. E., & Carew, T. J. (2004). Serotonergic modulation in Aplysia. II. Cellular and behavioral consequences of increased serotonergic tone. Journal of Neurophysiology, 92, 24872496. https://doi.org/10.1152/jn.00210.2004Google Scholar
Martin, S. J., Grimwood, P. D., & Morris, R. G. M. (2000). Synaptic plasticity and memory: An evaluation of the hypothesis. Annual Review of Neuroscience, 23, 649711. https://doi.org/10.1146/annurev.neuro.23.1.649Google Scholar
Mason, M. J., Watkins, A. J., Wakabayashi, J., Buechler, J., Pepino, C., Brown, M., & Wright, W. G. (2014). Connecting model species to nature: Predator-induced long-term sensitization in Aplysia californica. Learning & Memory, 21, 363367. https://doi.org/10.1101/lm.034330.114Google Scholar
Nature Research Highlights (2010) Animal behaviour: Lobster shock. Nature 467, 8.Google Scholar
Owen, G. R., & Brenner, E. A. (2012). Mapping molecular memory: Navigating the cellular pathways of learning. Cellular & Molecular Neurobiology, 32, 919941. https://doi.org/10.1007/s10571-012-9836-0Google Scholar
Paine, R. T. (1966). Food web complexity and species diversity. American Naturalist, 100, 6575. https://doi.org/10.1086/282400Google Scholar
Palmer, A. R. (1979). Fish predation and the evolution of gastropod shell sculpture: Experimental and geographic evidence. Evolution, 33, 697713. https://doi.org/10.2307/2407792Google Scholar
Papini, M. R. (2002). Pattern and process in the evolution of learning. Psychological Review, 109, 186201. https://doi.org/10.1037/0033-295X.109.1Google Scholar
Pennings, S. C., Nadeau, M. T., & Paul, V. J. (1993). Selectivity and growth of the generalist herbivore, Dolabella auricularia feeding upon complementary resources. Ecology, 74, 879890. https://doi.org/10.2307/1940813Google Scholar
Pennings, S. C., & Paul, V. J. (1993). Sequestration of dietary secondary metabolites by 3 species of sea hares-location, specificity, and dynamics. Marine Biology, 117, 535546. https://doi.org/10.1007/BF00349763CrossRefGoogle Scholar
Pennings, S. C., Paul, V. J., Dunbar, D. C., Hamann, M. T., Lumbang, W. A., Novack, B., & Jacobs, R. S. (1999). Unpalatable compounds in the marine gastropod Dolabella auricularia: Distribution and effect of diet. Journal of Chemical Ecology, 25(4), 735755. Retrieved from <Go to ISI>://WOS:000080123000005Google Scholar
Perrot-Minnot, M. J., Banchetry, L., & Cézilly, F. (2017). Anxiety-like behaviour increases safety from fish predation in an amphipod crustacea. Royal Society Open Science, 4, 171558. https://doi.org/10.1098/rsos.171558Google Scholar
Ricketts, E. F., Calvin, J., & Hedgpeth, J. W. (1992). Between Pacific tides (5th ed.). Stanford University Press.Google Scholar
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 127. https://doi.org/10.1152/jn.1998.80.1.1Google Scholar
Senter, P. (2010). Vestigial skeletal structures in dinosaurs. Journal of Zoology, 280, 6071. https://doi.org/10.1111/j.1469-7998.2009.00640.xGoogle Scholar
Stopfer, M., & Carew, T. J. (1988). Development of sensitization in the escape locomotion system in Aplysia. Journal of Neuroscience, 8, 223230. https://doi.org/10.1523/JNEUROSCI.08-01-00223.1988Google Scholar
Takagi, K. K., Ono, N., & Wright, W. G. (2010). Interspecific variation in palatability suggests cospecialization of antipredator defenses in a sea hare. Marine Ecology Progress Series, 416, 137144. https://doi.org/10.3354/meps08738Google Scholar
Tetreault, I., & Ambrose, R. F. (2007). Temperate marine reserves enhance targeted but not untargeted fishes in multiple no-take maps. Ecological Applications, 17, 22512267. https://doi.org/10.1890/06-0161.1Google Scholar
Vermeij, G. J. (1994). The evolutionary interaction among species: Selection, escalation, and coevolution. Annual Review of Ecology & Systematics, 25, 219236. https://doi.org/10.1146/annurev.es.25.110194.001251Google Scholar
Vermeij, G. J. (2013). On escalation. Annual Review of Earth & Planetary Sciences, 41, 119. https://doi.org/10.1146/annurev-earth-050212-124123Google Scholar
Walker, S. E., & Brett, C. E. (2002). Post-Paleozoic patterns in marine predation: Was there a Mesozoic and Cenozoic marine predatory revolution? Paleontological Society Papers, 8, 119194. https://doi.org/10.1017/S108933260000108XGoogle Scholar
Walters, E. T. (1987). Site-specific sensitization of defensive reflexes in Aplysia: A simple model of long-term hyperalgesia. Journal of Neuroscience, 7, 400407. https://doi.org/10.1523/JNEUROSCI.07-02-00400.1987Google Scholar
Walters, E. T. (1991). A functional, cellular, and evolutionary model of nociceptive plasticity in Aplysia. Biological Bulletin, 180, 241251. https://doi.org/10.2307/1542394Google Scholar
Walters, E. T. (1994). Injury-related behavior and neuronal plasticity: An evolutionary perspective on sensitization, hyperalgesia, and analgesia. International Review of Neurobiology, 36, 325427. https://doi.org/10.1016/S0074-7742(08)60307-4Google Scholar
Walters, E. T. (2018). Nociceptive biology of molluscs and arthropods: evolutionary clues about functions and mechanisms potentially related to pain. Frontiers in Physiology, 9, 1049.Google Scholar
Walters, E. T. (2019). Adaptive mechanisms driving maladaptive pain: How chronic ongoing activity in primary nociceptors can enhance evolutionary fitness after severe injury. Philosophical Transactions of the Royal Society B-Biological Sciences, 374, 20190277. https://doi.org/10.1098/rstb.2019.0277CrossRefGoogle ScholarPubMed
Watkins, A. J., Goldstein, D. A., Lee, L. C., Pepino, C. J., Tillett, S. L., Ross, F. E., Wilder, E. L., and Wright, W. G. (2010). Lobster attack induces sensitization in the sea hare, Aplysia californica. Journal of Neuroscience, 30, 1102811031. https://doi.org/10.1523/JNEUROSCI.1317-10.2010Google Scholar
West-Eberhard, M. J. (1989). Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics, 20(1), 249278.Google Scholar
West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.Google Scholar
White, J. A., Ziv, I., Cleary, L. J., Baxter, D. A., & Byrne, J. H. (1993). The role of interneurons in controlling the tail-withdrawal reflex. Journal of Neurophysiology, 70, 17771786. https://doi.org/10.1152/jn.1993.70.5.1777Google Scholar
Wright, W. G. (1998). Evolution of nonassociative learning: Behavioral analysis of a phylogenetic lesion. Neurobiology of Learning & Memory, 69, 326337. https://doi.org/10.1006/nlme.1998.3829Google Scholar
Wright, W. G. (2000). Neuronal and behavioral plasticity in evolution: Experiments in a model lineage. Bioscience, 50, 883894. https://doi.org/10.1006/nlme.1998.3829Google Scholar
Wright, W. G., Jones, K., Sharp, P., & Maynard, B. (1995). Widespread anatomical projections of the serotonergic modulatory neuron, CB1, in Aplysia. Invertebrate Neuroscience 1, 173183. https://doi.org/10.1007/bf02331914Google Scholar
Wright, W. G., Kirschman, D., Rozen, D., & Maynard, B. (1996). Phylogenetic analysis of learning-related neuromodulation in molluscan mechanosensory neurons. Evolution, 50, 22482263. https://doi.org/10.1111/j.1558-5646.1996.tb03614.xGoogle Scholar

References

Abramson, C. I., & Chicas-Mosier, A. M. (2016). Learning in plants: Lessons from Mimosa pudica. Frontiers in Psychology, 7, 417. https://doi.org/10.3389/fpsyg.2016.00417Google Scholar
Aceves-Piña, E. O., & Quinn, W. G. (1979). Learning in normal and mutant Drosophila larvae. Science, 206, 9396. https://doi.10.1126/science.206.4414.93Google Scholar
Alem, S., Perry, C. J., Zhu, X., Loukola, O. J., Ingraham, T., Søvik, E., & Chittka, L. (2016). Associative mechanisms allow for social learning and cultural transmission of string pulling in an insect. PLoS Biology, 14(10), e1002564. https://doi.org/10.1371/journal.pbio.1002564Google Scholar
Alghamdi, A., Dalton, L., Phillis, A., Rosato, E., & Mallon, E. B. (2008). Immune response impairs learning in free-flying bumble-bees. Biology Letters, 4, 479481. https://doi.org/10.1098/rsbl.2008.0331Google Scholar
Applewhite, P. B. (1968). Non-local nature of habituation in a rotifer and protozoan. Nature, 217, 287288. https://doi.org/10.1038/217287a0Google Scholar
Arenas, A., & Roces, F. (2018). Appetitive and aversive learning of plants odors inside different nest compartments by foraging leaf-cutting ants. Journal of Insect Physiology, 109, 8592. https://doi.org/10.1016/j.jinsphys.2018.07.001Google Scholar
Armus, H. L., Montgomery, A. R., & Gurney, R. L. (2006). Discrimination learning and extinction in Paramecia (P. caudatum). Psychological Reports, 98, 705711. https://doi.org/10.2466%2Fpr0.98.3.705-711Google Scholar
Bailey, N. W., & Zuk, M. (2009). Field crickets change mating preferences using remembered social information. Biology Letters, 5, 449451. https://doi.org/10.1098/rsbl.2009.0112Google Scholar
Bernays, E. A. (1993). Aversion learning and feeding. In Papaj, D. R. & Lewis, A. C. (Eds.), Insect learning (pp. 117). Routledge, Chapman & Hall. https://doi.org/10.1007/978-1-4615-2814-2_1Google Scholar
Bitterman, M. E. (2000). Cognitive evolution: A psychological perspective. In Heyes, C. & Huber, L. (Eds.), The evolution of cognition (pp. 6180). The MIT Press.Google Scholar
Blackawton, P. S., Airzee, S., Allen, A., Baker, S., Berrow, A., Blair, C., Churchill, M., Coles, J., Cumming, R. F.-J., Fraquelli, L., Hackford, C., Hinton Mellor, A., Hutchcroft, M., Ireland, B., Jewsbury, D., Littlejohns, A., Littlejohns, G. M., Lotto, M., McKeown, J., … Lotto, R. B. (2011). Blackawton bees. Biology Letters, 7, 168172. https://doi.org/10.1098/rsbl.2010.1056Google Scholar
Blackiston, D. J., Casey, E. S., & Weiss, M. R. (2008). Retention of memory through metamorphosis: Can a moth remember what it learned as a caterpillar? PLoS ONE, 3(3), e1736. https://doi.org/10.1371/journal.pone.0001736Google Scholar
Boisseau, R. P., Vogel, D., & Dussutour, A. (2016). Habituation in non-neural organisms: Evidence from slime moulds. Proceedings of the Royal Society B, 283, 20160446. https://doi.org/10.1098/rspb.2016.0446Google Scholar
Boussard, A. Delescluse, J., Pérez-Escudero, A., & Dussutour, A. (2019). Memory inception and preservation in slime moulds: The quest for a common mechanism. Philosophical Transactions of the Royal Society B, 374, 20180368. https://doi.org/10.1098/rstb.2018.0368Google Scholar
Campbell, H. R., & Strausfeld, N. J. (2001). Learned discrimination of pattern orientation in walking flies. Journal of Experimental Biology, 204, 114.Google Scholar
Chilaka, N., Perkins, E., & Tripet, F. (2012). Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto. Malaria Journal, 11, 27. https://doi.org/10.1186/1475-2875-11-27Google Scholar
Coolen, I., Dangles, O., & Casas, J. (2005). Social learning in noncolonial insects? Current Biology, 21, 19311935. https://doi.org/10.1016/j.cub.2005.09.015Google Scholar
Danci, A., Hrabar, M., Ikoma, S., Schaefer, P. W., & Gries, G. (2013). Learning provides mating opportunities for males of a parasitoid wasp. Entomologia Experimentalis et Applicata, 149, 229240. https://doi.org/10.1111/eea.12129Google Scholar
Decker, S., McConnaughey, S., & Page, T. L. (2007). Circadian regulation of insect olfactory learning. Proceedings of the National Academy of Sciences, 104, 1590515910. https://doi.org/10.1073/pnas.0702082104Google Scholar
DesJardins, N., & Tibbetts, E. A. (2018). Sex differences in face but not colour learning in Polistes fuscatus paper wasps. Animal Behaviour, 140, 16. https://doi.org/10.1016/j.anbehav.2018.03.012Google Scholar
Dukas, R. (1999). Ecological relevance of associative learning in fruit fly larvae. Behavioral Ecology and Sociobiology, 45, 195200. https://doi.org/10.1007/s002650050553Google Scholar
Dukas, R. (2008). Evolutionary biology of insect learning. Annual Review of Entomology, 53, 145160. https://doi.org/10.1146/annurev.ento.53.103106.093343Google Scholar
Dukas, R., & Bernays, E. A. (2000). Learning improves growth rate in grasshoppers. Ecology, 97, 26372640. https://doi.org/10.1073/pnas.050461497Google Scholar
Dukas, R., & Duan, J. J. (2000). Potential fitness consequences of associative learning in parasitoid wasps. Behavioral Ecology, 11, 536543. https://doi.org/10.1093/beheco/11.5.536Google Scholar
Durisko, Z., & Dukas, R. (2013). Effects of early-life experience on learning ability in fruit flies. Ethology, 119, 10671076. https://doi.org/10.1111/eth.12168Google Scholar
Froissart, L., Giurfa, M., Sauzet, S., & Desouhant, E. (2017). Cognitive adaptation in asexual and sexual wasps living in contrasted environments. PLoS ONE,12(5), e0177581. https://doi.org/10.1371/journal.pone.0177581Google Scholar
Fropf, R., Zhang, J., Tanenhaus, A. K., Fropf, W. J., Siefkes, E., & Yin, J. C. P. (2014). Time of day influences memory formation and dCREB2 proteins in Drosophila. Frontiers in Systems Neuroscience, 8, 43. https://doi.org/10.3389/fnsys.2014.00043Google Scholar
Fukushi, T. (1989). Learning and discrimination of coloured papers in the walking blowfly, Lucilia cuprina. Journal of Comparative Physiology A, 166, 5764. https://doi.org/10.1007/BF00190210CrossRefGoogle ScholarPubMed
Gagliano, M., Vyazovskiy, V. V., Borbély, A. A., Grimonprez, M., & Depczynski, M. (2016). Learning by association in plants. Scientific Reports, 6, 38427. https://doi.org/10.1038/srep38427Google Scholar
Garren, M. V., Sexauer, S. B., & Page, T. L. (2013). Effect of circadian phase on memory acquisition and recall: Operant conditioning vs. classical conditioning. PLoS ONE 8(3), e58693. https://doi.org/10.1371/journal.pone.0058693CrossRefGoogle ScholarPubMed
Giurfa, M. (2013). Cognition with few neurons: Higher-order learning in insects. Trends in Neurosciences, 36, 285294. https://doi.org/10.1016/j.tins.2012.12.011Google Scholar
Giurfa, M. (2015). Learning and cognition in insects. Wiley Interdisciplinary Reviews: Cognitive Science, 6, 383395. https://doi.org/10.1002/wcs.1348Google Scholar
Goldsmith, C. M., Hepburn, H. R., & Mitchell, D. (1978). Retention of an associative learning task after metamorphosis in Locusta migratoria migratorioides. Journal of Insect Physiology, 24, 737741. https://doi.org/10.1016/0022-1910(78)90071-9Google Scholar
Gong, Z., Tan, K., & Nieh, J. C. (2018). First demonstration of olfactory learning and long-term memory in honey bee queens. Journal of Experimental Biology, 221, jeb177303. https://doi.org/10.5281/zenodo.1148794Google Scholar
Greenspan, R. J. (2007). Afterword: Universality and brain mechanisms. In North, G. & Greenspan, R. J. (Eds.), Invertebrate neurobiology (pp. 647649). Cold Spring Harbor Laboratory Press.Google Scholar
Grüter, C., & Leadbeater, E. (2014). Insights from insects about adaptive social information use. Trends in Ecology & Evolution, 29, 177184. https://doi.org/10.1016/j.tree.2014.01.004Google Scholar
Guillette, L. M., Hollis, K. L., & Markarian, A. (2009). Learning in a sedentary insect predator: Antlions (Neuroptera: Myrmeleontidae) anticipate a long wait. Behavioural Processes, 80, 224232. https://doi.org/10.1016/j.beproc.2008.12.015Google Scholar
Gutiérrez-Ibáñez, C., Villagra, C. A., & Niemeyer, H. M. (2007). Pre-pupation behaviour of the aphid parasitoid Aphidius ervis (Haliday) and its consequences for pre-imaginal learning. Naturwissenschaften, 94, 595600. https://doi.org/10.1007/s00114-007-0233-3Google Scholar
Haralson, J. V., Groff, C. I., & Haralson, S. J. (1975). Classical conditioning in the sea anemone, Cribrina xanthogrammica. Physiology & Behavior, 15, 455460. https://doi.org/10.1016/0031-9384(75)90259-0Google Scholar
Hoedjes, K. M., & Smid, H. M. (2014). Natural variation in long-term memory formation among Nasonia parasitic wasp species. Behavioural Processes, 105, 4045. https://doi.org/10.1016/j.beproc.2014.02.014Google Scholar
Hollis, K. L. (1982). Pavlovian conditioning of signal-centered action patterns and autonomic behavior: A biological analysis of function. Advances in the Study of Behavior, 12, 164. https://doi.org/10.1016/S0065-3454(08)60045-5Google Scholar
Hollis, K. L. (1997). Contemporary research on Pavlovian conditioning: A “new” functional analysis. American Psychologist, 52, 956965. https://psycnet.apa.org/doi/10.1037/0003-066X.52.9.956Google Scholar
Hollis, K. L., Cogswell, H., Snyder, K., Guillette, L. M., & Nowbahari, E. (2011). Specialized learning in antlions (Neuroptera: Myrmeleontidae), pit-digging predators, shortens vulnerable larval stage. PLoS ONE, 6(3), e17958. https://doi.org/10.1371/journal.pone.0017958Google Scholar
Hollis, K. L., & Guillette, L. M. (2011). Associative learning in insects: Evolutionary models, mushroom bodies, and a neuroscientific conundrum. Comparative Cognition & Behavior Reviews, 6, 2445. https://psycnet.apa.org/doi/10.3819/ccbr.2011.60004Google Scholar
Hollis, K. L., & Guillette, L. M. (2015). What associative learning in insects tells us about models for the evolution of learning. International Journal of Comparative Psychology, 28, 118.Google Scholar
Hollis, K. L., Harrsch, F. A., & Nowbahari, E. (2015). Ants vs. antlions: An insect model for studying the role of learned ad hard-wired behavior in coevolution. Learning & Behavior, 50, 6882. https://doi.org/10.1016/j.lmot.2014.11.003Google Scholar
Hollis, K. L., Pharr, V. L., Dumas, M. J., Britton, G. B., & Field, J. (1997). Classical conditioning provides paternity advantage for territorial male blue gouramis (Trichogaster trichopterus). Journal of Comparative Psychology, 111, 219225. https://psycnet.apa.org/doi/10.1037/0735-7036.111.3.219Google Scholar
Iqbal, J., & Mueller, U. (2007). Virus infection causes specific learning deficits in honeybee foragers. Proceedings of the Royal Society B, 274, 15171521. https://doi.org/10.1098/rspb.2007.0022Google Scholar
Jones, J. C., Helliwell, P., Beekman, M., Maleszka, R., & Oldroyd, B. P. (2005). The effects of rearing temperature on developmental stability and learning and memory in the honey bee, Apis mellifera. Journal of Comparative Physiology A, 191, 11211129. https://doi.org/10.1007/s00359-005-0035-zGoogle Scholar
Kacsoh, B. Z., Bozler, J., & Bosco, G. (2018). Drosophila species learn dialects through communal living. PLoS Genetics, 14(7), e1007430. https://doi.org/10.1371/journal.pgen.1007430Google Scholar
König, K., Krimmer, E., Brose, S., Gantert, C., Buschlüter, I., König, C., Klopfstein, S., Wendt, I., Baur, H., Krogmann, L., & Steidle, J. L. M. (2015). Does early learning drive ecological divergence during speciation processes in parasitoid wasps? Proceedings of the Royal Society B, 282, 20141850. https://doi.org/10.1098/rspb.2014.1850Google Scholar
Kralj, J., Brockmann, A., Fuchs, S., & Tautz, J. (2007). The parasitic mite Varroa destructor affects non-associative learning in honey bee foragers, Apis mellifera L. Journal of Comparative Physiology A, 193, 363370. https://doi.org/10.1007/s00359-006-0192-8Google Scholar
Kramer, J. M., Kochinke, K., Oortveld, M. A. W., Marks, H., Kramer, D., de Jong, E. K., Asztalos, Z., Westwood, J. T., Stunnenberg, H. G., Sokolowski, M. B., Keleman, K., Zhou, H., van Bokhoven, H., & Schenck, A. (2011). Epigenetic regulation of learning and memory by Drosophila EHMT/G9a. PLoS Biology, 9(1), e1000569. https://doi.org/10.1371/journal.pbio.1000569Google Scholar
Lee, J. C., & Bernays, E. A. (1990). Food tastes and toxic effects: Associative learning by the polyphagous grasshopper Schistocerca americana (Drury) (Orthoptera: Acricicae). Animal Behaviour, 39, 163173. https://doi.org/10.1371/journal.pbio.1000569Google Scholar
Lehmann, M., Gustav, D., & Galizia, C. G. (2011). The early bee catches the flower – Circadian rhythmicity influences learning performance in honey bees, Apis mellifera. Behavioral Ecology and Sociobiology, 65, 205215. https://doi.org/10.1007/s00265-010-1026-9Google Scholar
Lewis, W. J., & Takasu, K. (1990). Use of learned odours by a parasitic wasp in accordance with host and food needs. Nature, 348, 635636. https://psycnet.apa.org/doi/10.1038/348635a0Google Scholar
Li, X., Ishimoto, H., & Kamikouchi, A. (2018). Auditory experience controls the maturation of song discrimination and sexual response in Drosophila. eLife, 7, e34348. https://doi.org/10.7554/eLife.34348Google Scholar
Liefting, M., Hoedjes, K. M., Le Lann, C., Smid, H. M., & Ellers, J. (2018). Selection for associative learning of color stimuli reveals correlated evolution of this learning ability across multiple stimuli and rewards. Evolution, 72, 14491459. https://doi.org/10.1111/evo.13498Google Scholar
Loomis, W. F. (2014). Cell signaling during development of Dictyostelium. Developmental Biology, 391, 116. https://doi.org/10.1016/j.ydbio.2014.04.001Google Scholar
Louis, T., Stahl, A., Boto, T., & Tomchik, S. M. (2018). Cyclic AMP-dependent plasticity underlies rapid changes in odor coding associated with reward learning. Proceedings of the National Academy of Sciences, 115, E448E457. https://doi.org/10.1073/pnas.1709037115Google Scholar
Loukola, O. J., Perry, C. J., Coscos, L., & Chittka, L. (2017). Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science, 355, 833836. https://doi.org/10.1126/science.aag2360Google Scholar
Lunau, K., An, L., Donda, M., Hohmann, M., Sermon, L., & Stegmanns, V. (2018). Limitations of learning in the proboscis reflex of the flower visiting syrphid fly Eristalis tenax. PLoS ONE 13(3), e0194167. https://doi.org/10.1371/journal.pone.0194167Google Scholar
Lyons, L. C., & Roman, G. (2009). Circadian modulation of short-term memory in Drosophila. Learning and Memory, 16, 1927. https://doi.org/10.1101/lm.1146009Google Scholar
Matsumoto, C. S., Matsumoto, Y., Watanabe, H., Nishino, H., & Mizunami, M. (2012). Context-dependent olfactory learning monitored by activities of salivary neurons in cockroaches. Neurobiology of Learning and Memory, 97, 3036. https://doi.org/10.1016/j.nlm.2011.08.010Google Scholar
McGuire, T. R. (1984). Learning in three species of Diptera: The blow fly Phormia regina, the fruit fly, Drosophila melanogaster, and the house fly, Musca domestica. Behaviour Genetics, 14, 479526. https://doi.org/10.1007/BF01065445Google Scholar
Menda, G., Uhr, J. H., Wyttenbach, R. A., Vermeylen, F. M., Smith, D. M., Harrington, L. C., & Hoy, R. R. (2013). Associative learning in the dengue vector mosquito, Aedes aegypti: Avoidance of a previously attractive odor or surface color that is paired with an aversive stimulus. Journal of Experimental Biology, 216, 218223. https://doi.org/10.1242/jeb.074898Google Scholar
Mingee, C. M. (2013). Retention of a brightness discrimination task in Paramecia, P. caudatum. International Journal of Comparative Psychology, 26, 202212. https://escholarship.org/uc/item/5428c5xnGoogle Scholar
Nelson, M. C. (1971). Classical conditioning in the blowfly (Phormia regina): Associative and excitatory factors. Journal of Comparative and Physiological Psychology, 77, 353368. https://psycnet.apa.org/doi/10.1037/h0031882Google Scholar
Nepoux, V., Babin, A., Haag, C., Kawecki, T. J., & Le Rouzic, A. (2015). Quantitative genetics of learning ability and resistance to stress in Drosophila melanogaster. Ecology and Evolution, 5, 543556. https://doi.org/10.1002/ece3.1379Google Scholar
Nöbel, S., Allain, M., Isabel, G., & Danchin, E. (2018). Mate copying in Drosophila melanogaster males. Animal Behaviour, 141, 915. https://doi.org/10.1016/j.anbehav.2018.04.019Google Scholar
North, G., & Greenspan, R. J. (2007). Invertebrate neurobiology. Cold Spring Laboratory Press.Google Scholar
Perez, M., Rolland, U., Giurfa, M., & d’Ettorre, P. (2013). Sucrose responsiveness, learning success, and task specialization in ants. Learning & Memory, 20, 417420. https://doi.org/10.1101/lm.031427.113Google Scholar
Perlman, R. L., & Pastan, I. (1971). The role of cyclic AMP in bacteria. Current Topics in Cellular Regulation, 3, 117134.Google Scholar
Perry, C. J., Barron, A. B., & Cheng, K. (2013). Invertebrate learning and cognition: Relating phenomena to neural substrate. WIREs Cognitive Science, 4, 561582. https://doi.org/10.1002/wcs.1248Google Scholar
Piiroinen, S., & Goulson, D. (2016). Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees. Proceedings of the Royal Society B, 283, 20160246. https://doi.org/10.1098/rspb.2016.0246Google Scholar
Prokopy, R. J., Reynolds, A. H., & Ent, L.-J. van der (1998). Can Rhagoletis pomonella flies (Diptera: Tephritidae) learn to associate presence of food on foliage with foliage colour? European Journal of Entomology, 95, 335341.Google Scholar
Quinn, W. G., Harris, W. A., & Benzer, S. (1974). Conditioned behavior in Drosophila melanogaster. Proceedings of the National Academy of Sciences, 71, 708712. https://doi.org/10.1073/pnas.71.3.708Google Scholar
Raine, N. E. (2009). Cognitive ecology: Environmental dependence of the fitness costs of learning. Current Biology, 19, R486R488. https://doi.org/10.1016/j.cub.2009.04.047Google Scholar
Rains, G. C., Utley, S. L., & Lewis, W. J. (2006). Behavioral monitoring of trained insects for chemical detection. Biotechnology Progress, 22, 28. https://doi.org/10.1021/bp050164pGoogle Scholar
Ramírez, G., Fagundez, C., Grosso, J. P., Argibay, P., Arenas, A., & Farina, W. M. (2016). Odor experiences during preimaginal stages cause behavioral and neural plasticity in adult honeybees. Frontiers in Behavioral Neuroscience, 10, 114. https://doi.org/10.3389/fnbeh.2016.00105Google Scholar
Raubenheimer, D., & Blackshaw, J. (1994). Locusts learn to associate visual stimuli with drinking. Journal of Insect Behavior, 7, 569575. https://psycnet.apa.org/doi/10.1007/BF02025450Google Scholar
Raubenheimer, D., & Tucker, D. (1997). Associative learning by locusts: Pairing of visual cues with consumption of protein and carbohydrate. Animal Behaviour, 54, 14491459. https://doi.org/10.1006/anbe.1997.0542Google Scholar
Reaume, C. J., Sokolowski, M. B., & Mery, F. (2011). A natural genetic polymorphism affects retroactive interference in Drosophila melanogaster. Proceedings of the Royal Society B, 278, 9198. https://doi.org/10.1098/rspb.2010.1337Google Scholar
Resh, V. H., & Cardé, R. T. (Eds.). (2003). Encyclopedia of insects. Elsevier Science, Academic Press.Google Scholar
Saigusa, T., Tero, A., Nakagaki, T., & Kuramoto, Y. (2008). Amoebae anticipate periodic events. Physical Review Letters, 100, 018101. https://doi.org/10.1103/PhysRevLett.100.018101Google Scholar
Seugnet, L., Suzuki, Y., Donlea, J. M., Gottschalk, L., & Shaw, P. J. (2011). Sleep deprivation during early-adult development results in long-lasting learning deficits in adult Drosophila. Sleep, 34, 137146. https://doi.org/10.1093/sleep/34.2.137Google Scholar
Shirakawa, T., Gunji, Y.-P., & Miyake, Y. (2011). An associative learning experiment using the plasmodium of Physarum polycephalum. Nano Communication Networks, 2, 99105. https://doi.org/10.1016/j.nancom.2011.05.002Google Scholar
Smid, H. M., Wang, G., Bukovinszky, T., Steidle, J. L. M., Bleeker, M. A. K., van Loon, J. J. A., & Vet, L. E. M. (2007). Species-specific acquisition and consolidation of long-term memory in parasitic wasps. Proceeding of the Royal Society B, 274, 15391546. https://doi.org/10.1098/rspb.2007.0305Google Scholar
Sokolowski, M. B. C., Disma, G., & Abramson, C. I. (2010). A paradigm for operant conditioning in blow flies (Phormia terrae novae Robineau-Desvoidy, 1830). Journal of the Experimental Analysis of Behavior, 93, 8189. https://doi.org/10.1901/jeab.2010.93-81Google Scholar
Srinivasan, M. V. (2010). Honey bees as a model for vision, perception, and cognition. Annual Review of Entomology, 55, 267284. https://doi.org/10.1146/annurev.ento.010908.164537Google Scholar
Stejskal, K., Streinzer, M., Dyer, A., Paulus, H. F., & Spaethe, J. (2015). Functional significance of labellum pattern variation in a sexually deceptive orchid (Ophrys heldreichii): Evidence of individual signature learning effects. PLoS ONE, 10(11), e0142971. https://doi.org/10.1371/journal.pone.0142971Google Scholar
Stockton, D. G., Martini, X., Pratt, J. M., & Stelinski, L. L. (2016). The influence of learning on host plant preference in a significant phytopathogen vector, Diaphorina citri. PLoS ONE, 11(3), e0149815. https://doi.org/10.1371/journal.pone.0149815Google Scholar
Stockton, D. G., Pescitelli, L. E., Martini, X., & Stelinski, L. L. (2017). Female mate preference in an invasive phytopathogen vector: How learning may influence mate choice and fecundity in Diaphorina citri. Entomologia Experimentalis et Applicata, 164, 1626. https://doi.org/10.1111/eea.12590Google Scholar
Thellier, M., & Lüttge, U. (2012). Plant memory: A tentative model. Plant Biology, 15, 112. https://doi.org/10.1111/j.1438-8677.2012.00674.xGoogle Scholar
Tibbetts, E. A., Injaian, A., Sheehan, M. J., & Desjardins, N. (2018). Intraspecific variation in learning: Worker wasps are less able to learn and remember individual conspecific faces than queen wasps. American Naturalist, 191, 595603. https://doi.org/10.1086/696848Google Scholar
Tomberlin, J. K., Rains, G. C., Allan, S. A., Sanford, M. R., & Lewis, W. J. (2006). Associative learning of odor with food- or blood-meal by Culex quinquefasciatus Say (Diptera: Culicidae). Naturwissenschaften, 93, 551. https://doi.org/10.1007/s00114-006-0143-9Google Scholar
Verzijden, M. N., & Svensson, E. I. (2016). Interspecific interactions and learning variability jointly drive geographic differences in mate preferences. Evolution, 70, 18961903. https://doi.org/10.1111/evo.12982Google Scholar
Vinauger, C., Lahondère, C., Wolff, G. H., Locke, L. T., Liaw, J. E., Parrish, J. Z., Akbari, O. S., Dickinson, M. H., & Riffell, J. A. (2018). Modulation of host learning in Aedes aegypti mosquitoes. Current Biology, 28, 333344. https://doi.org/10.1016/j.cub.2017.12.015Google Scholar
Vinauger, C., & Lazzari, C. R. (2015). Circadian modulation of learning ability in a disease vector insect, Rhodinus prolixus. Journal of Experimental Biology, 218, 31103117. https://doi.org/10.1242/jeb.119057Google Scholar
Vogel, D., & Dussutour, A. (2016). Direct transfer of learned behavior via cell fusion in non-neural organisms. Proceedings of the Royal Society B, 283, 20162382. https://doi.org/10.1098/rspb.2016.2382Google Scholar
Wang, X., Green, D. S., Roberts, S. P., & de Belle, S. (2007). Thermal disruption of mushroom body development and odor learning in Drosophila. PLoS ONE, 2(11), e0177581. https://doi.org/10.1371/journal.pone.0001125Google Scholar
Weinstein, A. M., Davis, B. J., Menz, M. H. M., Dixon, K. W., & Phillips, R. D. (2016). Behaviour of sexually deceived ichneumonid wasps and its implications for pollination in Cryptostylis (Orchidaceae). Biological Journal of the Linnean Society, 119, 283298. https://doi.org/10.1111/bij.12841Google Scholar
Westerman, E. L., & Monteiro, A. (2013). Odour influences whether females learn to prefer or to avoid wing patterns of male butterflies. Animal Behaviour, 86, 11391145. https://doi.org/10.1016/j.anbehav.2013.09.002Google Scholar
Williams-Simon, P. A., Posey, C., Mitchell, S., Ng’oma, E., Mrkvicka, J. A., Zars, T., & King, E. G. (2019). Multiple genetic loci affect place learning and memory performance in Drosophila melanogaster. Genes, Brains and Behavior, 18, e12581. https://doi.org/10.1111/gbb.12581Google Scholar
Wilson, J. K., & Woods, H. A. (2016). Innate and learned olfactory responses in a wild population of the egg parasitoid Trichogramma (Hymenoptera: Trichogrammatidae). Journal of Insect Science, 16(1), 18. https://doi.org/10.1093/jisesa/iew108Google Scholar
Zhang, H., Lin, M., Shi, H., Ji, W., Huang, L., Zhang, X., Shen, S., Gao, R., Wu, S., Tian, C., Yang, Z., Zhang, G., He, S., Wang, H., Saw, T., Chen, Y., & Ouyang, Q. (2014). Programming a Pavlovian-like conditioning circuit in Escherichia coli. Nature Communications, 5, 3102. https://doi.org/10.1038/ncomms4102Google Scholar

References

Adami, C., Ofria, C., & Collier, T. C. (2000). Evolution of biological complexity. Proceedings of the National Academy of Sciences, 97(9), 44634468. https://doi.org/10.1073/pnas.97.9.4463Google Scholar
Brand, P., & Ramírez, S. R. (2017). The evolutionary dynamics of the odorant receptor gene family in corbiculate bees. Genome Biology and Evolution, 9(8), 20232036. https://doi.org/10.1093/gbe/evx149Google Scholar
Burger, J. M. S., Kolss, M., Pont, J., & Kawecki, T. J. (2008). Learning ability and longevity: A symmetrical evolutionary trade-off in Drosophila. Evolution, 62(6), 12941304. https://doi.org/10.1111/j.1558-5646.2008.00376.xGoogle Scholar
Burnham, T. C., Dunlap, A. S., & Stephens, D. W. (2015). Experimental evolution and economics. Sage OPEN (October–December) 1–17. https://doi.org/10.1177/2158244015612524Google Scholar
Dall, S., Giraldeau, L., Olsson, O., McNamara, J., & Stephens, D. W. (2005). Information and its use by animals in evolutionary ecology. Trends in Ecology & Evolution, 20(4), 187193. https://doi.org/10.1016/j.tree.2005.01.010Google Scholar
Davis, R. L., & Zhong, Y. (2017). The biology of forgetting – A perspective. Neuron, 95(3), 490503. https://doi.org/10.1016/j.neuron.2017.05.039Google Scholar
Domjan, M., Cusato, B., & Krause, M. (2004). Learning with arbitrary versus ecological conditioned stimuli: Evidence from sexual conditioning. Psychonomic Bulletin & Review, 11(2), 232246. https://doi.org/10.3758/bf03196565Google Scholar
Dunlap, A. S., McLinn, C. M., MacCormick, H. A., Scott, M. E., & Kerr, B. (2009). Why some memories do not last a lifetime: Dynamic long-term retrieval in changing environments. Behavioral Ecology, 20(5), 10961105. https://doi.org/10.1093/beheco/arp102Google Scholar
Dunlap, A. S., Nielsen, M. E., Dornhaus, A., & Papaj, D. R. (2016). Foraging bumble bees weigh the reliability of personal and social information. Current Biology, 26(9), 11951199. https://doi.org/10.1016/j.cub.2016.03.009Google Scholar
Dunlap, A. S., & Stephens, D. W. (2009). Components of change in the evolution of learning and unlearned preference. Proceedings of the Royal Society B: Biological Sciences, 276(1670), 32013208. https://doi.org/10.1098/rspb.2009.0602Google Scholar
Dunlap, A. S., & Stephens, D. W. (2012). Tracking a changing environment: optimal sampling, adaptive memory and overnight effects. Behavioural Processes, 89(2), 8694. https://doi.org/10.1016/j.beproc.2011.10.005Google Scholar
Dunlap, A. S., & Stephens, D. W. (2014). Experimental evolution of prepared learning. Proceedings of the National Academy of Sciences, 111(32), 1175011755. https://doi.org/10.1073/pnas.1404176111Google Scholar
Dunlap, A. S., & Stephens, D. W. (2016). Reliability, uncertainty, and costs in the evolution of animal learning. Current Opinion in Behavioral Sciences, 12, 7379. https://doi.org/10.1016/j.cobeha.2016.09.010Google Scholar
Dwyer, D. M. (2015). Experimental evolution of sensitivity to a stimulus domain alone is not an example of prepared learning. Proceedings of the National Academy of Sciences, 112(5), E385. https://doi.org/10.1073/pnas.1420871112Google Scholar
Farris, S. M., & Schulmeister, S. (2011). Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects. Proceedings of the Royal Society B: Biological Sciences, 278(1707), 940951. https://doi.org/10.1098/rspb.2010.2161Google Scholar
Fawcett, T. W., Fallenstein, B., Higginson, A. D., Houston, A. I., Mallpress, D. E. W., Trimmer, P. C., & McNamara, J. M. (2014). The evolution of decision rules in complex environments. Trends in Cognitive Sciences, 18(3), 153161. https://doi.org/10.1016/j.tics.2013.12.012Google Scholar
Ferrari, M. C. O., Vrtělová, J., Brown, G. E., & Chivers, D. P. (2012). Understanding the role of uncertainty on learning and retention of predator information. Animal Cognition, 15(5), 807813. https://doi.org/10.1007/s10071-012-0505-yGoogle Scholar
Garcia, J., & Koelling, R. A. (1966). Relation of cue to consequence in avoidance learning. Psychonomic Science, 4(1), 123124. https://doi.org/10.3758/bf03342209Google Scholar
Garland, T., & Rose, M.R. (2009). Experimental evolution: Concepts, methods, and applications of selection experiments (1st ed.). University of California Press.Google Scholar
Hauser, F. E., & Chang, B. S. W. (2017). Insights into visual pigment adaptation and diversity from model ecological and evolutionary systems. Current Opinion in Genetics & Development, 47, 110120. https://doi.org/10.1016/j.gde.2017.09.005Google Scholar
Kikuchi, D. W., & Pfennig, D. W. (2013). Imperfect mimicry and the limits of natural selection. The Quarterly Review of Biology, 88(4), 297315. https://doi.org/10.1086/673758Google Scholar
Knudsen, E. I. (2007). Fundamental components of attention. Annual Review of Neuroscience, 30(1), 5778. https://doi.org/10.1146/annurev.neuro.30.051606.094256Google Scholar
Köksal, F., Domjan, M., & Weisman, G. (1994). Blocking of the sexual conditioning of differentially effective conditioned stimulus objects. Animal Learning & Behavior, 22, 103111.Google Scholar
Koops, M. A. (2004). Reliability and the value of information. Animal Behaviour, 67(1), 103111. https://doi.org/10.1016/j.anbehav.2003.02.008CrossRefGoogle Scholar
Kotrschal, A., Corral-Lopez, A., Amcoff, M., & Kolm, N. (2014). A larger brain confers a benefit in a spatial mate search learning task in male guppies. Behavioral Ecology, 26(2), 527532. https://doi.org/10.1093/beheco/aru227CrossRefGoogle Scholar
Kotrschal, A., Rogell, B., Bundsen, A., Svensson, B., Zajitschek, S., Brännström, I., Immler, S., Maklakov, A. A., & Kolm, N. (2013). Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Current Biology, 23(2), 168171. https://doi.org/10.1016/j.cub.2012.11.058Google Scholar
Kraaijeveld, K., Oostra, V., Liefting, M., Wertheim, B., de Meijer, E., & Ellers, J. (2018). Regulatory and sequence evolution in response to selection for improved associative learning ability in Nasonia vitripennis. BMC Genomics, 19(1), 115. https://doi.org/10.1186/s12864-018-5310-9Google Scholar
Kraemer, P. J., & Golding, J. M. (1997). Adaptive forgetting in animals. Psychonomic Bulletin & Review, 4(4), 480491. https://doi.org/10.3758/bf03214337Google Scholar
Krause, M. A., Cusato, B., & Domjan, M. (2003). Extinction of conditioned sexual responses in male Japanese quail (Coturnix japonica): Role of species typical cues. Journal of Comparative Psychology, 117, 7686.Google Scholar
Leadbeater, E., & Dawson, E. H. (2017). A social insect perspective on the evolution of social learning mechanisms. Proceedings of the National Academy of Sciences, 114(30), 78387845. https://doi.org/10.1073/pnas.1620744114Google Scholar
Liefting, M., Hoedjes, K. M., Le Lann, C., Smid, H. M., & Ellers, J. (2018). Selection for associative learning of color stimuli reveals correlated evolution of this learning ability across multiple stimuli and rewards. Evolution, 72(7), 14491459. https://doi.org/10.1111/evo.13498Google Scholar
Linwick, D., Patterson, J., & Overmier, J. B. (1981). On inferring selective association: Methodological considerations. Animal Learning & Behavior, 9(4), 508512. https://doi.org/10.3758/bf03209782Google Scholar
LoLordo, V. M. (1979). Selective associations. In Dickinson, A. and Boakes, R. A. (Eds.), Mechanisms of learning and motivation: A memorial volume to Jerzy Konorski (pp. 367398). Lawrence Erlbaum..Google Scholar
Mackintosh, N. J. (1974). The psychology of animal learning. Academic Press.Google Scholar
Maharaj, G., Horack, P., Yoder, M., & Dunlap, A. S. (2018). Influence of preexisting preference for color on sampling and tracking behavior in bumble bees. Behavioral Ecology, 30(1), 150158. https://doi.org/10.1093/beheco/ary140Google Scholar
Marcus, M., Burnham, T. C., Stephens, D. W., & Dunlap, A. S. (2017). Experimental evolution of color preference for oviposition in Drosophila melanogaster. Journal of Bioeconomics, 20(1), 125140. https://doi.org/10.1007/s10818-017-9261-zGoogle Scholar
McNamara, J. M., & Houston, A. I. (1987). Memory and the efficient use of information. Journal of Theoretical Biology, 125(4), 385395. https://doi.org/10.1016/s0022-5193(87)80209-6Google Scholar
Mery, F., & Kawecki, T. J. (2002). Experimental evolution of learning ability in fruit flies. Proceedings of the National Academy of Sciences, 99(22), 1427414279. https://doi.org/10.1073/pnas.222371199Google Scholar
Mery, F., & Kawecki, T. J. (2003). A fitness cost of learning ability in Drosophila melanogaster. Proceedings of the Royal Society of London B Biological Sciences, 270, 24652469. https://doi.org/10.1098/rspb.2003.2548Google Scholar
Mery, F., & Kawecki, T. J. (2004). The effect of learning on experimental evolution of resource preference in Drosophila melanogaster. Evolution, 58(4), 757. https://doi.org/10.1554/03-540Google Scholar
Mery, F., Pont, J., Preat, T., & Kawecki, T. J. (2007). Experimental evolution of olfactory memory in Drosophila melanogaster. Physiological and Biochemical Zoology, 80(4), 399405. https://doi.org/10.1086/518014Google Scholar
Miller, S. E., Legan, A. W., Henshaw, M. T., Ostevik, K. L., Samuk, K., Uy, F. M., & Sheehan, M. J. (2020). Evolutionary dynamics of recent selection on cognitive abilities. Proceedings of the National Academy of Sciences, 117(6), 30453052. https://doi.org/10.1073/pnas.1918592117Google Scholar
Morand-Ferron, J. (2017). Why learn? The adaptive value of associative learning in wild populations. Current Opinion in Behavioral Sciences, 16, 7379.Google Scholar
Oberling, P., Bristol, A. S., Matute, H., & Miller, R. R. (2000). Biological significance attenuates overshadowing, relative validity, and degraded contingency effects. Animal Learning & Behavior, 28, 172186.Google Scholar
Pavlov, I. P. (1927). Conditioned reflexes. Oxford University Press.Google Scholar
Pontes, A. C., Mobley, R. B., Ofria, C., Adami, C., & Dyer, F. C. (2020). The evolutionary origin of associative learning. The American Naturalist, 195(1), E1E19. https://doi.org/10.1086/706252Google Scholar
Reader, S. M. (2016). Animal social learning: Associations and adaptations. F1000Research, 5, 2120. https://doi.org/10.12688/f1000research.7922.1Google Scholar
Rescorla, R. A. & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Black, A. H. & Prokasy, W. F. (Eds.), Classical conditioning II: Current research and theory (pp. 6499). Appleton-Century-Crofts.Google Scholar
Riffell, J. (2020). The neuroecology of insect-plant interactions: The importance of physiological state and sensory integration. Current Opinion in Insect Science, 42, 118124. https://doi.org/10.1016/j.cois.2020.10.007Google Scholar
Rubi, T. L., & Stephens, D. W. (2015). Should receivers follow multiple signal components? An economic perspective. Behavioral Ecology, 27(1), 3644. https://doi.org/10.1093/beheco/arv121Google Scholar
Rubi, T. L., & Stephens, D. W. (2016). Why complex signals matter, sometimes. In Bee, M. & Miller, C. (Eds.), Psychological mechanisms in animal communication. Animal signals and communication (Vol. 5, pp. 119136). Springer. https://doi.org/10.1007/978-3-319-48690-1_5Google Scholar
Seligman, M. E. (1970). On the generality of the laws of learning. Psychological Review, 77(5), 406418. https://doi.org/10.1037/h0029790Google Scholar
Silva, F. J. (2018). The puzzling persistence of “neutral” conditioned stimuli. Behavioural Processes, 157, 8090. https://doi.org/10.1016/j.beproc.2018.07.004Google Scholar
Snell-Rood, E. C., & Steck, M. (2015). Experience drives the development of movement-cognition correlations in a butterfly. Frontiers in Ecology and Evolution, 3, 6373. https://doi.org/10.3389/fevo.2015.00021Google Scholar
Stevens, M. (2013). Sensory ecology, behaviour, and evolution (Illustrated ed.). Oxford University Press.Google Scholar
Van Damme, S., De Fruyt, N., Watteyne, J., Kenis, S., Peumen, K., Schoofs, L., & Beets, I. (2021). Neuromodulatory pathways in learning and memory: Lessons from invertebrates. Journal of Neuroendocrinology, 33(1), e1291. https://doi.org/10.1111/jne.12911Google Scholar

References

Boogert, N. J., Madden, J. R., Morand-Ferron, J., & Thornton, A. (2018). Measuring and understanding individual differences in cognition. Philosophical Transactions of the Royal Society B, 373(1756), 110. http://dx.doi.org/10.1098/rstb.2017.0280Google Scholar
Brandes, C. (1988). Estimation of heritability of learning behavior in honeybees (Apis mellifera capensis). Behavior Genetics, 18(1), 119132. https://doi.org/10.1007/BF01067081Google Scholar
de Bruijn, J. A. C., Vet, L. E. M., & Smid, H. M. (2018). Costs of persisting unreliable memory: Reduced foraging efficiency for free-flying parasitic wasps in a wind tunnel. Frontiers in Ecology and Evolution, 6(160), 19. https://doi.org/10.3389/fevo.2018.00160CrossRefGoogle Scholar
Burger, J. M. S., Kolss, M., Pont, J., & Kawecki, T. J. (2008). Learning ability and longevity: A symmetrical evolutionary trade-off in Drosophila. Evolution, 62(6), 12941304. https://doi.org/10.1111/j.1558-5646.2008.00376.xGoogle Scholar
Callahan, H. S., Maughan, H., & Steiner, U. K. (2008). Phenotypic plasticity, costs of phenotypes, and costs of plasticity: Toward an integrative view. Annals of the New York Academy of Sciences, 1133, 4466. https://doi.org/10.1196/annals.1438.008Google Scholar
Chandra, S. B. C., Hunt, G. J., Cobey, S., & Smith, B. H. (2001). Quantitative trait loci associated with reversal learning and latent inhibition in honeybees (Apis mellifera). Behavior Genetics, 31(3), 275285. https://doi.org/10.1023/A:1012227308783Google Scholar
Cheng, K., & Wignall, A. E. (2006). Honeybees (Apis mellifera) holding on to memories: Response competition causes retroactive interference effects. Animal Cognition, 9(2), 141150. https://doi.org/10.1007/s10071-005-0012-5Google Scholar
Christiansen, I. C., Szin, S., & Schausberger, P. (2016). Benefit-cost trade-offs of early learning in foraging predatory mites Amblyseius swirskii. Scientific Reports, 6(23571), 111. https://doi.org/10.1038/srep23571Google Scholar
Croston, R., Branch, C. L., Kozlovsky, D. Y., Dukas, R., & Pravosudov, V. V. (2015). Heritability and the evolution of cognitive traits. Behavioral Ecology, 26(6), 14471459. https://doi.org/10.1093/beheco/arv088Google Scholar
Darwin, C. (1859). On the origin of species. John Murray.Google Scholar
DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution, 13(2), 7781. https://doi.org/10.1016/S0169-5347(97)01274-3Google Scholar
Dougherty, L. R., & Guillette, L. M. (2018). Linking personality and cognition: A meta-analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1756), 112. https://doi.org/10.1098/rstb.2017.0282Google Scholar
Dukas, R. (2008a). Evolutionary biology of insect learning. Annual Review of Entomology, 53, 145160. https://doi.org/10.1146/annurev.ento.53.103106.093343Google Scholar
Dukas, R. (2008b). Learning decreases heterospecific courtship and mating in fruit flies. Biology Letters, 4(6), 645647. https://doi.org/10.1098/rsbl.2008.0437Google Scholar
Dukas, R., & Bernays, E. A. (2000). Learning improves growth rate in grasshoppers. Proceedings of the National Academy of Sciences, 97(6), 26372640. https://doi.org/10.1073/pnas.050461497Google Scholar
Dukas, R., & Duan, J. J. (2000). Potential fitness consequences of associative learning in a parasitoid wasp. Behavioral Ecology, 11, 536543. https://doi.org/10.1093/beheco/11.5.536Google Scholar
Dunlap, A. S., Austin, M. W., & Figueiredo, A. (2019). Components of change and the evolution of learning in theory and experiment. Animal Behaviour, 147, 157166. https://doi.org/10.1016/j.anbehav.2018.05.024Google Scholar
Dunlap, A. S., & Stephens, D. W. (2014). Experimental evolution of prepared learning. Proceedings of the National Academy of Sciences, 111(32), 1175011755. https://doi.org/10.1073/pnas.1404176111Google Scholar
Dunlap, A. S., & Stephens, D. W. (2016). Reliability, uncertainty, and costs in the evolution of animal learning. Current Opinion in Behavioral Sciences, 12, 7379. https://doi.org/10.1016/j.cobeha.2016.09.010Google Scholar
Eliassen, S., Jørgensen, C., Mangel, M., & Giske, J. (2017). Exploration or exploitation: Life expectancy changes the value of learning in foraging strategies. Oikos, 116(3), 513523. https://doi.org/10.1111/j.2007.0030-1299.15462.xGoogle Scholar
Ellers, J., & Liefting, M. (2015). Extending the integrated phenotype: Covariance and correlation in plasticity of behavioural traits. Current Opinion in Insect Science, 9, 3135. https://doi.org/10.1016/j.cois.2015.05.013Google Scholar
Ernande, B., & Dieckmann, U. (2004). The evolution of phenotypic plasticity in spatially structured environments: Implications of intraspecific competition, plasticity costs and environmental characteristics. Journal of Evolutionary Biology, 17(3), 613628. https://doi.org/10.1111/j.1420-9101.2004.00691.xGoogle Scholar
Evans, L. J., & Raine, N. E. (2014). Foraging errors play a role in resource exploration by bumble bees (Bombus terrrestris). Journal of Comparative Physiology A, 200(6), 475484. https://doi.org/10.1007/s00359-014-0905-3Google Scholar
Evans, L. J., Smith, K. E., & Raine, N. E. (2017). Fast learning in free-foraging bumble bees is negatively correlated with lifetime resource collection. Scientific Reports, 7(1), 110. https://doi.org/10.1038/s41598-017-00389-0Google Scholar
Ferguson, H. J., Cobey, S., & Smith, B. H. (2001). Sensitivity to a change in reward is heritable in the honeybee, Apis mellifera. Animal Behaviour, 61(3), 527534. https://doi.org/10.1006/anbe.2000.1635Google Scholar
Fitzpatrick, M. J., Feder, E., Rowe, L., & Sokolowski, M. B. (2007). Maintaining a behaviour polymorphism by frequency-dependent selection on a single gene. Nature, 447(7141), 210212. https://doi.org/10.1038/nature05764CrossRefGoogle ScholarPubMed
Gosling, S. D. (2001). From mice to men: What can we learn about personality from animal research? In Psychological Bulletin (Vol. 127, Issue 1, pp. 45–86). https://doi.org/10.1037/0033-2909.127.1.45Google Scholar
Griffin, A. S., Guillette, L. M., & Healy, S. D. (2015). Cognition and personality: An analysis of an emerging field. Trends in Ecology & Evolution, 30(4), 207214. https://doi.org/10.1016/j.tree.2015.01.012Google Scholar
van Grunsven, R. H. A., & Liefting, M. (2015). How to maintain ecological relevance in ecology. Trends in Ecology & Evolution, 30(10), 563564. https://doi.org/10.1016/j.tree.2015.07.010Google Scholar
Haberkern, H., & Jayaraman, V. (2016). Studying small brains to understand the building blocks of cognition. Current Opinion in Neurobiology, 37, 5965. https://doi.org/10.1016/j.conb.2016.01.007Google Scholar
Hallgrímsson, B., & Hall, B. K. (2005). Variation – A central concept in biology (Hallgrímsson, B. & Hall, B. K. (eds.)). Elsevier. https://doi.org/10.1016/B978-0-12-088777-4.X5000-5Google Scholar
Harvey, J. A., Malcicka, M., & Ellers, J. (2015). Integrating more biological and ecological realism into studies of multitrophic interactions. Ecological Entomology, 40(4), 349352. https://doi.org/10.1111/een.12204Google Scholar
Hirsch, J., & McCauley, L. A. (1977). Successful replication of, and selective breeding for, classical conditioning in the blowfly Phormia regina. Animal Behaviour, 25(3), 784785. https://doi.org/10.1016/0003-3472(77)90130-0Google Scholar
Hoedjes, K. M., Kruidhof, H. M., Huigens, M. E., Dicke, M., Vet, L. E. M., & Smid, H. M. (2011). Natural variation in learning rate and memory dynamics in parasitoid wasps: opportunities for converging ecology and neuroscience. Proceedings of the Royal Society B, 278(1707), 889897. https://doi.org/10.1098/rspb.2010.2199Google Scholar
Hoedjes, K. M., & Smid, H. M. (2014). Natural variation in long-term memory formation among Nasonia parasitic wasp species. Behavioural Processes, 105, 4045. https://doi.org/10.1016/j.beproc.2014.02.014Google Scholar
Hoedjes, K. M., Smid, H. M., Vet, L. E. M., & Werren, J. H. (2014). Introgression study reveals two quantitative trait loci involved in interspecific variation in memory retention among Nasonia wasp species. Heredity, 113(6), 542550. https://doi.org/10.1038/hdy.2014.66Google Scholar
Hoedjes, K. M., Steidle, J. L. M., Werren, J. H., Vet, L. E. M., & Smid, H. M. (2012). High-throughput olfactory conditioning and memory retention test show variation in Nasonia parasitic wasps. Genes, Brain and Behavior, 11(7), 879887. https://doi.org/10.1111/j.1601-183X.2012.00823.xGoogle Scholar
Holliday, M., & Hirsch, J. (1986). A comment on the evidence for learning in diptera. Behavior Genetics, 16(4), 439447. https://doi.org/10.1007/BF01074263Google Scholar
Hoppitt, W., Samson, J., Laland, K. N., & Thornton, A. (2012). Identification of learning mechanisms in a wild meerkat population. PLoS ONE, 7(8), e42044. https://doi.org/10.1371/journal.pone.0042044Google Scholar
Kingsolver, J. G., Hoekstra, H. E., Hoekstra, J. M., Berrigan, D., Vignieri, S. N., Hill, C. E., Hoang, A., Gibert, P., & Beerli, P. (2001). The strength of phenotypic selection in natural populations. The American Naturalist, 157(3), 245261. 0003-0147/2001/15703-0001$03.00Google Scholar
Kraaijeveld, K., Oostra, V., Liefting, M., Wertheim, B., Meijer, E. de, & Ellers, J. (2018). Regulatory and sequence evolution in response to selection for improved associative learning ability in Nasonia vitripennis. BMC Genomics, 19, 892. https://doi.org/doi.org/10.1186/s12864-018-5310-9Google Scholar
Kruidhof, H. M., Roberts, A. L., Magdaraog, P., Muñoz, D., Gols, R., Vet, L. E. M., Hoffmeister, T. S., & Harvey, J. A. (2015). Habitat complexity reduces parasitoid foraging efficiency, but does not prevent orientation towards learned host plant odours. Oecologia, 179(2), 353361. https://doi.org/10.1007/s00442-015-3346-yGoogle Scholar
Lagasse, F., Moreno, C., Preat, T., & Mery, F. (2012). Functional and evolutionary trade-offs co-occur between two consolidated memory phases in Drosophila melanogaster. Proceedings of the Royal Society B, 279(1744), 40154023. https://doi.org/10.1098/rspb.2012.1457Google Scholar
Liefting, M., Hoedjes, K. M., Le Lann, C., Smid, H. M., & Ellers, J. (2018). Selection for associative learning of color stimuli reveals correlated evolution of this learning ability across multiple stimuli and rewards. Evolution, 72(7), 14491459. https://doi.org/10.1111/evo.13498Google Scholar
Liefting, M., Rohmann, J. L., Le Lann, C., & Ellers, J. (2019). What are the costs of learning? Modest trade-offs and constitutive costs do not set the price of fast associative learning ability in a parasitoid wasp. Animal Cognition, 22(5), 851861. https://doi.org/10.1007/s10071-019-01281-2Google Scholar
Liefting, M., Verwoerd, L., Dekker, M. L., Hoedjes, K. M., & Ellers, J. (2020). Strain differences rather than species differences contribute to variation in associative learning ability in Nasonia. Animal Behaviour, 168, 2531. https://doi.org/10.1016/j.anbehav.2020.07.026Google Scholar
Lofdahl, K. L., Holliday, M., & Hirsch, J. (1992). Selection for conditionability in Drosophila melanogaster. Journal of Comparative Psychology, 106(2), 172183. https://doi.org/10.1037/0735-7036.106.2.172Google Scholar
Madden, J. R., Langley, E. J. G., Whiteside, M. A., Beardsworth, C. E., & Van Horik, J. O. (2018). The quick are the dead: Pheasants that are slow to reverse a learned association survive for longer in the wild. Philosophical Transactions of the Royal Society B, 373(1756), 19. https://doi.org/10.1098/rstb.2017.0297Google Scholar
McNamara, J. M., & Houston, A. I. (1987). Memory and the efficient use of information. Journal of Theoretical Biology, 125(4), 385395. https://doi.org/10.1016/S0022-5193(87)80209-6Google Scholar
Mery, F. (2013). Natural variation in learning and memory. Current Opinion in Neurobiology, 23(1), 5256. https://doi.org/10.1016/j.conb.2012.09.001Google Scholar
Mery, F., Belay, A. T., So, A. K.-C., Sokolowski, M. B., & Kawecki, T. J. (2007). Natural polymorphism affecting learning and memory in Drosophila. Proceedings of the National Academy of Sciences, 104(32), 1305113055. https://doi.org/10.1073/pnas.0702923104Google Scholar
Mery, F., & Kawecki, T. J. (2002). Experimental evolution of learning ability in fruit flies. Proceedings of the National Academy of Sciences, 99(22), 1427414279. https://doi.org/10.1073/pnas.222371199Google Scholar
Mery, F., & Kawecki, T. J. (2003). A fitness cost of learning ability in Drosophila melanogaster. Proceedings of the Royal Society of London B, 270(1532), 24652469. https://doi.org/10.1098/rspb.2003.2548Google Scholar
Mery, F., Pont, J., Preat, T., & Kawecki, T. J. (2007). Experimental evolution of olfactory memory in Drosophila melanogaster. Physiological and Biochemical Zoology, 80(4), 399405. https://doi.org/10.1086/518014Google Scholar
Mitchell-Olds, T., Willis, J. H., & Goldstein, D. B. (2007). Which evolutionary processes influence natural genetic variation for phenotypic traits? Nature Reviews Genetics, 8(11), 845856. https://doi.org/10.1038/nrg2207Google Scholar
Morand-Ferron, J., Cole, E. F., & Quinn, J. L. (2016). Studying the evolutionary ecology of cognition in the wild: A review of practical and conceptual challenges. Biological Reviews, 91(2), 367389. https://doi.org/10.1111/brv.12174Google Scholar
Népoux, V., Haag, C. R., & Kawecki, T. J. (2010). Effects of inbreeding on aversive learning in Drosophila. Journal of Evolutionary Biology, 23(11), 23332345. https://doi.org/10.1111/j.1420-9101.2010.02094.xGoogle Scholar
Papaj, D. R., & Lewis, A. C. (1993). Insect learning: Ecology and evolutionary perspectives (Papaj, D. R. & Lewis, A. C. (eds.)). Chapman & Hall.Google Scholar
Pasquier, G., & Grüter, C. (2016). Individual learning performance and exploratory activity are linked to colony foraging success in a mass-recruiting ant. Behavioral Ecology, 27(6), 17021709. https://doi.org/10.1093/beheco/arw079Google Scholar
Perry, C. J., Barron, A. B., & Chittka, L. (2017). The frontiers of insect cognition. Current Opinion in Behavioral Sciences, 16, 111118. https://doi.org/10.1016/j.cobeha.2017.05.011Google Scholar
Perry, C. J., & Chittka, L. (2019). How foresight might support the behavioral flexibility of arthropods. Current Opinion in Neurobiology, 54, 171177. https://doi.org/10.1016/j.conb.2018.10.014Google Scholar
Price, T. D., & Schluter, D. (1991). On the low heritability of life-history traits. Evolution, 45(4), 853861. https://doi.org/10.2307/2409693Google Scholar
Quinn, J. L., Cole, E. F., Reed, T. E., & Morand-Ferron, J. (2016). Environmental and genetic determinants of innovativeness in a natural population of birds. Philosophical Transactions of the Royal Society B, 371(1690), 114. https://doi.org/10.1098/rstb.2015.0184Google Scholar
Raine, N. E., & Chittka, L. (2008). The correlation of learning speed and natural foraging success in bumble-bees. Proceedings of the Royal Society B, 275(1636), 803808. https://doi.org/10.1098/rspb.2007.1652Google Scholar
Raine, N. E., Ings, T. C., Ramos-Rodriguez, O., & Chittka, L. (2006). Intercolony variation in learning performance of a wild British bumblebee population (Hymenoptera: Apidae: Bombus terrestris audax). Entomologia Generalis, 28(4), 241256. https://doi.org/10.1127/entom.gen/28/2006/241Google Scholar
Rowe, C., & Healy, S. D. (2014). Measuring variation in cognition. Behavioral Ecology, 25(6), 12871292. https://doi.org/10.1093/beheco/aru090Google Scholar
Sepúlveda, D. A., Zepeda-Paulo, F., Ramírez, C. C., Lavandero, B., & Figueroa, C. C. (2017). Loss of host fidelity in highly inbred populations of the parasitoid wasp Aphidius ervi (Hymenoptera: Braconidae). Journal of Pest Science, 90(2), 649658. https://doi.org/10.1007/s10340-016-0798-8Google Scholar
Snell-Rood, E. C., Davidowitz, G., & Papaj, D. R. (2011). Reproductive tradeoffs of learning in a butterfly. Behavioral Ecology, 22(2), 291302. https://doi.org/10.1093/beheco/arq169Google Scholar
Stamps, J. A. (2016). Individual differences in behavioural plasticities. Biological Reviews, 91(2), 534567. https://doi.org/10.1111/brv.12186Google Scholar
Stephens, D. W. (1991). Change, regularity, and value in the evolution of animal learning. Behavioral Ecology, 2, 7789. https://doi.org/https://doi.org/10.1093/beheco/2.1.77Google Scholar
Thornton, A., & Lukas, D. (2012). Individual variation in cognitive performance: Developmental and evolutionary perspectives. Philosophical Transactions of the Royal Society B, 367(1603), 27732783. https://doi.org/10.1098/rstb.2012.0214Google Scholar
Versace, E., & Reisenberger, J. (2015). Large-scale assessment of olfactory preferences and learning in Drosophila melanogaster: behavioral and genetic components. PeerJ, 3, e1214. https://doi.org/10.7717/peerj.1214Google Scholar
Werren, J. H., & Loehlin, D. W. (2009). The parasitoid wasp Nasonia: An emerging model system with haploid male genetics. Cold Spring Harbor Protocols, 4(10), 110. https://doi.org/10.1101/pdb.emo134Google Scholar
Werren, J. H., Richards, S., Desjardins, C. A., Niehuis, O., Gadau, J., Colbourne, J. K., Beukeboom, L. W., Desplan, C., Elsik, C. G., Grimmelikhuijzen, C. J. P., Kitts, P., Lynch, J. A., Murphy, T., Oliveira, D. C. S. G., Smith, C. D., van de Zande, L., Worley, K. C., Zdobnov, E. M., Aerts, M., … Gibbs, R. A. (2010). Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science, 327(5963), 343348. https://doi.org/10.1126/science.1178028Google Scholar
Zrelec, V., Zini, M., Guarino, S., Mermoud, J., Oppliger, J., Valtat, A., Zeender, V., & Kawecki, T. J. (2013). Drosophila rely on learning while foraging under seminatural conditions. Ecology and Evolution, 3(12), 41394148. https://doi.org/10.1002/ece3.783Google Scholar
Zwoinska, M. K., Lind, M. I., Cortazar‐Chinarro, M., Ramsden, M., & Maklakov, A. A. (2016). Selection on learning performance results in the correlated evolution of sexual dimorphism in life history. Evolution, 70(2), 342357. https://doi.org/10.1111/evo.12862Google Scholar

References

Adler, K. (1980). Individuality in the use of orientation cues by green frogs. Animal Behaviour, 28, 413425. http://dx.doi.org/10.1016/S0003-3472(80)80050-9Google Scholar
Anderson, J. S., Reisz, R. R., Scott, D., Fröbisch, N. B., & Sumida, S. S. (2008). A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders. Nature, 453, 515518. http://dx.doi.org/10.1038/nature06865Google Scholar
Bingman, V. P. (1990). Spatial navigation in birds. In Olton, D. and Kesner, R. P. (Eds.), Neurobiology of comparative cognition (pp. 423447). Erlbaum Press.Google Scholar
Bingman, V. P., Bagnoli, P., Ioalé, P., & Casini, G. (1989). Behavioral and anatomical studies of the avian hippocampus. In Chanpalay, V. and Kohler, C. (Eds.), The hippocampus: New vistas (pp. 379394). Alan R. Liss.Google Scholar
Bingman, V. P., Jechura, T., & Kahn, M. C. (2006). Behavioral and neural mechanisms of homing and migration in birds. In Brown, M. F. and Cook, R. G. (Eds.), Animal spatial cognition: Comparative, neural, and computational approaches [Online]. www.pigeon.psy.tufts.edu/asc/BingmanGoogle Scholar
Bingman, V. P., & Muzio, R. N. (2017). Reflections on the structural-functional evolution of the hippocampus: What is the big deal about a dentate gyrus? Brain, Behavior and Evolution, 90, 5361. http://dx.doi.org/10.1159/000475592Google Scholar
Bingman, V. P., Rodríguez, F., & Salas, C. (2017). The hippocampus in nonmammalian vertebrates. In Kaas, J. (Ed.), Evolution of nervous systems (pp. 479489). Academic Press.Google Scholar
Bingman, V. P., Salas, C., & Rodriguez, F. (2009). Evolution of the hippocampus. In Binder, M. D., Hirokawa, N. and Windhorst, U. (Eds.), Encyclopaedia of neuroscience (pp. 13561360). Springer-Verlag.Google Scholar
Boland, C. R. J. (2004). Introduced cane toads Bufo marinus are active nest predators and competitors of rainbow bee-eaters Merops ornatus: Observational and experimental evidence. Biological Conservation, 120, 5362. http://dx.doi.org/10.1016/j.biocon.2004.01.025Google Scholar
Brattstrom, B. H. (1990). Maze learning in the fire-bellied toad, Bombina orientalis. Journal of Herpetology, 24, 4447. http://dx.doi.org/10.2307/1564288Google Scholar
Bruce, L. L., & Neary, T. J. (1995). The limbic system of tetrapods: A comparative analysis of cortical and amygdalar populations. Brain, Behavior and Evolution, 46, 224234. http://dx.doi.org/10.1159/000113276Google Scholar
Carroll, R. L. (2009). The rise of amphibians: 365 million years of evolution. Johns Hopkins University Press.Google Scholar
Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23, 149178. http://dx.doi.org/10.1016/0010-0277(86)90041-7Google Scholar
Chivers, D. P., McCormick, M. I., Mitchell, M. D., Ramasamy, R. A., & Ferrari, M. C. O. (2014). Background level of risk determines how prey categorize predators and non-predators. Proceedings of the Royal Society B, 281, 20140355. http://dx.doi.org/10.1098/rspb.2014.0355Google Scholar
Daneri, M. F., Casanave, E. B., & Muzio, R. N. (2011). Control of spatial orientation in terrestrial toads (Rhinella arenarum). Journal of Comparative Psychology, 125, 296307. http://dx.doi.org/10.1037/a0024242Google Scholar
Daneri, M. F., Casanave, E. B., & Muzio, R. N. (2015). Use of local visual cues for spatial orientation in toads (Rhinella arenarum): The role of distance to a goal. Journal of Comparative Psychology, 129, 247255. http://dx.doi.org/10.1037/a0039461Google Scholar
Daneri, M. F., Casanave, E. B., & Muzio, R. N. (In prep.) Blocking, Overshadowing and Latent Inhibition in terrestrial toads (Rhinella arenarum): Use of visual cues for orientation.Google Scholar
Daneri, M. F., & Muzio, R. N. (2013a). El aprendizaje espacial y su relevancia en anfibios [Spatial learning and its relevance in amphibians]. Revista Argentina de Ciencias del Comportamiento, 5, 3849.Google Scholar
Daneri, M. F., & Muzio, R. N. (2013b). Fenómenos de Bloqueo y Ensombrecimiento en un grupo filogenéticamente antiguo. Los anfibios [Phenomena of Blocking and Overshadowing in a phylogenetically ancient group. The amphibians]. Revista Latinoamericana de Psicología, 45, 185200.Google Scholar
Daneri, M. F., & Muzio, R. N. (In prep.). Medial Pallium lesion affects both turn and cue spatial learning in terrestrial toads (Rhinella arenarum).Google Scholar
Fischer, E. K., Roland, A. B., Moskowitz, N. A., Tapia, E. E., Summers, K., Coloma, L. A., & O’Connell, L. A. (2019). The neural basis of tadpole transport in poison frogs. Proceedings of the Royal Society B, 286, 20191084. http://dx.doi.org/10.1098/rspb.2019.1084Google Scholar
Fischer, J. H., Freake, M. J., Borland, S. C., & Phillips, J. B. (2001). Evidence for the use of magnetic map information by an amphibian. Animal Behaviour, 62, 110. http://dx.doi.org/10.1006/anbe.2000.1722Google Scholar
Gallistel, C. R. (1990). The organization of learning. MIT Press.Google Scholar
González, A., & López, J. M. (2002). A forerunner of septohippocampal cholinergic system is present in amphibians. Neuroscience Letters, 327, 111114. http://dx.doi.org/10.1016/S0304-3940(02)00397-XGoogle Scholar
González, A., López, J. M., Morona, R., & Moreno, N. (2017). The organization of the central nervous system of amphibians. In Kaas, J. (Ed.), Evolution of nervous systems (pp. 141167). Academic Press.Google Scholar
González, A., López, J. M., Sánchez‐Camacho, C., & Marín, O. (2002). Localization of choline acetyltransferase (ChAT) immunoreactivity in the brain of a caecilian amphibian, Dermophis mexicanus (Amphibia: Gymnophiona). Journal of Comparative Neurology, 448, 249267. http://dx.doi.org/10.1002/cne.10233Google Scholar
Grant, D., Anderson, O., & Twitty, V. (1968). Homing orientation by olfaction in newts (Taricha rivularis). Science, 160, 13541356. http://dx.doi.org/10.1126/science.160.3834.1354Google Scholar
Greding, E. J. (1971). Comparative rates of learning in frogs (Ranidae) and toads (Bufonidae). Caribbean Journal of Science, 11, 203208.Google Scholar
Grisham, W., & Powers, A. (1990). Effects of dorsal and medial cortex lesions on reversal in turtles. Physiology and Behavior, 47, 4349. http://dx.doi.org/10.1016/0031-9384(90)90040-BGoogle Scholar
Herold, C., Coppola, V. J., & Bingman, V. P. (2015). The maturation of research into the avian hippocampal formation: Recent discoveries from one of the nature’s foremost navigators. Hippocampus, 25, 11931211. http://dx.doi.org/10.1002/hipo.22463Google Scholar
Hodos, W., & Campbell, C. B. G. (1969). Scala naturae: Why there is no theory in comparative psychology. Psychological Review, 76, 337350. http://dx.doi.org/10.1037/h0027523Google Scholar
Ingle, D., & Sahagian, D. (1973). Solution of a spatial constancy problem by goldfish. Physiological Psychology, 1, 8384. http://dx.doi.org/10.3758/BF03326873Google Scholar
Landler, L., & Gollmann, G. (2011). Magnetic orientation of the Common Toad: Establishing an arena approach for adult anurans. Frontiers in Zoology, 8, 6. http://dx.doi.org/10.1186/1742-9994-8-6Google Scholar
Liu, Y., Day, L. B., Summers, K., & Burmeister, S. S. (2019). A cognitive map in a poison frog. Journal of Experimental Biology, 222, jeb197467. http://dx.doi.org/10.1242/jeb.197467Google Scholar
Liu, Y., Jones, C. D., Day, L. B., Summers, K., & Burmeister, S. S. (2020). Cognitive phenotype and differential gene expression in a hippocampal homologue in two species of frog. Integrative and Comparative Biology, 60(4), 10071023. https://doi.org/10.1093/icb/icaa032Google Scholar
López, J. C., Broglio, C., Rodríguez, F., Thinus-Blanc, C., & Salas, C. (1999). Multiple spatial learning strategies in goldfish (Carassius auratus). Animal Cognition, 2, 109120. https://doi.org/10.1007/s100710050031Google Scholar
López, J. C., Gómez, Y., Rodríguez, F., Broglio, C., Vargas, J. P., & Salas, C. (2001). Spatial learning in turtles. Animal Cognition, 4, 4959. https://doi.org/10.1007/s100710100091Google Scholar
López, J. C., Vargas, J. P., Gomez, Y., & Salas, C. (2003). Spatial and non-spatial learning in turtles: The role of medial cortex. Behavioral Brain Research, 143, 109120. http://dx.doi.org/10.1016/S0166-4328(03)00030-5Google Scholar
Lüddecke, H. (2003). Space use, cave choice and spatial learning in the dendrobatid frog Colostethus palmatus. Amphibia-Reptilia, 24, 3746. http://dx.doi.org/10.1163/156853803763806920Google Scholar
MacDonald, C. J., Carrow, S., Place, R., & Eichenbaum, H. (2013). Distinct hippocampal time cell sequences represent odor memories in immobilized rats. Journal of Neuroscience, 33, 1460714616. http://dx.doi.org/10.1523/JNEUROSCI.1537-13.2013Google Scholar
Mackintosh, N. J. (2002). Do not ask whether they have a cognitive map, but how they find their way about. Psicológica, 23, 165185.Google Scholar
Marín, O., Smeets, W. J., & González, A. (1997). Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians. Journal of Comparative Neurology, 382, 499534. http://dx.doi.org/10.1002/(SICI)1096-9861(19970616)382:4%3C499::AID-CNE6%3E3.0.CO;2-YGoogle Scholar
Mitchell, M. D., McCormick, M. I., Ferrari, M. C. O., & Chivers, D. P. (2011). Friend or foe? The role of latent inhibition in predator and non-predator labelling by coral reef fishes. Animal Cognition, 14, 707714. http://dx.doi.org/10.1007/s10071-011-0405-6Google Scholar
Muzio, R. N., Segura, E. T., & Papini, M. R. (1993). Effects of lesions in the medial pallium on instrumental learning in the toad (Bufo arenarum). Physiology and Behavior, 54, 185188. http://dx.doi.org/10.1016/0031-9384(93)90064-MGoogle Scholar
Muzio, R. N., Segura, E. T., & Papini, M. R. (1994). Learning under partial reinforcement in the toad (Bufo arenarum): Effects of lesions in the medial pallium. Behavioral and Neural Biology, 61, 3646.Google Scholar
Nadel, L. (1991). The hippocampus and space revisited. Hippocampus, 1, 221229. http://dx.doi.org/10.1002/hipo.450010302Google Scholar
Nardi, D., & Bingman, V. P. (2007). Asymmetrical participation of the left and right hippocampus for representing environmental geometry in homing pigeons. Behavioural Brain Research, 178, 160171. http://dx.doi.org/10.1016/j.bbr.2006.12.010Google Scholar
Neary, T. J. (1990). The pallium of anuran amphibians. In Jones, E. G. and Peters, A. (Eds.), Cerebral cortex. Comparative structure and evolution of cerebral cortex (part 1, vol. 8A, pp. 107138). Plenum Press.Google Scholar
Newcombe, N. S., Ratliff, K. R., Shallcross, W. L., & Twyman, A. D. (2010). Young children’s use of features to reorient is more than just associative: Further evidence against a modular view of spatial processing. Developmental Science, 13, 213220. http://dx.doi.org/10.1111/j.1467-7687.2009.00877.xGoogle Scholar
Northcutt, R. G., & Kicliter, E. (1980). Organization of the amphibian telencephalon. In Ebbesson, S. O. E. (Ed.), Comparative neurology of the telencephalon (pp. 203225). Plenum.Google Scholar
Northcutt, R. G., & Ronan, M, (1992). Afferent and efferent connections of the bullfrog medial pallium. Brain Behavior and Evolution, 40, 116. http://dx.doi.org/10.1159/000113898Google Scholar
O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Clarendon Press.Google Scholar
Papini, M. R.; Muzio, R. N., & Segura, E. T. (1995). Instrumental learning in toads (Bufo arenarum): Reinforcer magnitude and the medial pallium. Brain, Behavior and Evolution, 46, 6171. http://dx.doi.org/10.1159/000113259Google Scholar
Pašukonis, A., Loretto, M. C., & Hödl, W. (2018). Map-like navigation from distances exceeding routine movements in the Three-striped poison frog (Ameerega trivittata). Journal of Experimental Biology, 221, jeb169714. http://dx.doi.org/10.1242/jeb.169714Google Scholar
Pašukonis, A., Trenkwalder, K., Ringler, M., Ringler, E., Mangione, R., Steininger, J., & Hödl, W. (2016). The significance of spatial memory for water finding in a tadpole-transporting frog. Animal Behaviour, 116, 8998. http://dx.doi.org/10.1016/j.anbehav.2016.02.023Google Scholar
Pašukonis, A., Warrington, I., Ringler, M., & Hödl, W. (2014). Poison frogs rely on experience to find the way home in the rainforest. Biology letters, 10, 20140642. http://dx.doi.org/10.1098/rsbl.2014.0642Google Scholar
Pecchia, T., & Vallortigara, G. (2010). Reorienting strategies in a rectangular array of landmarks by domestic chicks (Gallus gallus). Journal of Comparative Psychology, 124, 147158. http://dx.doi.org/10.1037/a0019145Google Scholar
Phillips, J. B. (1987). Laboratory studies of homing orientation in the eastern red-spotted newt, Notophthalmus viridescens. Journal of Experimental Biology, 131, 215229.Google Scholar
Phillips, J. B., Adler, K., & Borland, S. C. (1995). True navigation by an amphibian. Animal Behaviour, 50, 855858. http://dx.doi.org/10.1016/0003-3472(95)80146-4Google Scholar
Rodríguez, R., López, J. C., Vargas, J. P., Gómez, Y., Broglio, C., & Salas, C. (2002). Conservation of spatial memory function in the pallial forebrain of reptiles and ray-finned fishes. Journal of Neuroscience, 22, 28942903. http://dx.doi.org/10.1523/JNEUROSCI.22-07-02894.2002Google Scholar
Sakimoto, Y., & Sakata, S. (2018). The role of the hippocampal theta rhythm in non-spatial discrimination and associative learning task. Neuroscience and Biobehavioral Reviews, 110, 9299. https://doi.org/10.1016/j.neubiorev.2018.09.016Google Scholar
Salas, C., Rodríguez, F., Vargas, J. P., Durán, E., & Torres, B. (1996). Spatial learning and memory deficits alter telencephalic ablation in goldfish trained in place and turn maze procedures. Behavioral Neuroscience, 110, 965980. http://dx.doi.org/10.1037/0735-7044.110.5.965Google Scholar
San Mauro, D. (2010). A multilocus timescale for the origin of extant amphibians. Molecular Phylogenetics and Evolution, 56, 554561. http://dx.doi.org/10.1016/j.ympev.2010.04.019Google Scholar
Schoch, R. R. (2014). Amphibian evolution: The life of early land vertebrates. John Wiley & Sons.Google Scholar
Sherry, D. F. (2017). Food storing and memory. In ten Cate, C. and Healy, S. D. (Eds.), Avian cognition (pp. 5274). Cambridge University Press.Google Scholar
Shishimi, A. (1985). Latent inhibition experiments with goldfish (Carassius auratus). Journal of Comparative Psychology, 99(3), 316327. https://doi.org/10.1037/0735-7036.99.3.316Google Scholar
Sinsch, U. (1987). Orientation behaviour of toads (Bufo bufo) displaced from the breeding site. Journal of Comparative Physiology A, 161, 715727. http://dx.doi.org/10.1007/BF00605013Google Scholar
Sinsch, U. (1990). Migration and orientation in anuran amphibians. Ethology Ecology & Evolution, 2, 6579. http://dx.doi.org/10.1080/08927014.1990.9525494Google Scholar
Sinsch, U. (2014). Movement ecology of amphibians: From individual migratory behaviour to spatially structured populations in heterogeneous landscapes. Canadian Journal of Zoology, 92, 491502. http://dx.doi.org/10.1139/cjz-2013-0028Google Scholar
Sinsch, U., & Kirst, C. (2016). Homeward orientation of displaced newts (Triturus cristatus, Lissotriton vulgaris) is restricted to the range of routine movements. Ethology Ecology & Evolution, 28, 312328. http://dx.doi.org/10.1080/03949370.2015.1059893Google Scholar
Sotelo, M. I., Alcalá Martín, J. A., Bingman, V. P., & Muzio, R. N. (2020). On the transfer of spatial learning between geometrically different shaped environments in the terrestrial toad, Rhinella arenarum. Animal Cognition, 23, 5570. https://dx.doi.org/10.1007/s10071-019-01315-9Google Scholar
Sotelo, M. I., Bingman, V. P., & Muzio, R. N. (2015). Goal orientation by geometric and feature cues: Spatial learning in the terrestrial toad Rhinella arenarum. Animal Cognition, 18, 315323. http://dx.doi.org/10.1007/s10071-014-0802-8Google Scholar
Sotelo, M. I., Bingman, V. P., & Muzio, R. N. (2017). Slope-based and geometric encoding of a goal location by the terrestrial toad (Rhinella arenarum). Journal of Comparative Psychology, 131, 362369. https://dx.doi.org/10.1037/com0000084Google Scholar
Sotelo, M. I., Bingman, V. P., & Muzio, R. N. (In prep.). The medial pallium and the spatial encoding of geometric and visual cues in the terrestrial toad, Rhinella arenarum.Google Scholar
Sotelo, M. I., Daneri, M. F., Bingman, V. P., & Muzio, R. N. (2016). Telencephalic neuronal activation associated with spatial memory in the terrestrial toad, Rhinella arenarum: Participation of the medial pallium in navigation by geometry. Brain, Behavior and Evolution, 88, 149160. https://dx.doi.org/10.1159/000447441Google Scholar
Sturz, B. R., Gurley, T., & Bodily, K. D. (2011). Orientation in trapezoid-shaped enclosures: Implications for theoretical accounts of geometry learning. Journal of Experimental Psychology: Animal Behavior Processes, 37, 246253. http://dx.doi.org/10.1037/a0021215Google Scholar
Stynoski, J. L. (2009). Discrimination of offspring by indirect recognition in an egg-feeding dendrobatid frog, Oophaga pumilio. Animal Behaviour, 78, 13511356. http://dx.doi.org/10.1016/j.anbehav.2009.09.002Google Scholar
Summers, K., & Tumulty, J. (2013). Parental care, sexual selection, and mating systems in neotropical poison frogs. In Macedo, R. H. and Machado, G. (Eds.), Sexual selection: Perspectives and models from the neotropics (pp. 289320). Elsevier Academic Press.Google Scholar
Tennant, W. A., & Bitterman, M. E. (1975). Blocking and overshadowing in two species of fish. Journal of Experimental Psychology: Animal Behavior Processes, 1, 2229. https://doi.org/10.1037/0097-7403.1.1.22Google Scholar
Twitty, V., Grant, D., & Anderson, O. (1964). Long distance homing in the newt Taricha rivularis. Proceedings of the National Academy of Sciences of the United States of America, 51, 5158. http://dx.doi.org/10.1073/pnas.51.1.51Google Scholar
Vargas, J. P., Bingman, V. P., Portavella, M., & López, J. C. (2006). Telencephalon and geometric space in goldfish. European Journal of Neuroscience, 24, 28702878. http://dx.doi.org/10.1111/j.1460-9568.2006.05174.xGoogle Scholar
Vargas, J. P., López, J. C., Salas, C., & Thinus-Blanc, C. (2004). Encoding of geometrical and featural spatial information by goldfish (Carassius auratus). Journal of Comparative Psychology, 118, 206216. http://dx.doi.org/10.1037/0735-7036.118.2.206Google Scholar
Wang, H. H., Li, L. Y., Wang, L. W., & Liang, C. C. (2007). Morphological and histological studies on the telencephalon of the salamander Onychodactylus fischeri. Neuroscience Bulletin, 23, 170174. http://dx.doi.org/10.1007/s12264-007-0025-yGoogle Scholar
Westhoff, G., & Roth, G. (2002). Morphology and projection pattern of medial and dorsal pallial neurons in the frog Discoglossus pictus and the salamander Plethodon jordani. Journal of Comparative Neurology, 445, 97121. http://dx.doi.org/10.1002/cne.10136Google Scholar
Wolach, A. H., Breuning, S. E., Roccaforte, P., & Solhkhan, N. (1977). Overshadowing and blocking in a Goldfish (Carassius auratus) respiratory conditioning situation. The Psychological Record, 27(4), 693702. https://doi.org/10.1007/bf03394492Google Scholar
Yoshida, K., Drew, M. R., Mimura, M., & Tanaka, K. F. (2019). Serotonin-mediated inhibition of ventral hippocampus required for goal-directed behavior. Nature Neuroscience, 22, 770777. http://dx.doi.org/10.1038/s41593-019-0376-5Google Scholar

References

Adkins-Regan, E. (1999). Foam produced by male Coturnix quail: What is its function? The Auk, 116(1), 184193. https://doi.org/10.2307/4089465Google Scholar
Adkins-Regan, E., & MacKillop, E. A. (2003). Japanese quail (Coturnix japonica) inseminations are more likely to fertilize eggs in a context predicting mating opportunities. Proceedings of the Royal Society of London, Series B, 270, 16851689. https://doi.org/10.1098/rspb.2003.2421Google Scholar
Akins, C. K. (1998). Context excitation and modulation of conditioned sexual behavior. Animal Learning & Behavior, 26, 416426. https://doi.org/10.3758/BF03199234Google Scholar
Akins, C. K. (2000). Effects of species-specific cues and the CS-US interval on the topography of the sexually conditioned response. Learning and Motivation, 31, 211235. https://doi.org/10.1006/lmot.2000.1050Google Scholar
Andersson, M., & Simmons, L. W. (2006). Sexual selection and mate choice. Trends in Ecology and Evolution, 21(6), 296302. https://doi.org/10.1016/j.tree.2006.03.015Google Scholar
Ball, G. F., & Balthazart, J. (2010). Japanese quail as a model system for studying the neuroendocrine control of reproductive and social behaviors. ILAR Journal, 5, 310325. https://doi.org/10.1093/ilar.51.4.310Google Scholar
Birkhead, T. (1987). Sperm competition in birds. Trends in Ecology & Evolution, 2(9), 268272. https://doi.org/10.1016/0169-5347(87)90033-4Google Scholar
Blass, E.M., & Ganchrow, J. R., &, Steiner, J. E. (1984). Classical conditioning in newborn humans 2–48 hours of age. Infant Behavior and Development, 7, 223235. https://doi.org/10.1016/S0163-6383(84)80060-0Google Scholar
Bonde, J. P., Ernst, E., Jensen, T. K., Hjollund, N. H., Kolstad, H., Henriksen, T. B., … Skakkebaek, N. E. (1998). Relation between semen quality and fertility: A population-based study of 430 first-pregnancy planners. Lancet (London, England), 352(9135), 11721177. https://doi.org/10.1016/S0140-6736(97)10514-1Google Scholar
Coria-Avila, G. A., Jones, S. L., Solomon, C. E., Gavrila, A. M., Jordan, G. J., & Pfaus, J. G. (2006). Conditioned partner preference in female rats for strain of male. Physiology and Behavior, 88, 529537. https://doi.org/10.1016/j.physbeh.2006.05.001Google Scholar
Coria-Avila, G. A., Ouimet, A. J., Pacheco, P., Manzo, J., & Pfaus, J. G. (2005). Olfactory conditioned partner preference in the female rat. Behavioral Neuroscience, 119, 716725. https://doi.org/10.1037/0735-7044.119.3.716Google Scholar
Cornil, C. A., Holloway, K. S., Taziaux, M., & Balthazart, J. (2004). The effects of aromatase inhibition on testosterone-dependent conditioned rhythmic cloacal sphincter movements in male Japanese quail. Physiology and Behavior, 83, 99105. https://doi.org/10.1016/j.physbeh.2004.07.011Google Scholar
Cornil, C. A., Taziaux, M., Baillien, M., Ball, G. F., & Balthazart, J. (2006). Rapid effects of aromatase inhibition on male reproductive behaviors in Japanese quail. Hormones and Behavior, 49, 4567. https://doi.org/10.1016/j.yhbeh.2005.05.003Google Scholar
Cusato, B., & Domjan, M. (1998). Special efficacy of sexual conditioned stimuli that include species-typical cues: Tests with a conditioned stimulus preexposure design. Learning and Motivation, 29, 152167.Google Scholar
Domjan, M. (2005). Pavlovian conditioning: A functional perspective. Annual Review of Psychology, 56, 179206. https://doi.org/10.1146/annurev.psych.55.090902.141409Google Scholar
Domjan, M., Blesbois, E., & Williams, J. (1998). The adaptive significance of sexual conditioning: Pavlovian control of sperm release. Psychological Science, 9, 411415.Google Scholar
Domjan, M., Cusato, B., & Krause, M. (2004). Learning with arbitrary versus ecological conditioned stimuli: Evidence from sexual conditioning. Psychonomic Bulletin & Review, 11, 232246. https://doi.org/10.3758/BF03196565Google Scholar
Domjan, M., & Galef, B. G. Jr. (1983). Biological constraints on instrumental and classical conditioning: Retrospect and prospect. Animal Learning & Behavior, 11, 151161.Google Scholar
Domjan, M., & Gutiérrez, G. (2019). The behavior system for sexual learning. Behavioural Processes, 162, 184196. https://doi.org/10.1016/j.beproc.2019.01.013Google Scholar
Domjan, M., & Krause, M. A. (2017). Adaptive specializations and the generality of the laws of classical and instrumental conditioning. In Menzel, R. (Ed.), Learning theory and behavior: Vol. 1, Learning and memory: A comprehensive reference (2nd ed., Byrne, J. H. (Ed.), pp. 180201). Academic Press.Google Scholar
Domjan, M., Lyons, R., North, N. C., & Bruell, J. (1986). Sexual Pavlovian conditioned approach behavior in male Japanese quail (Coturnix coturnix japonica). Journal of Comparative Psychology, 100, 413421. https://psycnet.apa.org/doi/10.1037/0735-7036.100.4.413Google Scholar
Domjan, M., Mahometa, M. J., & Matthews, R. N. (2012). Learning in intimate connections: Conditioned fertility and its role in sexual competition. Socioaffective Neuroscience & Psychology, 2, 110. https://doi.org/10.3402/snp.v2i0.17333Google Scholar
Domjan, M., Mahometa, M. J., & Mills, A. D. (2003). Relative contributions of the male and the female to sexual behavior and reproductive success in the Japanese quail (Coturnix japonica). Journal of Comparative Psychology, 117, 391399. https://doi.org/10.1037/0735-7036.117.4.391Google Scholar
Dukas, R. (2013). Effects of learning on evolution: Robustness, innovation and speciation. Animal Behaviour, 85(5), 10231030. https://doi.org/10.1016/j.anbehav.2012.12.030Google Scholar
Dunlap, A. S., Austin, M. W., & Figueiredo, A. (2019). Components of change and the evolution of learning in theory and experiment. Animal Behaviour, 147, 157166. https://doi.org/10.1016/j.anbehav.2018.05.024Google Scholar
Dunlap, A. S., & Stephens, D. W. (2014). Experimental evolution of prepared learning. Proceedings of the National Academy of Sciences of the United States of America, 111, 1175011755. https://doi.org/10.1073/pnas.1404176111Google Scholar
Everitt, B. J., Fray, P., Kostarczyk, E., Taylor, S., & Stacey, P. (1987). Studies of instrumental behavior with sexual reinforcement in male rats (Rattus norvegicus): I. Control by brief visual stimuli paired with a receptive female. Journal of Comparative Psychology, 101, 395406. https://doi.org/10.1037/0735-7036.101.4.395Google Scholar
Gaalema, D. E. (2013). Sexual conditioning in the dyeing poison dart frog (Dendrobates tinctorius ). International Journal of Comparative Psychology, 26, 518. http://hdl.handle.net/1853/33895Google Scholar
Gámez, A. M., & León, S. P. (2018). The role of learning in the oviposition behavior of the silkworm moth (Bombyx mori). Behavioural Processes, 157, 286290. https://doi.org/10.1016/j.beproc.2018.10.023Google Scholar
Ginsburg, S., & Jablonka, E. (2010). The evolution of associative learning: A factor in the Cambrian explosion. Journal of Theoretical Biology, 266, 1120. https://doi.org/10.1016/j.jtbi.2010.06.017Google Scholar
Graham, J. M., & Desjardins, C. (1980). Classical conditioning: Induction of luteinizing hormone and testosterone secretion in anticipation of sexual activity. Science, 210(4473), 10391041. https://doi.org/10.1126/science.7434016Google Scholar
Gutiérrez, G., & Domjan, M. (1997). Differences in the sexual conditioned behavior of male and female Japanese quail (Coturnix japonica). Journal of Comparative Psychology, 111, 135142. https://doi.org/10.1037/0735-7036.111.2.135Google Scholar
Gutiérrez, G., & Domjan, M. (2011). Conditioning of sexual proceptivity in female quail: Measures of conditioned place preference. Behavioural Processes, 87, 268273.Google Scholar
Hollis, K. L., Pharr, V. L., Dumas, M. J., Britton, G. B., & Field, J. (1997). Classical conditioning provides paternity advantage for territorial male blue gouramis (Trichogaster trichopterus). Journal of Comparative Psychology, 111, 219225. https://psycnet.apa.org/doi/10.1037/0735-7036.111.3.219Google Scholar
Holloway, K. S., Balthazart, J., & Cornil, C. A. (2005). Androgen mediation of conditioned rhythmic cloacal sphincter movements in Japanese quail (Coturnix japonica). Journal of Comparative Psychology, 119, 4957. https://doi.org/10.1037/0735-7036.119.1.49Google Scholar
Jeannerat, E., Janett, F., Sieme, H., Wedekind, C., & Burger, D. (2017). Quality of seminal fluids varies with type of stimulus at ejaculation. Scientific Reports, 7, 18. https://doi.org/10.1038/srep44339Google Scholar
Kelly, C. D., & Jennions, M. D. (2011). Sexual selection and sperm quantity: Meta-analyses of strategic ejaculation. Biological Reviews, 86(4), 863884. https://doi.org/10.1111/j.1469-185X.2011.00175.xGoogle Scholar
Kippin, T. E., & Pfaus, J. G. (2001). The nature of the conditioned response mediating olfactory conditioned ejaculatory preference in the male rat. Behavioural Brain Research, 122(1), 1124. https://doi.org/10.1016/S0166-4328(01)00162-0Google Scholar
Krause, M. A. (2015). Evolutionary perspectives on learning: Conceptual and methodological issues in the study of adaptive specializations. Animal Cognition, 18(4), 807820. https://doi.org/10.1007/s10071-015-0854-4Google Scholar
Langen, E. M. A., Goerlich-Jansson, V. C., & von Engelhardt, N. (2019). Effects of the maternal and current social environment on female body mass and reproductive traits in Japanese quail (Coturnix japonica). Journal of Experimental Biology, 222(5), jeb187005. https://doi.org/10.1242/jeb.187005Google Scholar
Ledecka, D., Zeman, M., & Okuliarova, M. (2019). Genetic variation in maternal yolk testosterone allocation predicts female mating decisions in Japanese quail. Animal Behaviour, 157, 3542. https://doi.org/10.1016/j.anbehav.2019.08.022Google Scholar
Mahometa, M. J., & Domjan, M. (2005). Classical conditioning increases reproductive success in Japanese quail, Coturnix japonica. Animal Behaviour, 69(4), 983989. https://doi.org/10.1016/j.anbehav.2004.06.023Google Scholar
Matthews, R. N., Domjan, M., Ramsey, M., & Crews, D. (2007). Learning effects on sperm competition and reproductive fitness. Psychological Science, 18(9), 758762. https://doi.org/10.1111/j.1467-9280.2007.01974.xGoogle Scholar
McNeilly, A. S., Robinson, I. C., Houston, M. J., & Howie, H. P. (1983). Release of oxytocin and prolactin in response to suckling. British Medical Journal, 286, 257259. https://doi.org/10.1136/bmj.286.6361.257Google Scholar
Moatt, J. P., Dytham, C., & Thom, M. D. F. (2014). Sperm production responds to perceived sperm competition risk in male Drosophila melanogaster. Physiology and Behavior, 131, 111114. https://doi.org/10.1016/j.physbeh.2014.04.027Google Scholar
Pandeirada, J. N. S., Fernandes, N. L., Vasconcelos, M., & Nairne, J. S. (2017). Adaptive memory: Remembering potential mates. Evolutionary Psychology, 15, 111. https://doi.org/10.1177/1474704917742807Google Scholar
Paredes, R. G., & Alonso, A. (1997). Sexual behavior regulated (paced) by the female induces conditioned place preference. Behavioral Neuroscience, 111(1), 123128. https://psycnet.apa.org/doi/10.1037/0735-7044.111.1.123Google Scholar
Pfaus, J. G., Kippin, T. E., & Centeno, S. (2001). Conditioning and sexual behavior: A review. Hormones and Behavior, 40(2), 291321. https://doi.org/10.1006/hbeh.2001.1686Google Scholar
Pontes, A., Mobley, R. B., Ofria, C., Adami, C., & Dyer, F. C. (2019). The evolutionary origin of associative learning. The American Naturalist, 195(1), E1E19. https://doi.org/10.1086/706252Google Scholar
Rutkowska, J., & Adkins-Regan, E. (2009). Learning enhances female control over reproductive investment in the Japanese quail. Proceedings of the Royal Society B: Biological Sciences, 276(1671), 33273334. https://doi.org/10.1098/rspb.2009.0762Google Scholar
Taziaux, M., Kahn, A., Moore, J., Balthazart, J., & Holloway, K. S. (2008). Enhanced neural activation in brain regions mediating sexual responses following exposure to a conditioned stimulus that predicts copulation. Neuroscience, 151(3), 644658. https://doi.org/10.1016/j.neuroscience.2007.10.056Google Scholar
Taziaux, M., Lopez, J., Cornil, C. A., Balthazart, J., & Holloway, K. S. (2007). Differential c-fos expression in the brain of male Japanese quail following exposure to stimuli that predict or do not predict the arrival of a female. European Journal of Neuroscience, 25, 28352846. https://doi.org/10.1111/j.1460-9568.2007.05542.xGoogle Scholar
Timberlake, W. (2001). Motivational modes in behavior systems. In Mowrer, R. R. & Klein, S. J. (Eds.), Handbook of contemporary learning theories (pp. 155209). Erlbaum.Google Scholar
Trivers, R. L., & Willard, D. E. (1973). Natural selection of parental ability to vary the sex ratio of offspring. Science, 179(4068), 9092. https://doi.org/10.1126/science.179.4068.90Google Scholar
Zamble, E., Mitchell, J. B., & Findlay, H. (1986). Pavlovian conditioning of sexual arousal: Parametric and background manipulations. Journal of Experimental Psychology: Animal Behavior Processes, 12, 403411. https://doi.org/10.1037/0097-7403.12.4.403Google Scholar

References

Allendorf, F. W., & Hard, J. J. (2009). Human-induced evolution caused by unnatural selection through harvest of wild animals. Proceedings of the National Academy of Sciences of the United States of America, 106(Suppl.), 99879994. https://doi.org/10.1073/pnas.0901069106Google Scholar
Andersen, K. H., Marty, L., & Arlinghaus, R. (2018). Evolution of boldness and life history in response to selective harvesting. Canadian Journal of Fisheries and Aquatic Sciences, 75, 271281. https://doi.org/10.1139/cjfas-2016-0350Google Scholar
Badyaev, A. V. (2005). Stress-induced variation in evolution: From behavioural plasticity to genetic assimilation. Proceedings of the Royal Society B, 272(1566), 877886. https://doi.org/10.1098/rspb.2004.3045Google Scholar
Barrett, L. P., Stanton, L. A., & Benson-Amram, S. (2019). The cognition of “nuisance” species. Animal Behaviour, 147, 167177. https://doi.org/10.1016/j.anbehav.2018.05.005Google Scholar
Bell, A. M., McGhee, K. E., & Stein, L. R. (2016). Effects of mothers’ and fathers’ experience with predation risk on the behavioral development of their offspring in threespined sticklebacks. Current Opinion in Behavioral Sciences, 7, 2832. https://doi.org/10.1016/j.cobeha.2015.10.011Google Scholar
Berger, J., Swenson, J. E., & Persson, I.-L. (2001). Recolonizing carnivores and naïve prey: Conservation lessons from pleistocene extinctions. Science, 291, 10361039. https://doi.org/10.1126/science.1056466Google Scholar
Blackburn, T. M., Pyšek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarošík, V., Wilson, J. R. U., & Richardson, D. M. (2011). A proposed unified framework for biological invasions. Trends in Ecology & Evolution, 26, 333339. https://doi.org/10.1016/j.tree.2011.03.023Google Scholar
Bouton, M. E., & Bolles, R. C. (1979). Contextual control of the extinction of conditioned fear. Learning and Motivation, 10(4), 445466. https://doi.org/https://doi.org/10.1016/0023-9690(79)90057-2Google Scholar
Brooks, R., & Endler, J. A. (2001). Direct and indirect sexual selection and quantitative genetics of male traits in guppies (Poecilia reticulata). Evolution, 55, 10021015. https://doi.org/10.1554/0014-3820(2001)055[1002:daissa]2.0.co;2Google Scholar
Brown, C. (2012). Experience and learning in changing environments. In Candolin, U. & Wong, B. B. M. (Eds.), Behavioural responses to a changing world: Mechanisms and consequences. Oxford University Press.Google Scholar
Burney, D. A., & Flannery, T. F. (2005). Fifty millennia of catastrophic extinctions after human contact. Trends in Ecology & Evolution, 20, 395401. https://doi.org/10.1016/j.tree.2005.04.022Google Scholar
Cain, S. W., McDonald, R. J., & Ralph, M. R. (2008). Time stamp in conditioned place avoidance can be set to different circadian phases. Neurobiology of Learning and Memory, 89, 591594. https://doi.org/10.1016/j.nlm.2007.07.011Google Scholar
CIMAG (2013). The Canberra Indian Myna Action Group Inc. www.indianmynaaction.org.au (accessed August 30, 2021)Google Scholar
Coss, R. G. (1978). Perceptual determinants of gaze aversion by the Lesser Mouse Lemur (Microcebus murinus), the role of two facing eyes. Behaviour, 64(3), 248270. https://doi.org/10.1163/156853978X00053Google Scholar
Coss, R. G. (1979). Delayed plasticity of an instinct: Recognition and avoidance of 2 facing eyes by the jewel fish. Developmental Psychobiology, 12(4), 335345. https://doi.org/https://doi.org/10.1002/dev.420120408Google Scholar
Coss, R. G. (1999). Effects of relaxed selection on the evolution of behavior. In Forster, S. A. & Endler, J. A. (Eds.), Geographic variation of behavior: An evolutionary perspective (pp. 180208). Oxford University Press.Google Scholar
Côté, I. M., Darling, E. S., Malpica-Cruz, L., Smith, N. S., Green, S. J., Curtis-Quick, J., & Layman, C. (2014). What doesn’t kill you makes you wary? Effect of repeated culling on the behaviour of an invasive predator. PLoS ONE, 9(4), e94248. https://doi.org/10.1371/journal.pone.0094248Google Scholar
Darimont, C. T., Carlson, S. M., Kinnison, M. T., Paquet, P. C., Reimchen, T. E., & Wilmers, C. C. (2009). Human predators outpace other agents of trait change in the wild. Proceedings of the National Academy of Sciences of the United States of America, 106, 952954. https://doi.org/10.1073/pnas.0809235106Google Scholar
Díaz Pauli, B., Wiech, M., Heino, M., & Utne-Palm, A. (2015). Opposite selection on behavioural types by active and passive fishing gears in a simulated guppy fishery. Journal of Fish Biology, 86, 10301045. https://doi.org/10.1111/jfb.12620Google Scholar
Diquelou, M. C. (2017). Responses of invasive birds to control: The case of common mynas in Australia. University of Newcastle.Google Scholar
Diquelou, M. C., & Griffin, A. S. (2019). It’s a trap! Invasive common mynas learn socially about control-related cues. Behavioral Ecology, 30, 13141323. https://doi.org/https://doi.org/10.1093/beheco/arz079Google Scholar
Diquelou, M. C., & Griffin, A. S. (2020). Behavioral responses of invasive and nuisance vertebrates to harvesting: A mechanistic framework. Frontiers in Ecology and Evolution, 8, 18. https://doi.org/https://doi.org/10.3389/fevo.2020.00177Google Scholar
Diquelou, M. C., MacFarlane, G. R., & Griffin, A. S. (2018). Investigating responses to control: A comparison of common myna behaviour across areas of high and low trapping pressure. Biological Invasions, 20(12), 35913604. https://doi.org/10.1007/s10530-018-1798-9Google Scholar
Dufty, A. M., Clobert, J., & Møller, A. P. (2002). Hormones, developmental plasticity and adaptation. Trends in Ecology & Evolution, 17, 190196. https://doi.org/10.1016/S0169-5347(02)02498-9Google Scholar
Endler, J. A. (1982). The impact of predation on life history evolution in trinidadian guppies (Poecilia reticulata). Evolution, 36, 160177. https://doi.org/10.2307/2407978Google Scholar
Ewart, K., Griffin, A. S., Johnson, R., Kark, S., Magory Cohen, T., Lo, N., & Major, R. (2018). Two speed invasion: Assisted and intrinsic dispersal of common mynas over 150-years of colonization. Journal of Biogeography, 46, 4557. https://doi.org/10.1111/jbi.13473Google Scholar
Fanselow, M. S., & Sterlace, S. R. (2014). Pavlovian fear conditioning: Function, cause, and treatment. In McSweeney, F. K. & Murphy, E. S. (Eds.), The Wiley Blackwell handbook of operant and classical conditioning (pp. 117143). Wiley Blackwell. https://doi.org/10.1002/9781118468135.ch6Google Scholar
Farr, J. (1977). Male rarity or novelty, female choice behavior, and sexual selection in the guppy, Poecilia reticulata Peters (Pisces: Poeciliidae). Evolution, 31(1), 162168. https://doi.org/10.2307/2407554Google Scholar
Ferrari, M. C. O., Crane, A. L., & Chivers, D. P. (2016). Certainty and the cognitive ecology of generalization of predator recognition. Animal Behaviour, 111, 207211. https://doi.org/10.1016/j.anbehav.2015.10.026Google Scholar
Ferrari, M. C. O., Messier, F., & Chivers, D. P. (2008). Can prey exhibit threat-sensitive generalization of predator recognition? Extending the predator recognition continuum hypothesis. Proceedings of the Royal Society B, 275, 18111816. https://doi.org/10.1098/rspb.2008.0305Google Scholar
Ferrari, M. C. O., Trowell, J. J., Brown, G. E., & Chivers, D. P. (2005). The role of learning in the development of threat-sensitive predator avoidance by fathead minnows. Animal Behaviour, 70, 777784. https://doi.org/10.1016/j.anbehav.2005.01.009Google Scholar
Ferrari, M. C. O., Wisenden, B. D., & Chivers, D. P. (2010). Chemical ecology of predator–prey interactions in aquatic ecosystems: A review and prospectus. Canadian Journal of Zoology, 88, 698724. https://doi.org/10.1139/Z10-029Google Scholar
Grarock, K., Tidemann, C. R., Wood, J., & Lindenmayer, D. B. (2012). Is it benign or is it a pariah? Empirical evidence for the impact of the common myna (Acridotheres tristis) on Australian birds. PLoS ONE, 7(7), e40622. https://doi.org/10.1371/journal.pone.0040622Google Scholar
Grarock, K., Tidemann, C. R., Wood, J. T., & Lindenmayer, D. B. (2014a). Understanding basic species population dynamics for effective control: A case study on community-led culling of the common myna (Acridotheres tristis). Biological Invasions, 16, 14271440. https://doi.org/10.1007/s10530-013-0580-2Google Scholar
Grarock, K., Tidemann, C. R., Wood, J. T., & Lindenmayer, D. B. (2014b). Are invasive species drivers of native species decline or passengers of habitat modification? A case study of the impact of the common myna (Acridotheres tristis) on Australian bird species. Austral Ecology, 39(1), 106114. https://doi.org/10.1111/aec.12049Google Scholar
Grether, G. F., Hudon, J., & Millie, D. F. (1999). Carotenoid limitation of sexual coloration along an environmental gradient in guppies. Proceedings of the Royal Society B, 266(1426), 13171322. https://doi.org/10.1098/rspb.1999.0781Google Scholar
Griffin, A. S. (2003). Training tammar wallabies (Macropus eugenii) to respond to predators: A review linking experimental psychology to conservation. International Journal of Comparative Psychology, 16, 111129. http://escholarship.org/uc/item/706146b6Google Scholar
Griffin, A. S. (2004). Social learning about predators: A review and prospectus. Learning & Behavior, 32, 131140. https://doi.org/10.3758/BF03196014Google Scholar
Griffin, A. S. (2008). Social learning in Indian mynahs, Acridotheres tristis: The role of distress calls. Animal Behaviour, 75(1), 7989. https://doi.org/10.1016/j.anbehav.2007.04.008Google Scholar
Griffin, A. S. (2009). Temporal limitations on social learning of novel predators by Indian mynahs, Acridotheres tristis. Ethology, 115(3), 287295. https://doi.org/10.1111/j.1439-0310.2008.01594.xGoogle Scholar
Griffin, A. S., Blumstein, D. T., & Evans, C. S. (2000). Training captive-bred or translocated animals to avoid predators. Conservation Biology, 14, 13171326. https://doi.org/10.1046/j.1523-1739.2000.99326.xGoogle Scholar
Griffin, A. S., & Boyce, H. M. (2009). Indian mynahs, Acridotheres tristis, learn about dangerous places by observing the fate of others. Animal Behaviour, 78, 7984. https://doi.org/10.1016/j.anbehav.2009.03.012Google Scholar
Griffin, A. S., Boyce, H. M., & MacFarlane, G. R. (2010). Social learning about places: Observers may need to detect both social alarm and its cause in order to learn. Animal Behaviour, 79, 459465. https://doi.org/10.1016/j.anbehav.2009.11.029Google Scholar
Griffin, A. S., & Evans, C. S. (2003). Social learning of antipredator behaviour in a marsupial. Animal Behaviour, 66, 485492. https://doi.org/10.1006/anbe.2003.2207Google Scholar
Griffin, A. S., Evans, C. S., & Blumstein, D. T. (2001). Learning specificity in acquired predator recognition. Animal Behaviour, 62, 577589. https://doi.org/10.1006/anbe.2001.1781Google Scholar
Griffin, A. S., & Haythorpe, K. (2011). Learning from watching alarmed demonstrators: Does the cause of alarm matter? Animal Behaviour, 81, 11631169. www.sciencedirect.com/science/article/pii/S0003347211000753Google Scholar
Healy, S. D., & Jones, C. M. (2002). Animal learning and memory: An integration of cognition and ecology. Zoology (Jena, Germany), 105, 321327. https://doi.org/10.1078/0944-2006-00071Google Scholar
Hendry, A. P., Farrugia, T. J., & Kinnison, M. T. (2008). Human influences on rates of phenotypic change in wild animal populations. Molecular Ecology, 17, 2029. https://doi.org/10.1111/j.1365-294X.2007.03428.xGoogle Scholar
Hilborn, R., Amoroso, R. O., Anderson, C. M., Baum, J. K., Branch, T. A., Costello, C., De Moor, C. L., Faraj, A., Hively, D., Jensen, O. P., Kurota, H., Little, L. R., Mace, P., McClanahan, T., Melnychuk, M. C., Minto, C., Osio, G. C., Parma, A. M., Pons, M., … Ye, Y. (2020). Effective fisheries management instrumental in improving fish stock status. Proceedings of the National Academy of Sciences of the United States of America, 117, 22182224. https://doi.org/10.1073/pnas.1909726116Google Scholar
Hollis, K. L. (1982). Pavlovian conditioning of signal-centered action patterns and autonomic behavior: A biological analysis of function. Advances in the Study of Behavior, 12, 164. https://doi.org/10.1016/S0065-3454(08)60045-5Google Scholar
Houde, A. E. (1997). Evolutionary mismatch of mating preferences and male colour patterns in guppies. Animal Behaviour, 53, 343351. https://doi.org/10.1006/anbe.1996.0399Google Scholar
Hughes, K. A., Rodd, F. H., & Reznick, D. N. (2005). Genetic and environmental effects on secondary sex traits in guppies (Poecilia reticulata). Journal of Evolutionary Biology, 18, 3545. https://doi.org/10.1111/j.1420-9101.2004.00806.xGoogle Scholar
King, D. H. (2010). The effect of trapping pressure on trap avoidance and the role of foraging strategies in anti-predator beahviour of common mynahs (Sturnus tristis). Canberra Notes, 35, 85108.Google Scholar
Laland, K. N., Toyokawa, W., & Oudman, T. (2020). Animal learning as a source of developmental bias. Evolution and Development, 22, 126142. https://doi.org/10.1111/ede.12311Google Scholar
LeDoux, J. E. (2014). Coming to terms with fear. Proceedings of the National Academy of Sciences of the United States of America, 111(8), 28712878. https://doi.org/10.1073/pnas.1400335111Google Scholar
Lönnstedt, O. M., McCormick, M. I., Meekan, M. G., Ferrari, M. C. O., & Chivers, D. P. (2012). Learn and live: Predator experience and feeding history determines prey behaviour and survival. Proceedings of the Royal Society B, 279, 20912098. https://doi.org/10.1098/rspb.2011.2516Google Scholar
Lowe, S., Browne, M., Boudjelas, S., De Poorter, M., & World Conservation Union (IUCN). (2000). 100 of the world’s worst invasive alien species: A selection from the Global Invasive Species Database. Invasive Species Specialist Group.Google Scholar
Mack, R. N., Simberloff, D., Lonsdale, W. M., Evans, H., Clout, M., & Bazzaz, F. A. (2000). Causes, epidemiology, global consequences, and control. Ecological Applications, 10(3), 689710. https://doi.org/10.1890/0012-9623(2005)86[249b:IIE]2.0.CO;2Google Scholar
Magrath, R. D., Haff, T. M., Mclachlan, J. R., Igic, B., Magrath, R. D., Haff, T. M., Mclachlan, J. R., & Igic, B. (2015). Wild birds learn to eavesdrop on heterospecific alarm calls. Current Biology, 25(15), 20472050. https://doi.org/10.1016/j.cub.2015.06.028Google Scholar
McGhee, K. E., & Bell, A. M. (2014). Paternal care in a fish: Epigenetics and fitness enhancing effects on offspring anxiety. Proceedings of the Royal Society B, 281, 27. https://doi.org/10.1098/rspb.2014.1146Google Scholar
Mineka, S., & Cook, M. (1988). Social learning and the acquisition of snake fear in monkeys. In Zentall, T. R. & Galef, B. G. J. (Eds.), Psychological and biological perspectives (pp. 5173). Lawrence Erlbaum.Google Scholar
Miner, B. G., Sultan, S. E., Morgan, S. G., Padilla, D. K., & Relyea, R. a. (2005). Ecological consequences of phenotypic plasticity. Trends in Ecology & Evolution, 20, 685692. https://doi.org/10.1016/j.tree.2005.08.002Google Scholar
Mommer, B. C., & Bell, A. M. (2014). Maternal experience with predation risk influences genome-wide embryonic gene expression in threespined sticklebacks (Gasterosteus aculeatus). PloS One, 9(6), e98564. https://doi.org/10.1371/journal.pone.0098564Google Scholar
Muñoz, A.-R., & Real, R. (2006). Assessing the potential range expansion of the exotic monk parakeet in Spain. Diversity and Distributions, 12, 656665. https://doi.org/10.1111/j.1366-9516.2006.00272.xGoogle Scholar
National Pest Control Agencies. (2015). Possum population monitoring using the trap-catch, waxtag and chewcard methods. In National Pest Control Agencies. www.npca.org.nzGoogle Scholar
Palkovacs, E. P., Moritsch, M. M., Contolini, G. M., & Pelletier, F. (2018). Ecology of harvest-driven trait changes and implications for ecosystem management. Frontiers in Ecology and the Environment, 16(1), 2028. https://doi.org/10.1002/fee.1743Google Scholar
Palumbi, S. R. (2001). Humans as the world’s greatest evolutionary force. Science, 293(5536), 17861790. http://references.260mb.com/Evolucion/Palumbi2001.pdfGoogle Scholar
Parsons, H., Major, R. E., & French, K. (2006). Species interactions and habitat associations of birds inhabiting urban areas of Sydney, Australia. Austral Ecology, 31(2), 217227. https://doi.org/10.1111/j.1442-9993.2006.01584.xGoogle Scholar
Pavlov, I. P. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Oxford University Press.Google Scholar
Peacock, D. S., Rensburg, B. J. Van, & Robertson, M. P. (2007). The distribution and spread of the invasive alien common myna, Acridotheres tristis L. (Aves: Sturnidae), in southern Africa. South African Journal of Science, 103, 465473. www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-23532007000600008&lng=en&nrm=isoGoogle Scholar
Peacock, T. (2007). Community on-ground cane toad control in the Kimberley. In A Review conducted for the Hon. David Templeman MP, Minister for the Environment, Climate Change and Peel. www.feral.org.au/wp-content/uploads/2010/03/Peacock_Community-toad-control-report_lr.pdfGoogle Scholar
Pell, A. S., & Tidemann, C. R. (1997). The impact of two exotic hollow-nesting birds on two native parrots in savannah and woodland in the Eastern Australia. Biological Conservation, 79(96), 145153. https://doi.org/10.1016/S0006-3207(96)00112-7Google Scholar
Pimental, D., Lach, L., Zuniga, R., & Morrison, D. (2000). Environmental and economic costs associated with non-indigenous species in the United States. BioScience, 50, 5365. https://doi.org/10.1641/0006-3568(2000)050Google Scholar
Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52(3 Spec. Iss.), 273288. https://doi.org/10.1016/j.ecolecon.2004.10.002Google Scholar
Reeder, D. M., & Kramer, K. M. (2005). Stress in free-ranging mammals: Integrating physiology, ecology, and natural history. Journal of Mammalogy, 86(2), 225235. https://doi.org/10.1644/BHE-003.1Google Scholar
Reznick, D. (1982). The impact of predation on life history evolution in trinidadian guppies: Genetic basis of observed life history patterns. Evolution, 36, 12361250. https://doi.org/10.2307/2408156Google Scholar
Roche, D. P., McGhee, K. E., & Bell, A. M. (2012). Maternal predatorexposure has lifelong consequences for offspring learning in threespined sticklebacks. Biology Letters, 8(6), 932935. https://doi.org/10.1098/rsbl.2012.0685Google Scholar
Shettleworth, S. J. (2010). Cognition, evolution, and behavior (2nd ed.). Oxford University Press.Google Scholar
Sol, D., Bartomeus, I., & Griffin, A.S. (2012). The paradox of invasion in birds: Competitive superiority or ecological opportunism? Oecologia, 169, 553564. https://doi.org/10.1007/s00442-011-2203-xGoogle Scholar
Stamps, J. A. (2015). Individual differences in behavioural plasticities. Biological Reviews, 7, 137. https://doi.org/10.1111/brv.12186Google Scholar
Sullivan, A. P., Bird, D. W., & Perry, G. H. (2017). Human behaviour as a long-term ecological driver of non-human evolution. Nature Ecology and Evolution, 1, 0065. https://doi.org/10.1038/s41559-016-0065Google Scholar
Sultan, S. E., & Stearns, S. C. (2005). Environmentally contingent variation: Phenotypic plasticity and norms of reaction. In Hall, B. & Hallgrimsson, B. (Eds.), Variation: A central concept in biology (pp. 303332). Academic Press. https://doi.org/10.1016/B978-012088777-4/50016-8Google Scholar
Tidemann, C. (2005). Indian Mynas – Can the problems be controlled? Urban Animal Management Conference Proceedings 2005.Google Scholar
Wong, B. B. M., & Candolin, U. (2015). Lessons for a changing world: A response to comments on Wong and Candolin. Behavioral Ecology, 26(3), 679680. https://doi.org/10.1093/beheco/arv040Google Scholar

References

Aggleton, J. P., & Brown, M. W. (1999). Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behavioral and Brain Sciences, 22(03), 425444. https://doi.org/10.1017/S0140525X99002034Google Scholar
Allen, T. A., & Fortin, N. J. (2013). The evolution of episodic memory. Proceedings of the National Academy of Sciences, 110(Supplement 2), 1037910386. https://doi.org/10.1073/pnas.1301199110Google Scholar
Bingman, V. P., Riters, L. V., Strasser, R., & Gagliardo, A. (1998). Neuroethology of avian navigation. In Balda, R. P., Pepperberg, I. M., & Kamil, A. C. (Eds.), Animal cognition in nature (pp. 201226). Academic Press. https://doi.org/10.1016/b978-012077030-4/50059-3Google Scholar
Bird, C. M., & Burgess, N. (2008). The hippocampus and memory: Insights from spatial processing. Nature Reviews Neuroscience, 9(3), 182194. https://doi.org/10.1038/nrn2335Google Scholar
Broglio, C., Gómez, A., Durán, E., Salas, C., & Rodríguez, F. (2011). Brain and cognition in teleost fish. In Brown, C., Laland, K., & Krause, J. (Eds.), Fish cognition and behavior (pp. 325358). Wiley. https://doi.org/10.1002/9781444342536.ch15Google Scholar
Broglio, C., Rodríguez, F., Gómez, A., Arias, J. L., & Salas, C. (2010). Selective involvement of the goldfish lateral pallium in spatial memory. Behavioural Brain Research, 210(2), 191201. https://doi.org/10.1016/j.bbr.2010.02.031Google Scholar
Broglio, C., Rodríguez, F., & Salas, C. (2003). Spatial cognition and its neural basis in teleost fishes. Fish and Fisheries, 4(3), 247255. https://doi.org/10.1046/j.1467-2979.2003.00128.xGoogle Scholar
Burgess, N. (2008). Spatial cognition and the brain. Annals of the New York Academy of Sciences, 1124, 7797. https://doi.org/10.1196/annals.1440.002Google Scholar
Burgess, N., Maguire, E., & O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625641. https://doi.org/10.1016/S0896-6273(02)00830-9Google Scholar
Butler, A. B. (2000). Topography and topology of the teleost telencephalon: A paradox resolved. Neuroscience Letters, 293(2), 9598. https://doi.org/10.1016/S0304-3940(00)01497-XGoogle Scholar
Butler, A. B., & Hodos, W. (2005). Comparative vertebrate neuroanatomy. John Wiley & Sons. https://doi.org/10.1002/0471733849Google Scholar
Buzsáki, G., & Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature Neuroscience, 16(2), 130138. https://doi.org/10.1038/nn.3304Google Scholar
Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23(2), 149178. https://doi.org/10.1016/0010-0277(86)90041-7Google Scholar
Cheng, K. (1994). The determination of direction in landmark-based spatial search in pigeons: A further test of the vector sum model. Animal Learning & Behavior, 22, 291301. https://doi.org/10.3758/BF03209837Google Scholar
Cheng, K., & Gallistel, C. R. (1984). Testing the geometric power of an animal’s spatial representation. In Roitblat, H. L., Terrace, H.S., & Bever, T. G. (Eds.), Animal cognition (pp. 409423). Erlbaum. https://doi.org/10.4324/9781315802602Google Scholar
Chersi, F., & Burgess, N. (2015). The cognitive architecture of spatial navigation: Hippocampal and striatal contributions. Neuron, 88(1), 6477. https://doi.org/10.1016/j.neuron.2015.09.021Google Scholar
Clark, R. E., & Squire, L. R. (1998). Classical conditioning and brain systems: The role of awareness. Science, 280, 7781. https://doi.org/10.1126/science.280.5360.77Google Scholar
Clark, R. E., & Squire, L. R. (2013). Similarity in form and function of the hippocampus in rodents, monkeys, and humans. Proceedings of the National Academy of Sciences, 110(Supplement 2), 1036510370. https://doi.org/10.1073/pnas.1301225110Google Scholar
Clayton, N., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272274. https://doi.org/10.1038/26216Google Scholar
Cohen, N. J., & Eichenbaum, H. (1993). Memory, amnesia, and the hippocampal system. MIT Press. ISBN: 9780262032032.Google Scholar
Colombo, M., & Broadbent, N. (2000). Is the avian hippocampus a functional homologue of the mammalian hippocampus? Neuroscience and Biobehavioral Reviews, 24(4), 465484. https://doi.org/10.1016/S0149-7634(00)00016-6Google Scholar
Conejo, N. M., González-Pardo, H., Gonzalez-Lima, F., & Arias, J. L. (2010). Spatial learning of the water maze: Progression of brain circuits mapped with cytochrome oxidase histochemistry. Neurobiology of Learning and Memory, 93(3), 362371. https://doi.org/10.1016/j.nlm.2009.12.002Google Scholar
Costa, S. S., Andrade, R., Carneiro, L. A., Gonçalves, E. J., Kotrschal, K., & Oliveira, R. F. (2011). Sex differences in the dorsolateral telencephalon correlate with home range size in blenniid fish. Brain, Behavior and Evolution, 77(1), 5564. https://doi.org/10.1159/000323668Google Scholar
Derenzini, M. (2000). The AgNORs. Micron, 31, 117120. https://doi.org/10.1016/S0968-4328(99)00067-0Google Scholar
Dirian, L., Galant, S., Coolen, M., Chen, W., Bedu, S., Houart, C., Bally-Cuif, L., & Foucher, I. (2014). Spatial regionalization and heterochrony in the formation of adult pallial neural stem cells. Developmental Cell, 30(2), 123136. https://doi.org/10.1016/j.devcel.2014.05.012Google Scholar
Durán, E., Ocaña, F. M., Broglio, C., Rodríguez, F., & Salas, C. (2010). Lateral but not medial telencephalic pallium ablation impairs the use of goldfish spatial allocentric strategies in a “hole-board” task. Behavioural Brain Research, 214(2), 480487. https://doi.org/10.1016/j.bbr.2010.06.010Google Scholar
Durán, E., Ocaña, F. M., Gómez, A., Jiménez-Moya, F., Broglio, C., Rodríguez, F., & Salas, C. (2008). Telencephalon ablation impairs goldfish allocentric spatial learning in a “hole-board” task. Acta Neurobiologiae Experimentalis, 68(4), 519525. PMID: 19112476.Google Scholar
Eichenbaum, H. (2000). A cortical–hippocampal system for declarative memory. Nature Reviews Neuroscience, 1, 4150. https://doi.org/10.1038/35036213Google Scholar
Eichenbaum, H. (2004). Hippocampus: Cognitive processes and neural representations that underlie declarative memory. Neuron, 44(1), 109120. https://doi.org/10.1016/j.neuron.2004.08.028Google Scholar
Eichenbaum, H. (2014). Time cells in the hippocampus: A new dimension for mapping memories. Nature Reviews Neuroscience, 15(11), 732744. https://doi.org/10.1038/nrn3827Google Scholar
Eichenbaum, H. (2017). The role of the hippocampus in navigation is memory. Journal of Neurophysiology, 117(4), 17851796. https://doi.org/10.1152/jn.00005.2017Google Scholar
Eichenbaum, H., & Cohen, N. J. (2001). From conditioning to conscious recollection: Memory systems of the brain. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195178043.001.0001Google Scholar
Eichenbaum, H., Otto, T., & Cohen, N. J. (1994). Two functional components of the hippocampal memory system. Behavioral and Brain Sciences, 17(3), 449517. https://doi.org/10.1017/S0140525X00035391Google Scholar
Eichenbaum, H., Stewart, C., & Morris, R. G. M. (1990). Hippocampal representation in place learning. Journal of Neuroscience, 10(11), 35313542. https://doi.org/10.1523/jneurosci.10-11-03531.1990Google Scholar
Ekstrom, A. D., & Ranganath, C. (2018). Space, time, and episodic memory: The hippocampus is all over the cognitive map. Hippocampus, 28(9), 680687. https://doi.org/10.1002/hipo.22750Google Scholar
Fotowat, H., Lee, C., Jun, J. J., & Maler, L. (2019). Neural activity in a hippocampus-like region of the teleost pallium is associated with active sensing and navigation. eLife, 8, e44119. DOI: https://doi.org/10.7554/eLife.44119Google Scholar
Fremouw, T., Jackson-Smith, P., & Kesner, R. P. (1997). Impaired place learning and unimpaired cue learning in hippocampal- lesioned pigeons. Behavioral Neuroscience, 111(5), 963975. https://doi.org/10.1037/0735-7044.111.5.955Google Scholar
Ganz, J., Kroehne, V., Freudenreich, D., Machate, A., Geffarth, M., Braasch, I., Kaslin, J., & Brand, M. (2014). Subdivisions of the adult zebrafish pallium based on molecular marker analysis. F1000Research, 3, 120. https://doi.org/10.12688/f1000research.5595.2Google Scholar
García-Moreno, L. M., Conejo, N. M., Pardo, H. G., Gómez, M., Martín, F. R., Alonso, M. J., & Arias, J. L. (2001). Hippocampal AgNOR activity after chronic alcohol consumption and alcohol deprivation in rats. Physiology and Behavior, 72, 115121. https://doi.org/10.1016/S0031-9384(00)00408-XGoogle Scholar
Gouteux, S., Thinus-Blanc, C., & Vauclair, J. (2001). Rhesus monkeys use geometric and nongeometric information during a reorientation task. Journal of Experimental Psychology: General, 130(3), 505519. https://doi.org/10.1037/0096-3445.130.3.505Google Scholar
Guzowski, J. F., Knierim, J. J., & Moser, E. I. (2004): Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron, 44, 581584. https://doi.org/10.1016/j.neuron.2004.11.003Google Scholar
Hartley, T., Lever, C., Burgess, N., & O’Keefe, J. (2014). Space in the brain: How the hippocampal formation supports spatial cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1635), 20120510. https://doi.org/10.1098/rstb.2012.0510Google Scholar
Harvey-Girard, E., Giassi, A. C., & Maler, L. (2012). The organization of the gymnotiform fish pallium in relation to learning and memory: IV. Expression of conserved transcription factors and implications for the evolution of dorsal telencephalon. Journal of Comparative Neurology, 520, 33953413. https://doi.org/10.1002/cne.23107Google Scholar
Hermer, L., & Spelke, S. (1994). A geometric process for spatial reorientation in young children. Nature, 370, 5759 https://doi.org/10.1038/370057a0Google Scholar
Holding, M. L., Frazier, J. A., Taylor, E. N., & Strand, C. R. (2012) Experimentally altered navigational demands induce changes in the cortical forebrain of free-ranging Northern Pacific rattlesnakes (Crotalus o. oreganus). Brain, Behavior & Evolution, 79, 144154. https://doi.org/10.1159/000335034Google Scholar
Ishikawa, Y., Yamamoto, N., Yoshimoto, M., Yasuda, T., Maruyama, K., Kage, T., Takeda, H., & Ito, H. (2007). Developmental origin of diencephalic sensory relay nuclei in teleosts. Brain, Behavior and Evolution, 69, 8795. https://doi.org/10.1159/000095197Google Scholar
Kamil, A. C., & Jones, J. E. (1997). The seed-storing corvid Clark’s nutcracker learns geometric relationships among landmarks. Nature, 390, 276279. https://doi.org/10.1038/36840Google Scholar
Kesner, R. P., & Rolls, E. T. (2015). A computational theory of hippocampal function, and tests of the theory: New developments. Neuroscience and Biobehavioral Reviews, 48, 92147. https://doi.org/10.1016/j.neubiorev.2014.11.009Google Scholar
Kim, J. J., & Fanselow, M. S. (1992). Modality-specific retrograde amnesia of fear. Science, 256, 675677. https://doi.org/10.1126/science.1585183Google Scholar
Kitamura, T., Macdonald, C. J., & Tonegawa, S. (2015). Entorhinal–hippocampal neuronal circuits bridge temporally discontiguous events. Learning and Memory, 22, 438443. https://doi.org/10.1101/lm.038687.115Google Scholar
Leutgeb, S., & Leutgeb, J. K. (2007). Pattern separation, pattern completion, and new neuronal codes within a continuous CA3 map. Learning and Memory, 14, 745757. https://doi.org/10.1101/lm.703907Google Scholar
López, J. C., Bingman, V. P., Rodríguez, F., Gómez, Y., & Salas, C. (2000). Dissociation of place and cue learning by telencephalic ablation in goldfish. Behavioral Neuroscience, 114, 687699. https://doi.org/10.1037/0735-7044.114.4.687Google Scholar
López, J. C., Broglio, C., Rodríguez, F., Thinus-Blanc, C., & Salas, C. (1999). Multiple spatial learning strategies in goldfish (Carassius auratus). Animal Cognition, 2, 109120. https://doi.org/10.1007/s100710050031Google Scholar
López, J. C., Gómez, Y., Vargas, J. P., & Salas, C. (2003). Spatial reversal learning deficit after medial cortex lesion in turtles. Neuroscience Letters, 341, 197200. https://doi.org/10.1016/S0304-3940(03)00186-1Google Scholar
López, J. C., Vargas, J. P., Gómez, Y., & Salas, C. (2003). Spatial and non-spatial learning in turtles: The role of medial cortex. Behavioural Brain Research, 143, 109120. https://doi.org/10.1016/S0166-4328(03)00030-5.Google Scholar
MacDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H. (2011). Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron, 71, 737749. https://doi.org/10.1016/j.neuron.2011.07.012Google Scholar
Maren, S., & Quirk, G. J. (2004). Neuronal signaling of fear memory. Nature Reviews Neuroscience, 5, 844852. https://doi.org/10.1038/nrn1535Google Scholar
Meck, W. H., Church, R. M., & Olton, D. S. (1984). Hippocampus, time, and memory. Behavioral Neuroscience, 98, 322. https://doi.org/10.1037/0735-7044.98.1.3Google Scholar
Moser, E. I., Kropff, E., & Moser, M.-B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annual Review of Neuroscience, 31, 6989. https://doi.org/10.1146/annurev.neuro.31.061307.090723Google Scholar
Nelson, J. S., Grande, T. C., & Wilson, M. V. H. (2016). Fishes of the world. John Wiley & Sons. https://doi.org/10.1111/jfb.13229Google Scholar
Nieuwenhuys, R. (1963). The comparative anatomy of the actinopterygian forebrain. Journal für Hirnforschung, 6, 171192. PMID: 14121233.Google Scholar
Nieuwenhuys, R. (2011). The development and general morphology of the telencephalon of actinopterygian fishes: Synopsis, documentation and commentary. Brain Structure and Function, 215, 141157. https://doi.org/10.1007/s00429-010-0285-6Google Scholar
Northcutt, R. G. (2006). Connections of the lateral and medial divisions of the goldfish telencephalic pallium. Journal of Comparative Neurology, 494, 903943. https://doi.org/10.1002/cne.20853Google Scholar
Northcutt, R. G., & Braford, M. R. (1980). New observations on the organization and evolution of the telencephalon in actinopterygian fishes. In Ebbesson, S. O. E. (Ed.), Comparative neurology of the telencephalon (pp. 4198). Plenum Press. https://doi.org/10.1007/978-1-4613-2988-6_3Google Scholar
Ocaña, F. M., Uceda, S., Arias, J. L., Salas, C., & Rodríguez, F. (2017). Dynamics of goldfish subregional hippocampal pallium activity throughout spatial memory formation. Brain, Behavior and Evolution, 90(2), 154170. https://doi.org/10.1159/000478843Google Scholar
O’Keefe, J., & Nadel, L. (1978) The hippocampus as a cognitive map. Clarendon Press.Google Scholar
Phillips, R. G., & LeDoux, J. E. (1992). Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience, 106, 274285. https://doi.org/10.1037/0735-7044.106.2.274Google Scholar
Portavella, M., Torres, B., & Salas, C. (2004). Avoidance response in goldfish: Emotional and temporal involvement of medial and lateral telencephalic pallium. Journal of Neuroscience, 24, 23352342. https://doi.org/10.1523/JNEUROSCI.4930-03.2004Google Scholar
Rodríguez, F., Durán, E., Vargas, J., Torres, B., & Salas, C. (1994). Performance of goldfish trained in allocentric and egocentric maze procedures suggests the presence of a cognitive mapping system in fishes. Animal Learning and Behavior, 22, 409420. https://doi.org/10.3758/BF03209160Google Scholar
Rodríguez, F., López, J. C., Vargas, J. P., Gómez, Y., Broglio, C., & Salas, C. (2002). Conservation of spatial memory function in the pallial forebrain of amniotes and ray-finned fishes. Journal of Neuroscience, 22, 28942903. https://doi.org/20026211Google Scholar
Rodríguez-Expósito, B., Gómez, A., Martín-Monzón, I., Reiriz, M., Rodríguez, F., & Salas, C. (2017). Goldfish hippocampal pallium is essential to associate temporally discontiguous events. Neurobiology of Learning and Memory, 139, 128134. https://doi.org/10.1016/j.nlm.2017.01.002Google Scholar
Rolls, E. T. (2013). The mechanisms for pattern completion and pattern separation in the hippocampus. Frontiers in Systems Neuroscience, 7, 74. https://doi.org/10.3389/fnsys.2013.00074Google Scholar
Salas, C., Broglio, C., & Rodríguez, F. (2003). Evolution of forebrain and spatial cognition in vertebrates: Conservation across diversity. Brain, Behavior and Evolution, 62, 7282. https://doi.org/10.1159/000072438Google Scholar
Salas, C., Rodríguez, F., Vargas, J. P., Durán, E., & Torres, B. (1996). Spatial learning and memory deficits after telencephalic ablation in goldfish trained in place and turn maze procedures. Behavioral Neuroscience, 110, 965980. https://doi.org/10.1037/0735-7044.110.5.965Google Scholar
Schiller, D., Eichenbaum, H., Buffalo, E. A., Davachi, L., Foster, D. J., Leutgeb, S., & Ranganath, C. (2015). Memory and space: Towards an understanding of the cognitive map. Journal of Neuroscience, 35(41), 1390413911. https://doi.org/10.1523/JNEUROSCI.2618-15.2015Google Scholar
Schluessel, V., & Bleckmann, H. (2005). Spatial memory and orientation strategies in the elasmobranch Potamotrygon motoro. Journal of Comparative Physiology, A191, 695706. https://doi.org/10.1007/s00359-005-0625-9Google Scholar
Sotelo, M. I., Daneri, M. F., Bingman, V. P., & Muzio, R. N. (2016). Telencephalic neuronal activation associated with spatial memory in the terrestrial toad Rhinella arenarum: Participation of the medial pallium during navigation by geometry. Brain, Behavior and Evolution, 88, 149160. https://doi.org/10.1159/000447441Google Scholar
Sovrano, V. A., Bisazza, A., & Vallortigara, G. (2003). Modularity as a fish (Xenotoca eiseni) views it: Conjoining geometric and nongeometric information for spatial reorientation. Journal of Experimental Psychology: Animal Behavior Processes, 29, 199210. https://doi.org/10.1037/0097-7403.29.3.199Google Scholar
Squire, L. R., Stark, C. E., & Clark, R. E. (2004) The medial temporal lobe. Annual Review of Neuroscience, 27, 279306. http://dx.doi.org/10.1146/annurev.neuro.27.070203.144130.Google Scholar
Staresina, B. P., & Davachi, L. (2009). Mind the gap: Binding experiences across space and time in the human hippocampus. Neuron, 63, 267276. https://doi.org/10.1016/j.neuron.2009.06.024.MindGoogle Scholar
Striedter, G. F., & Northcutt, R. G. (2020). Brains through time: A natural history of vertebrates. Oxford University Press. https://doi.org/10.1093/oso/9780195125689.001.0001Google Scholar
Thinus-Blanc, C. (1996). Animal spatial cognition: Behavioral and neural approaches. World Scientific Publishing. https://doi.org/10.1142/3246Google Scholar
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189208. https://doi.org/10.1037/h0061626Google Scholar
Tommasi, L., Chiandetti, C., Pecchia, T., Sovrano, V. A., & Vallortigara, G. (2012). From natural geometry to spatial cognition. Neuroscience and Biobehavioral Reviews, 36, 799824. https://doi.org/10.1016/j.neubiorev.2011.12.007Google Scholar
Trinh, A. T., Clarke, S. E., Harvey-Girard, E., & Maler, L. (2019). Cellular and network mechanisms may generate sparse coding of sequential object encounters in hippocampal-like circuits. eNeuro, 6(4), 121. https://doi.org/10.1523/ENEURO.0108-19.2019.Google Scholar
Uceda, S., Ocaña, F. M., Martín-Monzón, I., Rodríguez-Expósito, B., Durán, E., & Rodríguez, F. (2015). Spatial learning-related changes in metabolic brain activity contribute to the delimitation of the hippocampal pallium in goldfish. Behavioural Brain Research, 292, 403408. https://doi.org/10.1016/j.bbr.2015.06.018Google Scholar
Vargas, J. P., López, J. C., Salas, C., & Thinus-Blanc, C. (2004). Encoding of geometric and featural spatial information by goldfish (Carassius auratus). Journal of Comparative Psychology, 118, 206216. https://doi.org/10.1037/0735-7036.118.2.206Google Scholar
Vargas, J. P., Rodríguez, F., López, J. C., Arias, J. L., & Salas, C. (2000). Spatial learning-induced increase in the argyrophilic nucleolar organizer region of dorsolateral telencephalic neurons in goldfish. Brain Research, 865, 7784. https://doi.org/10.1016/S0006-8993(00)02220-4Google Scholar
Vinepinsky, E., Cohen, L., Perchik, S., Ben‑Shahar, O., Donchin, O., & Segev, R. (2020). Representation of edges, head direction, and swimming kinematics in the brain of freely‑navigating fish. Scientific Reports, 10, 14762. https://doi.org/10.1038/s41598-020-71217-1Google Scholar
Wong-Riley, M. T. (1989). Cytochrome oxidase: An endogenous metabolic marker for neuronal activity. Trends in Neuroscience, 12, 94101. https://doi.org/10.1016/0166-2236(89)90165-3Google Scholar
Wullimann, M. F., & Mueller, T. (2004). Teleostean and mammalian forebrains contrasted: Evidence from genes to behavior. Journal of Comparative Neurology, 75, 143162. https://doi.org/10.1002/cne.20183Google Scholar
Yamamoto, N., Ishikawa, Y., Yoshimoto, M., Xue, H. G., Bahaxar, N., Sawai, N., Yang, C. Y., Ozawa, H., & Ito, H. (2007). A new interpretation on the homology of the teleostean telencephalon based on hodology and a new eversion model. Brain, Behavior and Evolution, 69, 96104. https://doi.org/10.1159/000095198Google Scholar

References

Annicchiarico, I., Glueck, A. C., Cuenya, L., Kawasaki, K., Conrad, S. E., & Papini, M. R. (2016). Complex effects of reward upshift on consummatory behavior. Behavioural Processes, 129, 5467 (https://doi.org/10.1016/j.beproc.2016.06.006).Google Scholar
Aristotle (2003). Nichomachean ethics. Translated by H. Rackham. Cambridge, MA: Harvard University Press.Google Scholar
Azrin, N. H. (1959). A technique for delivering shock to pigeons. Journal of the Experimental Analysis of Behavior, 2, 161163 (https://doi.org/10.1901/jeab.1959.2-161).Google Scholar
Binkley, K. A., Webber, E. S., Powers, D. D., & Cromwell, H. C. (2014). Emotion and relative reward processing: An investigation on instrumental successive negative contrast and ultrasonic vocalizations in the rat. Behavioural Processes, 107, 167174 (https://doi.org/10.1016/j.beproc.2014.07.011).Google Scholar
Bitterman, M. E. (1975). The comparative analysis of learning. Science, 188, 699709 (https://doi.org/10.1126/science.188.4189.699).Google Scholar
Conrad, S. E., & Papini, M. R. (2018). Reward shifts in forced-choice and free-choice autoshaping with rats. Journal of Experimental Psychology: Animal Learning and Cognition, 44, 422440 (https://doi.org/10.1037/xan0000187).Google Scholar
Couvillon, P. A., & Bitterman, M. E. (1985). Effect of experience with a preferred food on consummatory responding for a less preferred food in goldfish. Animal Learning & Behavior, 13, 433438 (https://doi.org/10.3758/BF03208020).Google Scholar
Cuenya, L., Bura, S., Serafini, M., & López, M. (2018). Consummatory successive negative contrast in rats: Assessment through orofacial taste reactivity responses. Learning & otivation, 63, 98104 (https://doi.org/10.1016/j.lmot.2018.04.001).Google Scholar
Daly, H. B. (1974). Reinforcing properties of escape from frustration. In Bower, G. H. (Ed.), Psychology of learning and motivation (pp. 187232). New York: Academic Press.Google Scholar
Dantzer, R., Arnone, M., & Mormede, P. (1980). Effects of frustration on behaviour and plasma corticosteroid levels in pigs. Physiology & Behavior, 24, 14 (https://doi.org/10.1016/0031-9384(80)90005-0).Google Scholar
Dudley, R. T., & Papini, M. R. (1995). Pavlovian performance of rats following unexpected reward omissions. Learning & Motivation, 26, 6382 (https://doi.org/10.1016/0023-9690(95)90011-X).Google Scholar
Elliott, M. H. (1928). The effect of change of reward on the maze performance of rats. University of California Publications in Psychology, 4, 1930.Google Scholar
Flaherty, C. F. (1996). Incentive relativity. Cambridge: Cambridge University Press.Google Scholar
Freidín, E., Cuello, M. I., & Kacelnik, A. (2009). Successive negative contrast in a bird: Starlings’ behavior after unpredictable negative changes in food quality. Animal Behaviour, 77, 857865 (https://doi.org/10.1016/j.anbehav.2008.12.010).Google Scholar
Freidín, E., & Mustaca, A. E. (2004). Frustration and sexual behavior in male rats. Learning & Behavior, 32, 311320 (https://doi.org/10.3758/bf03196030).Google Scholar
Guarino, S., Conrad, S. E., & Papini, M. R. (2020a). Control of free-choice consummatory behavior by absolute reward value. Learning & Motivation, 72, 101682 (https://doi.org/10.1016/j.lmot.2020.101682).Google Scholar
Guarino, S., Conrad, S. E., & Papini, M. R. (2020b). Frustrative nonreward: Chemogenetic inactivation of the central amygdala abolishes the effect of reward downshift without affecting alcohol intake. Neurobiology of Learning & Memory, 169, 107173 (https://doi.org/10.1016/j.nlm.2020.107173).Google Scholar
Hoke, K. L., Adkins-Regan, E., Bass, A. H., McCune, A. R., & Wolfner, M. F. (2019). Co-opting evo-devo concepts for new insights into mechanisms of behavioural diversity. Journal of Experimental Biology, 222, jeb190058 (https://doi.org/10.1242/jeb.190058).Google Scholar
Jiménez-García, A. M., Ruíz-Leyva, L., Cendán, C. M., Torres, C., Papini, M. R., & Morón, I. (2016). Hypoalgesia induced by reward devaluation in rats. PLOS ONE, 11, e0164331 (https://doi.org/10.1371/journal.pone.0164331).Google Scholar
Justel, N., Pautassi, R., & Mustaca, A. E. (2014). Proactive interference of open field on consummatory successive negative contrast. Learning & Behavior, 42, 5868 (https://doi.org/10.3758/s13420-013-0124-8).Google Scholar
Kamin, L. J. (1969). Predictability, surprise, attention and conditioning. In Campbell, B. A. & Church, R. M. (Eds.), Punishment and aversive behavior (pp. 279296). New York: Appleton-Century-Crofts.Google Scholar
Korn, C. W., Vunder, J., Miró, J., Fuentemilla, L., Hurlemann, R., & Bach, D. R. (2017). Amygdala lesions reduce anxiety-like behavior in a human benzodiazepine-sensitive approach-avoidance conflict test. Biological Psychiatry, 82, 522531. (https://doi.org/10.1016/j.biopsych.2017.01.018).Google Scholar
Lowes, G., & Bitterman, M. E. (1967). Reward and learning in the goldfish. Science, 157, 455457 (https://doi.org/10.1126/science.157.3787.455).Google Scholar
Lucas, G. A., Gawley, D. J., & Timberlake, W. (1988). Anticipatory contrast as a measure of time horizons in the rat: Some methodological determinants. Animal Learning & Behavior, 16, 377382 (https://doi.org/10.3758/BF03209375).Google Scholar
Ludvigson, H. W. (1999) (Ed.). Odorous episodes and episodic odors. Special Issue. Psychological Record, 49, No. 3.Google Scholar
Mansbach, R. S., Harrod, C., Hoffmann, S. M., Nader, M. A., Lei, Z., Witkin, J. M., & Barrett, J. E. (1988). Behavioral studies with anxiolytic drugs. V. Behavioral and in vivo neurochemical analyses in pigeons of drugs that increase punished responding. Journal of Pharmacology & Experimental Therapeutics, 246, 114120.Google Scholar
Manzo, L., Donaire, R., Sabariego, M., Papini, M. R., & Torres, C. (2015). Anti-anxiety self-medication in rats: Oral consumption of chlordiazepoxide and ethanol after reward devaluation. Behavioural Brain Research, 278, 9097 (https://doi.org/10.1016/j.bbr.2014.09.017).Google Scholar
McCain, G., Dyleski, K., & McElvain, G. (1971). Reward magnitude and instrumental responses: Consistent reward. Psychonomic Monograph Supplements, 3, No. 48.Google Scholar
Murillo, N. R., Diercks, J. K., & Capaldi, E. J. (1961). Performance of the turtle, Pseudemys scripta troostii, in a partial-reinforcement situation. Journal of Comparative & Physiological Psychology, 54, 204206 (https://doi.org/10.1037/h0040813).Google Scholar
Mustaca, A. E., Martínez, C., & Papini, M. R. (2000). Surprising nonreward reduces aggressive behavior in rats. International Journal of Comparative Psychology, 13, 91100.Google Scholar
Mustaca, A. E., & Papini, M. R. (2005). Consummatory successive negative contrast induces hypoalgesia. International Journal of Comparative Psychology, 18, 333339.Google Scholar
Muzio, R. N., Pistone-Creydt, V., Iurman, M., Rinaldi, M. A., Sirani, B., & Papini, M. R. (2011). Incentive or habit learning in amphibians? PLoS One, 6, 112 (https://doi.org/10.1371/journal.pone.0025798).Google Scholar
Muzio, R. N., Segura, E. T., & Papini, M. R. (1992). Effect of schedule and magnitude of reinforcement on instrumental learning in the toad (Bufo arenarum). Learning & Motivation, 23, 406429 (https://doi.org/10.1016/0023-9690(92)90004-6).Google Scholar
Nilsson, M. A., Churakov, G., Sommer, M., Tran, N. V., Zemann, A., Brosius, J., & Schmitz, J. (2010). Tracking marsupial evolution using archaic genomic retroposon insertions. PLOS Biology, 8, e1000436 (https://doi.org/10.1371/journal.pbio.1000436).Google Scholar
Norris, J. N., Pérez-Acosta, A. M., Ortega, L. A., & Papini, M. R. (2009). Naloxone facilitates appetitive extinction and eliminates escape from frustration. Pharmacology, Biochemistry & Behavior, 94, 8187 (https://doi.org/10.1016/j.pbb.2009.07.012).Google Scholar
Ortega, L. A., Daniel, A. M., Davis, J. B., Fuchs, P. N., & Papini, M. R. (2011). Peripheral pain enhances the effects of incentive downshifts. Learning & Motivation, 42, 203209 (https://doi.org/10.1016/j.lmot.2011.03.003).Google Scholar
Ortega, L. A., Prado-Rivera, M. A., Cárdenas-Poveda, D. C., McLinden, K. A., Glueck, A. C., Gutiérrez, G., Lamprea, M. R., & Papini, M. R. (2013). Tests of the aversive summation hypothesis in rats: Effects of restraint stress on consummatory successive negative contrast and extinction in the Barnes maze. Learning & Motivation, 44, 159173 (https://doi.org/10.1016/j.lmot.2013.02.001).Google Scholar
Ortega, L. A., Solano, J. L., Torres, C., & Papini, M. R. (2017). Reward loss and addiction: Opportunities for cross-pollination. Pharmacology, Biochemistry, & Behavior, 154, 3952 (http://dx.doi.org/10.1016/j.pbb.2017.02.001).Google Scholar
Papini, M. R. (1997). Role of reinforcement in spaced-trial operant learning in pigeons (Columba livia). Journal of Comparative Psychology, 111, 275285 (https://doi.org/10.1037/0735-7036.111.3.275).Google Scholar
Papini, M. R. (2002). Pattern and process in the evolution of learning. Psychological Review, 109, 186201 (https://doi.org/10.1037/0033-295x.109.1.186).Google Scholar
Papini, M. R. (2003). Comparative psychology of surprising nonreward. Brain, Behavior and Evolution, 62, 8395 (https://doi.org/10.1159/000072439).Google Scholar
Papini, M. R. (2014). Diversity of adjustments to reward downshifts in vertebrates. International Journal of Comparative Psychology, 27, 420445.Google Scholar
Papini, M. R., & Dudley, R. T. (1997). Consequences of surprising reward omissions. Review of General Psychology, 1, 175197 (https://doi.org/10.1037/1089-2680.1.2.175).Google Scholar
Papini, M. R., Fuchs, P. N., & Torres, C. (2015). Behavioral neuroscience of psychological pain. Neuroscience & Biobehavioral Reviews, 48, 5369 (https://doi.org/10.1016/j.neubiorev.2014.11.012).Google Scholar
Papini, M. R., Ludvigson, H. W., Huneycutt, D., & Boughner, R. L. (2001). Apparent incentive contrast effects in autoshaping with rats. Learning & Motivation, 32, 434456 (https://doi.org/10.1006/lmot.2001.1088).Google Scholar
Papini, M. R., Mustaca, A. E., & Bitterman, M. E. (1988). Successive negative contrast in the consummatory responding of didelphid marsupials. Animal Learning & Behavior, 16, 5357 (https://doi.org/10.3758/BF03209043).Google Scholar
Papini, M. R., Muzio, R. N., & Segura, E. T. (1995). Instrumental learning in toads (Bufo arenarum): Reinforcer magnitude and the medial pallium. Brain, Behavior, & Evolution, 46, 6171 (https://doi.org/10.1159/000113259).Google Scholar
Papini, M. R., & Pellegrini, S. (2006). Scaling relative incentive value in consummatory behavior. Learning & Motivation, 37, 357378 (https://doi.org/10.1016/j.lmot.2006.01.001).Google Scholar
Papini, M. R., Penagos-Corzo, J. C., & Pérez-Acosta, A. M. (2019). Avian emotions: Comparative perspectives on fear and frustration. Frontiers in Psychology, 9, 2707 (https://doi.org/10.3389/fpsyg.2018.02707).Google Scholar
Pecoraro, N., Ginsberg, A. B., Akana, S. F., & Dallman, M. F. (2007). Temperature and activity responses to sucrose concentration reductions occur on the 1st but not the 2nd day of concentration shifts, and are blocked by low, constant glucocorticoids. Behavioral Neuroscience, 121, 764778 (https://doi.org/10.1037/0735-7044.121.4.764).Google Scholar
Pecoraro, N., de Jong, H., & Dallman, M. F. (2009). An unexpected reduction in sucrose concentration activates the HPA axis on successive post shift days without attenuation by discriminative contextual stimuli. Physiology & Behavior, 96, 651661 (https://doi.org/10.1016/j.physbeh.2008.12.018).Google Scholar
Pert, A., & Bitterman, M. R. (1970). Reward and learning in the turtle. Learning & Motivation, 1, 121128 (https://doi.org/10.1037/0735-7036.111.3.275).Google Scholar
Portavella, M., Salas, C., Vargas, J. P., & Papini, M. R. (2003). Involvement of the telencephalon in spaced-trial avoidance learning in the goldfish (Carassius auratus). Physiology & Behavior, 80, 4956 (https://doi.org/10.1016/S0031-9384(03)00208-7).Google Scholar
Portavella, M., Torres, B., Salas, C., & Papini, M. R. (2004). Lesions of the medial pallium, but not of the lateral pallium, disrupt spaced-trial avoidance learning in goldfish (Carassius auratus). Neuroscience Letters, 362, 7578 (https://doi.org/10.1016/j.neulet.2004.01.083).Google Scholar
Raff, R. A. (1996). The shape of life. Chicago: University of Chicago Press.Google Scholar
Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Black, A. H. & Prokasy, W. F. (Eds.), Classical conditioning II (pp. 6499). New York: Appleton-Century-Crofts.Google Scholar
Sabariego, M., Morón, I., Gómez, M. R., Donaire, R., Tobeña, A., Fernández-Teruel, A., Martínez-Conejero, , J. A., Esteban, F. J., & Torres, C. (2013). Incentive loss and hippocampal gene expression in inbred Roman high- (RHA-I) and Roman low- (RLA-I) avoidance rats. Behavioural Brain Research, 257, 6270 (https://doi.org/10.1016/j.bbr.2013.09.025).Google Scholar
Sastre, A., Lin, J.-Y., & Reilly, S. (2005). Failure to obtain instrumental successive negative contrast in tasks that support consummatory successive negative contrast. International Journal of Comparative Psychology, 18, 307319.Google Scholar
Schneider, G. E. (2014). Brain structure and its origins. Cambridge, MA: MIT Press.Google Scholar
Stout, S. C., Boughner, R. L., & Papini, M. R. (2003). Reexamining the frustration effect in rats: Aftereffects of surprising reinforcement and nonreinforcement. Learning & Motivation, 34, 437456 (https://doi.org/10.1016/S0023-9690(03)00038-9).Google Scholar
Stout, S. C., Muzio, R. N., Boughner, R. L., & Papini, M. R. (2002). Aftereffects of the surprising presentation and omission of appetitive reinforcers on key pecking performance in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 28, 242256 (https://doi.org/10.1037/0097-7403.28.3.242).Google Scholar
Striedter, G. F. (2005). Principles of brain evolution. Sunderland, MA: Sinauer.Google Scholar
Thomas, B. L., & Papini, M. R. (2001). Adrenalectomy eliminates the extinction spike in autoshaping with rats. Physiology & Behavior, 72, 543547 (https://doi.org/10.1016/s0031-9384(00)00448-0).Google Scholar
Thomas, B. L., & Papini, M. R. (2003). Mechanisms of spaced-trial runway extinction in pigeons. Learning & Motivation, 34, 104126 (https://doi.org/10.1016/S0023-9690(02)00506-4).Google Scholar
Thorndike, E. L. (1911). Animal intelligence: Experimental studies. New York: Macmillan.Google Scholar
Tinklepaugh, O. L. (1928). An experimental study of representative factors in monkeys. Journal of Comparative Psychology, 8, 197236 (https://doi.org/10.1037/h0075798).Google Scholar
Torres, C., & Papini, M. R. (2017). Incentive relativity. In Vonk, J. & Shackelford, T. K. (Eds.), Encyclopedia of animal cognition and behavior. New York: Springer (https://doi.org/10.1007/978-3-319-47829-6_1079-1).Google Scholar
True, J. R., & Carroll, S. B. (2002). Gene co-option in physiological and morphological evolution. Annual Review of Cellular and Developmental Biology, 18, 5380 (https://doi.org/10.1146/annurev.cellbio.18.020402.140619).Google Scholar

References

Anselme, P. (2015). Incentive salience attribution under reward uncertainty: A Pavlovian model. Behavioural Processes, 111, 618. https://doi.org/10.1016/j.beproc.2014.10.016Google Scholar
Anselme, P. (2018). Uncertainty processing in bees exposed to free choices: Lessons from vertebrates. Psychonomic Bulletin & Review, 25, 20242036. https://doi.org/10.3758/s13423-018-1441-xGoogle Scholar
Anselme, P., & Güntürkün, O. (2019). How foraging works: Uncertainty magnifies food-seeking motivation. Behavioral and Brain Sciences, 42(e35), 159. https://doi.org/10.1017/S0140525X18000948Google Scholar
Anselme, P., & Robinson, M. J. F. (2019). Evidence for motivational enhancement of sign-tracking behavior under reward uncertainty. Journal of Experimental Psychology: Animal Learning and Cognition, 45, 350355. https://doi.org/10.1037/xan0000213Google Scholar
Anselme, P., Robinson, M. J. F., & Berridge, K. C. (2013). Reward uncertainty enhances incentive salience attribution as sign-tracking. Behavioural Brain Research, 238, 5361. https://doi.org/10.1016/j.bbr.2012.10.006Google Scholar
Bateson, M., & Kacelnik, A. (1997). Starlings’ preference for predictable and unpredictable delays to food. Animal Behaviour, 53, 11291142. https://doi.org/10.1006/anbe.1996.0388Google Scholar
Belovsky, G. E. (1978). Diet optimization in a generalist herbivore: The moose. Theoretical Population Biology, 14, 105134. https://doi.org/10.1016/0040-5809(78)90007-2Google Scholar
Berridge, K. C. (2007). The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology, 191, 391431. https://doi.org/10.1007/s00213-006-0578-xGoogle Scholar
Berridge, K. C. (2012). From prediction error to incentive salience: Mesolimbic computation of reward motivation. European Journal of Neuroscience, 35, 11241143. https://doi.org/10.1111/j.1460-9568.2012.07990.xGoogle Scholar
Bindra, D. (1978). How adaptive behavior is produced: A perceptual-motivational alternative to response-reinforcement. Behavioural and Brain Sciences, 1, 4191.Google Scholar
Blaiss, C. A., & Janak, P. H. (2009). The nucleus accumbens core and shell are critical for the expression, but not the consolidation, of Pavlovian conditioned approach. Behavioural Brain Research, 200, 2232. https://doi.org/10.1016/j.bbr.2008.12.024Google Scholar
Breland, K., & Breland, M. (1961). The misbehavior of organisms. American Psychologist, 16, 681684. https://psycnet.apa.org/doi/10.1037/h0040090Google Scholar
Brodin, A. (2007). Theoretical models of adaptive energy management in small wintering birds. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 18571871. https://doi.org/10.1098/rstb.2006.1812Google Scholar
Cabanac, M. (1992). Pleasure: The common currency. Journal of Theoretical Biology, 155, 173200. https://doi.org/10.1016/S0022-5193(05)80594-6Google Scholar
Case, J. P., & Zentall, T. R. (2018). Suboptimal choice in pigeons: Does the predictive value of the conditioned reinforcer alone determine choice? Behavioural Processes, 157, 320326. https://doi.org/10.1016/j.beproc.2018.07.018Google Scholar
Chow, J. J., Smith, A. P., Wilson, A. G., Zentall, T. R., & Beckmann, J. S. (2017). Suboptimal choice in rats: Incentive salience attribution promotes maladative decision-making. Behavioural Brain Research, 320, 244254. https://doi.org/10.1016/j.bbr.2016.12.013Google Scholar
Cunningham, P. J., & Shahan, T. A. (2019). Rats engage in suboptimal choice when the delay to food is sufficiently long. Journal of Experimental Psychology: Animal Learning and Cognition, 45, 301310. https://doi.org/10.1037/xan0000211Google Scholar
Domjan, M., O’Vary, D., & Greene, P. (1988). Conditioning of appetitive and consummatory sexual behavior in male Japanese quail. Journal of the Experimental Analysis of Behavior, 50, 505519. https://doi.org/10.1901/jeab.1988.50-505Google Scholar
Dunn, R., & Spetch, M. L. (1990). Choice with uncertain outcomes: Conditioned reinforcement effects. Journal of the Experimental Analysis of Behavior, 53, 201218. https://doi.org/10.1901/jeab.1990.53-201Google Scholar
Eisenreich, B. R., Hayden, B. Y., & Zimmermann, J. (2019). Macaques are risk-averse in a freely moving foraging task. Scientific Reports, 9, 15091. https://doi.org/10.1038/s41598-019-51442-zGoogle Scholar
Fantino, E. (1969). Choice and rate of reinforcement. Journal of the Experimental Analysis of Behavior, 12, 723730. https://doi.org/10.1901/jeab.1969.12-723Google Scholar
Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299, 18981902. https://doi.org/10.1126/science.1077349Google Scholar
Flagel, S. B., Clark, J. J., Robinson, T. E., Mayo, L., Czuj, A., Willuhn, I., Akers, C. A., Clinton, S. M., Phillips, P. E. M., & Akil, H. (2011). A selective role for dopamine in stimulus-reward learning. Nature, 469, 5357. https://doi.org/10.1038/nature09588Google Scholar
Flaherty, C. F. (1996). Incentive relativity. Cambridge University Press.Google Scholar
Fortes, I., Vasconcelos, M., & Machado, A. (2016). Testing the boundaries of “paradoxical” predictions: Pigeons do disregard bad news. Journal of Experimental Psychology: Animal Learning and Cognition, 42, 336346. https://doi.org/10.1037/xan0000114Google Scholar
Fuentes-Verdugo, E., Pellón, R., Papini, M. R., Torres, C., Fernández-Teruel, A., & Anselme, P. (2020). Effects of partial reinforcement on autoshaping in inbred Roman high- and low-avoidance rats. Physiology and Behavior, 225, 113111. https://doi.org/10.1016/j.physbeh.2020.113111Google Scholar
Glueck, A. C., Torres, C., & Papini, M. R. (2018). Transfer between anticipatory and consummatory tasks involving reward loss. Learning and Motivation, 63, 105125. https://doi.org/10.1016/j.lmot.2018.05.001Google Scholar
Gneezy, U., List, J. A., & Wu, G. (2006). The uncertainty effect: When a risky prospect is valued less than its worst possible outcome. Quarterly Journal of Economics, 121, 12831309. https://doi.org/10.1093/qje/121.4.1283Google Scholar
González, V.V., Macías, A., Machado, A., & Vasconcelos, M. (2020). The Δ–Σ hypothesis: How contrast and reinforcement rate combine to generate suboptimal choice. Journal of the Experimental Analysis of Behavior, 113, 591608. https://doi.org/10.1002/jeab.595Google Scholar
Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety (2nd ed.). Oxford University Press.Google Scholar
Hart, A. S., Clark, J. J., & Phillips, P. E. M. (2015). Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning. Neurobiology of Learning and Memory, 117, 8492. https://doi.org/10.1016/j.nlm.2014.07.010Google Scholar
Hayden, B. Y., Heilbronner, S. R., Nair, A. C., & Platt, M. L. (2008). Cognitive influences on risk-seeking by rhesus macaques. Judgment and Decision Making, 3, 389395.Google Scholar
Hearst, E., & Jenkins, H. M. (1974). Sign-tracking: The stimulus-reinforcer relation and directed action. Austin: Psychonomic Society.Google Scholar
Hinnenkamp, J. E., Shahan, T. A., & Madden, G. J. (2017). How suboptimal is suboptimal choice? Journal of the Experimental Analysis of Behavior, 107, 136150. https://doi.org/10.1002/jeab.239Google Scholar
Inglis, I. R., Forkman, B., & Lazarus, J. (1997). Free food or earned food? A review and fuzzy model of contrafreeloading. Animal Behaviour, 53, 11711191. https://doi.org/10.1006/anbe.1996.0320Google Scholar
Johnson, P. S., Madden, G. J., Brewer, A. T., Pinkston, J. W., & Fowler, S. C. (2011). Effects of acute pramipexole on preference for gambling-like schedules of reinforcement in rats. Psychopharmacology, 213, 1118. https://doi.org/10.1007/s00213-010-2006-5Google Scholar
de Jonge, F. H., Ooms, M., Kuurman, W. W., Maes, J. H. R., & Spruijt, B. M. (2008). Are pigs sensitive to variability in food rewards? Applied Animal Behaviour Science, 114, 93104. https://doi.org/10.1016/j.applanim.2008.01.004Google Scholar
Kacelnik, A., & Bateson, M. (1996). Risky theories: The effects of variance on foraging decisions. American Zoologist, 36, 402434. https://doi.org/10.1093/icb/36.4.402Google Scholar
Kacelnik, A., & Mouden, C. E. (2013). Triumphs and trials of the risk paradigm. Animal Behaviour, 86, 11171129. https://doi.org/10.1016/j.anbehav.2013.09.034Google Scholar
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263292. https://doi.org/10.1142/9789814417358_0006Google Scholar
Kawasaki, K., Annicchiarico, I., Glueck, A. C., Morón, I., & Papini, M. R. (2017). Reward loss and the basolateral amygdala: A function in reward comparisons. Behavioural Brain Research, 331, 205213. https://doi.org/10.1016/j.bbr.2017.05.036Google Scholar
Kendall, S. B. (1974). Preference for intermittent reinforcement. Journal of the Experimental Analysis of Behavior, 21, 463473. https://doi.org/10.1901/jeab.1974.21-463Google Scholar
Laude, J. R., Stagner, J. P., & Zentall, T. R. (2014). Suboptimal choice by pigeons may result from the diminishing effect of nonreinforcement. Journal of Experimental Psychology: Animal Learning and Cognition, 40, 1221. https://doi.org/10.1037/xan0000010Google Scholar
Lima, S. L. (1986). Predation risk and unpredictable feeding conditions: Determinants of body mass in birds. Ecology, 67, 377385. https://doi.org/10.2307/1938580Google Scholar
Martinez, M., Alba, R., Rodriguez, W., & Orduña, V. (2017). Incentive salience attribution is not the sole determinant of suboptimal choice in rats: Conditioned inhibition matters. Behavioural Processes, 142, 99105. https://doi.org/10.1016/j.beproc.2017.06.012Google Scholar
Mascia, P., Neugebauer, N. M., Brown, J., Bubula, N., Nesbitt, K. M., Kennedy, R. T., & Vezina, P. (2019). Exposure to conditions of uncertainty promotes the pursuit of amphetamine. Neuropsychopharmacology 44, 274280. https://doi.org/10.1038/s41386-018-0099-4Google Scholar
Mazur, J. E. (1987). An adjusting procedure for studying delayed reinforcement. In: Commons, M. L., Mazur, J. E., Nevin, J. A., & Rachlin, H. (Eds.), Quantitative analyses of behavior (Vol. 5). The effect of delay and of intervening events on reinforcement value (pp. 5573). Erlbaum Associates.Google Scholar
McDevitt, M. A., Dunn, R. M., Spetch, M. L., & Ludvig, E. A. (2016). When good news leads to bad choices. Journal of the Experimental Analysis of Behavior, 105, 2340. https://doi.org/10.1002/jeab.192Google Scholar
McDevitt, M. A., Spetch, M. L., & Dunn, R. (1997). Contiguity and conditioned reinforcement in probabilistic choice. Journal of the Experimental Analysis of Behavior, 68, 317327. https://doi.org/10.1901/jeab.1997.68-317Google Scholar
Oinio, V., Sundström, M., Bäckström, P., Uhari-Väänänen, J., Kiianmaa, K., Raasmaja, A., & Piepponen, P. (2018). Amphetamine primes enhanced motivation toward uncertain choices in rats with genetic alcohol preference. Psychopharmacology, 235, 13611370. https://doi.org/10.1007/s00213-018-4847-2Google Scholar
Papini, M. R. (2014). Diversity of adjustments to reward downshifts in vertebrates. International Journal of Comparative Psychology, 27, 420445.Google Scholar
Pisklak, J. M., McDevitt, M. A., & Dunn, R. M. (2019). Clarifying contrast, acknowledging the past, and expanding the focus. Comparative Cognition and Behavior Reviews, 14, 3338. https://doi.org/10.3819/CCBR.2019.140004Google Scholar
Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Black, A. H. & Prokasy, W. F. (Eds.), Classical conditioning II: Current theory and research (pp. 6499). Appleton-Century-Crofts.Google Scholar
Robinson, M. J. F., Anselme, P., Fischer, A. M., & Berridge, K. C. (2014). Initial uncertainty in Pavlovian reward prediction persistently elevates incentive salience and extends sign-tracking to normally unattractive cues. Behavioural Brain Research, 266, 119130. https://doi.org/10.1016/j.bbr.2014.03.004Google Scholar
Robinson, M. J. F., & Berridge, K. C. (2013). Instant transformation of learned repulsion into motivational “wanting.Current Biology, 23, 282289. https://doi.org/10.1016/j.cub.2013.01.016Google Scholar
Robinson, M. J. F., Clibanoff, C., Freeland, C. M., Knes, A. S., Cote, J. R., & Russell, T. I. (2019). Distinguishing between predictive and incentive value of uncertain gambling-like cues in a Pavlovian autoshaping task. Behavioural Brain Research, 371, 111971. https://doi.org/10.1016/j.bbr.2019.111971Google Scholar
Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Review, 18, 247291. https://doi.org/10.1016/0165-0173(93)90013-PGoogle Scholar
Rosse, R. B., Fay-McCarthy, M., Collins, J. P., Jr., Risher-Flowers, D., Alim, T. N., & Deutsch, S. I. (1993). Transient compulsive foraging behavior associated with crack cocaine use. American Journal of Psychiatry, 150, 155156. http://dx.doi.org/10.1176/ajp.150.1.155Google Scholar
Saunders, B. T., Richard, J. M., Margolis, E. B., & Janak, P. H. (2018). Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties. Nature Neuroscience, 21, 10721083. https://doi.org/10.1038/s41593-018-0191-4Google Scholar
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 127. https://doi.org/10.1152/jn.1998.80.1.1Google Scholar
Simonsohn, U. (2009). Direct risk aversion: Evidence from risky prospects valued below their worst outcome. Psychological Science, 20, 686692. https://doi.org/10.1111/j.1467-9280.2009.02349.xGoogle Scholar
Smith, A. P., & Zentall, T. R. (2016). Suboptimal choice in pigeons: Choice is primarily based on the value of the conditioned reinforcers rather than overall reinforcement rate. Journal of Experimental Psychology: Animal Learning and Cognition, 42, 212220. https://doi.org/10.1037/xan0000092Google Scholar
Spetch, M., Belke, T., Barnet, R., Dunn, R., & Pierce, W. (1990). Suboptimal choice in a percentage reinforcement procedure: Effects of signal condition and terminal-link length. Journal of the Experimental Analysis of Behavior, 53, 219234. https://doi.org/https://doi.org/10.1901/jeab.1990.53-219Google Scholar
Spetch, M., Mondloch, M., Belke, T., & Dunn, R. (1994). Determinants of pigeons’ choice between certain and probabilistic outcomes. Animal Learning & Behavior, 22, 239251. https://doi.org/10.3758/BF03209832Google Scholar
Stagner, J. P., & Zentall, T. R. (2010). Suboptimal choice behavior by pigeons. Psychonomic Bulletin & Review, 17, 412416. http://dx.doi.org/10.3758/PBR.17.3.412Google Scholar
Stephens, D. W., & Krebs, J. R. (1986). Foraging theory. Princeton University Press.Google Scholar
Stout, S. C., Boughner, R. L., & Papini, M. R. (2003). Reexamining the frustration effect in rats: Aftereffects of surprising reinforcement and nonreinforcement. Learning and Motivation, 34, 437456. https://doi.org/10.1016/S0023-9690(03)00038-9Google Scholar
Tindell, A. J., Berridge, K. C., Zhang, J., Peciña, S., & Aldridge, J. W. (2005). Ventral pallidal neurons code incentive motivation: Amplification by mesolimbic sensitization and amphetamine. European Journal of Neuroscience, 22, 26172634. https://doi.org/10.1111/j.1460-9568.2005.04411.xGoogle Scholar
Tinklepaugh, O. L. (1928). An experimental study of representative factors in monkeys. Journal of Comparative Psychology, 8, 197236. https://psycnet.apa.org/doi/10.1037/h0075798Google Scholar
Torres, C., Glueck, A. C., Conrad, S. E., Morón, I., & Papini, M. R. (2016). Dorsomedial striatum lesions affect adjustment to reward uncertainty, but not to reward devaluation or omission. Neuroscience, 332, 1325. http://dx.doi.org/10.1016/j.neuroscience.2016.06.041Google Scholar
Tremblay, M., Silveira, M. M., Kaur, S., Hosking, J. G., Adams, W. K., Baunez, C., & Winstanley, C. A. (2017). Chronic D2/3 agonist ropinirole treatment increases preference for uncertainty in rats regardless of baseline choice patterns. European Journal of Neuroscience, 45, 159166. https://doi.org/10.1111/ejn.13332Google Scholar
Trujano, R. E., & Orduña, V. (2015). Rats are optimal in a choice task in which pigeons are not. Behavioural Processes, 119, 2227. https://doi.org/10.1016/j.beproc.2015.07.010Google Scholar
Vasconcelos, M., Machado, A., & Pandeirada, J. N. S. (2018). Ultimate explanations and suboptimal choice. Behavioural Processes, 152, 6372. https://doi.org/10.1016/j.beproc.2018.03.023Google Scholar
Vasconcelos, M., Monteiro, T., & Kacelnik, A. (2015). Irrational choice and the value of information. Scientific Reports, 5, 13874. https://doi.org/10.1038/srep13874Google Scholar
Witter, M. S., & Cuthill, I. C. (1993). The ecological costs of avian fat storage. Philosophical Transactions of the Royal Society B: Biological Sciences, 340, 7392. https://doi.org/10.1098/rstb.1993.0050Google Scholar
Zeeb, D. F., Li, Z., Fisher, D. C., Zack, M. H., & Fletcher, P. J. (2017). Uncertainty exposure causes behavioural sensitization and increases risky decision-making in male rats: Toward modelling gambling disorder. Journal of Psychiatry Neuroscience, 42, 404413. https://doi.org/10.1503%2Fjpn.170003Google Scholar
Zentall, T. R. (2016). Resolving the paradox of suboptimal choice. Journal of Experimental Psychology: Animal Learning and Cognition, 42, 114. https://doi.org/10.1037/xan0000085Google Scholar
Zentall, T. R., Andrews, D. M., & Case, J. (2019). Contrast between what is expected and what occurs increases pigeon’s suboptimal choice. Animal Cognition, 22, 8187. https://doi.org/10.1007/s10071-018-1223-xGoogle Scholar

References

Barnett, S. A. (1975). The rat: A study in behavior. University of Chicago Press.Google Scholar
Beach, F. A. (1950). The Snark was a boojum. American Psychologist, 5, 115124. https://doi.org/10.1037/h0056510Google Scholar
Beecher, M. D. (1988). An adaptationist approach to learning. In Bolles, R. C. & Beecher, M. D. (Eds.), Evolution and learning (pp. 239248). Erlbaum.Google Scholar
Bitterman, M. E. (1976). Flavor aversion studies. Science, 192, 266267. https://doi.org/10.1126/science.1257768Google Scholar
Blanchard, P., Lauzeral, C., Chamaillé-Jammes, S., Brunet, C., Lec’hvien, A., Péron, G., & Pontier, D. (2018). Coping with change in predation risk across space and time through complementary behavioral responses. BMC Ecology, 18(1), 60. https://doi.org/10.1186/s12898-018-0215-7Google Scholar
Boughner, R. L., & Papini, M. R. (2003). Appetitive latent inhibition in rats: Now you see it (sign tracking), now you don’t (goal tracking). Learning & Behavior, 31, 387392. https://doi.org/10.3758/BF03195999Google Scholar
Breland, K., & Breland, M. (1961). The misbehavior of organisms. American Psychologist, 16, 681684. https://doi.org/10.1037/h0040090Google Scholar
Cook, T. D., & Campbell, D. T. (1979). Quasi-Experimentation: Design and analysis issues for field settings. Houghton Mifflin.Google Scholar
Davey, G. (1989). Ecological learning theory. Routledge.Google Scholar
Davidson, T. L., & Riley, A. L. (2015). Taste, sickness, and learning: Understanding how we form aversions to particular flavors has led to new ideas about learning – and could have implications for treating obesity and drug use. American Scientist, 103(3). www.americanscientist.org/article/taste-sickness-and-learningGoogle Scholar
Domjan, M. (2000). General process learning theory: Challenges from response and stimulus factors. International Journal of Comparative Psychology, 13, 101118. https://escholarship.org/uc/item/0b69j9v1Google Scholar
Domjan, M. (2005). Pavlovian conditioning: A functional perspective. Annual Review of Psychology, 56, 179206. https://doi.org/10.1146/annurev.psych.55.090902.141409Google Scholar
Domjan, M. (2015). The Garcia–Koelling selective association effect: A historical and personal perspective. International Journal of Comparative Psychology, 28, 25645. https://escholarship.org/uc/item/5sx993rmGoogle Scholar
Eldridge, G. D., & Pear, J. J. (1987). Topographical variations in behavior during autoshaping, automaintenance, and omission training. Journal of the Experimental Analysis of Behavior, 47, 319333. https://doi.org/10.1901/jeab.1987.47-319Google Scholar
Ewell, A. H., Jr., Cullen, J. M., & Woodruff, M. L. (1981). Tonic immobility as a predator-defense in the rabbit (Oryctolagus cuniculus). Behavioral Neural Biology, 31, 483489. https://doi.org/10.1016/S0163-1047(81)91585-5Google Scholar
Ewer, R. F. (1971). The biology and behavior of a free-living population of black rats (Rattus rattus). Animal Behavior Monographs, 4(3), 127174.Google Scholar
Fanselow, M. S., Hoffman, A. N., & Zhuravka, I. (2019). Timing and the transition between modes in the defensive behavior system. Behavioural Processes, 166, 103890. https://doi.org/10.1016/j.beproc.2019.103890Google Scholar
Fantino, E. (1965). Some data on the discriminative stimulus hypothesis of conditioned reinforcement. The Psychological Record, 15, 409415. https://doi.org/10.1007/BF03393607Google Scholar
Fortes, I., Machado, A., & Vasconcelos, M. (2017). Do pigeons (Columba livia) use information about the absence of food appropriately? A further look into suboptimal choice. Journal of Comparative Psychology, 131, 277289. https://doi.org/10.1037/com0000079Google Scholar
Garcia, J. (1981). Tilting at the paper mills of academe. American Psychologist, 36, 149158. https://doi.org/10.1037/0003-066X.36.2.149Google Scholar
Garcia, J., & Koelling, R. A. (1966). Relation of cue to consequence in aversion learning. Psychonomic Science, 4, 123124. https://doi.org/10.3758/BF03342209Google Scholar
Gustavson, C. R., Kelly, D. J., Sweeney, M., & Garcia, J. (1976). Prey-lithium aversions: I. Coyotes and wolves. Behavioral Biology, 17, 6172. https://doi.org/10.1016/S0091-6773(76)90272-8Google Scholar
Hearst, E., & Franklin, S. R. (1977). Positive and negative relations between a signal and food: Approach-withdrawal behavior to the signal. Journal of Experimental Psychology: Animal Behavior Processes, 3, 3752. https://doi.org/10.1037/0097-7403.3.1.37Google Scholar
Hilliard, S., Domjan, M., Nguyen, M., & Cusato, B. (1998). Dissociation of conditioned appetitive and consummatory sexual behavior: Satiation and extinction tests. Animal Learning & Behavior, 26, 2033. https://doi.org/10.3758/BF03199159Google Scholar
Holland, P. C., & Ross, R. T. (1981). Within-compound associations in serial compound conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 7, 228241. https://doi.org/10.1037/0097-7403.7.3.228Google Scholar
Holland, P. C., & Sherwood, A. (2008). Formation of excitatory and inhibitory associations between absent events. Journal of Experimental Psychology: Animal Behavior Processes, 34, 324335. https://doi.org/10.1037/0097-7403.34.3.324Google Scholar
Holland, P. C., & Straub, J. J. (1979). Differential effects of two ways of devaluing the unconditioned stimulus after Pavlovian appetitive conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 5, 6578. https://doi.org/10.1037/0097-7403.5.1.65Google Scholar
Hollis, K. L. (1984). The biological function of Pavlovian conditioning: The best defense is a good offense. Journal of Experimental Psychology: Animal Behavior Processes, 10, 413425. https://doi.org/10.1037/0097-7403.10.4.413Google Scholar
Hollis, K. L. (1997). Contemporary research on Pavlovian conditioning: A “new” functional analysis. American Psychologist, 52, 956965. https://doi.org/10.1037/0003-066X.52.9.956Google Scholar
Hollis, K. L., Pharr, V. L., Dumas, M. J., Britton, G. B., & Field, J. (1997). Classical conditioning provides paternity advantage for territorial male blue gouramis (Trichogaster trichopterus). Journal of Comparative Psychology, 111, 219225. https://doi.org/10.1037/0735-7036.111.3.219Google Scholar
Inman, R. A., Honey, R. C., Eccles, G. L., & Pearce, J. M. (2016). Asymmetry in the discrimination of quantity by rats: The role of the intertrial interval. Learning & Behavior, 44, 6777. https://doi.org/10.3758/s13420-015-0191-0Google Scholar
Innis, N. K., & Staddon, J. E. R. (1989). What should comparative psychology compare? International Journal of Comparative Psychology, 2, 145156.Google Scholar
Johnston, J. J., & Pennypacker, H. S. (1980). Strategies and tactics of human behavioral research. Erlbaum.Google Scholar
Kamin, L. J. (1969). Predictability, surprise, attention, and conditioning. In Campbell, B. A. & Church, R. M. (Eds.), Punishment and aversive behavior (pp. 276296). Appleton-Century-Crofts.Google Scholar
Killeen, P. R. (2018). The futures of experimental analysis of behavior. Behavior Analysis: Research and Practice, 18, 124133. https://doi.org/10.1037/bar0000100Google Scholar
Killeen, P. R. (2019). Timberlake’s theories dissolve anomalies. Behavioural Processes, 166, 103894. https://doi.org/10.1016/j.beproc.2019.103894Google Scholar
Konorski, J. (1967). Integrative activity of the brain. University of Chicago Press.Google Scholar
Krause, M. A., & Domjan, M. (2017). Ethological and evolutionary perspectives on Pavlovian conditioning. In Call, J. (Ed.), Handbook of comparative psychology: Vol 2: Perception, learning and cognition (pp. 247266). American Psychological Association.Google Scholar
LoLordo, V. W. (1979). Constraints on learning. In Bitterman, M. E., LoLordo, V. M., Overmier, J. B., & Rashotte, M. E. (Eds.), Animal learning. Survey and analysis (pp. 473504). Springer. http://doi.org/10.1007/978-1-4684-3387-6_15Google Scholar
Lucas, G. A. (2019). Adaptive systems influence both learning and conscious attention. Behavioural Processes, 168, 103871. https://doi.org/10.1016/j.beproc.2019.05.018Google Scholar
Mackintosh, N. J. (1975). A theory of attention: Variations in the associability of stimuli with reinforcement. Psychological Review, 82, 276298. https://doi.org/10.1037/h0076778Google Scholar
McNish, K. A., Betts, S. L., Brandon, S. E., & Wagner, A. R. (1997). Divergence of conditioned eyeblink and conditioned fear in backward Pavlovian training. Animal Learning & Behavior, 25, 4352. https://doi.org/10.3758/BF03199023Google Scholar
Miller, R. R., & Matzel, L.D. (1988). The comparator hypothesis: A response rule for the expression of associations. Psychology of Learning and Motivation, 22, 5192. https://doi.org/10.1016/S0079-7421(08)60038-9Google Scholar
Overmier, J. B., & Meyers-Manor, J. (2015). Alerts for assessing “biological constraints” on learning. International Journal of Comparative Psychology, 28, 112. https://escholarship.org/uc/item/8tk8h8c4Google Scholar
Papini, M. R. (2002). Pattern and process in the evolution of learning. Psychological Review, 109, 186220. https://doi.org/10.1037//0033-295X.109.1.186Google Scholar
Papini, M. R. (2008). Comparative psychology: Evolution and development of behavior (2nd ed.). Psychology Press.Google Scholar
Pearce, J. M. (1987). A model for stimulus generalization in Pavlovian conditioning. Psychological Review, 94, 6173. https://doi.org/10.1037/0033-295X.94.1.61Google Scholar
Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Black, A. H. & Prokasy, W. F. (Eds.), Classical conditioning II: Current research and theory (pp. 6499). Appleton-Century-Crofts.Google Scholar
Revusky, S. (1977). Learning as a general process with an emphasis on data from feeding experiments. In Milgram, N. W., Krames, L., & Alloway, T. M. (Eds.), Food aversion learning (pp. 171). Plenum Press.Google Scholar
Seligman, M. E. P. (1970). On the generality of the laws of learning. Psychological Review, 77, 406418. https://doi.org/10.1037/h0029790Google Scholar
Shettleworth, S. J. (2010). Cognition, evolution, and behavior (2nd ed.). Oxford University Press.Google Scholar
Sidman, M. (1960). Tactics of scientific research: Evaluating experimental data in psychology. Basic Books.Google Scholar
Silva, F. J., Silva, K. M., & Pear, J. J. (1992). Sign- versus goal-tracking: Effects of conditioned-stimulus-to-unconditioned-stimulus distance. Journal of the Experimental Analysis of Behavior, 57, 1731. https://doi.org/10.1901/jeab.1992.57-17Google Scholar
Silva, F. J., & Timberlake, W. (2000). A clarification of the nature of backward excitatory conditioning. Learning and Motivation, 31, 6780. https://doi.org/10.1006/lmot.1999.1042Google Scholar
Silva, K. M., & Timberlake, W. (2005). A behavior systems view of the organization of multiple responses during a partially or continuously reinforced interfood clock. Animal Learning & Behavior, 33, 99110. https://doi.org/10.3758/BF03196054Google Scholar
Swartzentruber, D. (1995). Modulatory mechanisms in Pavlovian conditioning. Animal Learning & Behavior, 23, 123143. https://doi.org/10.3758/BF03199928Google Scholar
Tait, R. W., & Saladin, M. E. (1986). Concurrent development of excitatory and inhibitory associations during backward conditioning. Animal Learning & Behavior, 14, 133137. https://doi.org/10.3758/BF03200047Google Scholar
Thrailkill, E. A., & Bouton, M. E. (2016). Extinction of chained instrumental behaviors: Effects of consumption extinction on procurement responding. Learning & Behavior, 44, 8596. https://dx.doi.org/10.3758/s13420-015-0193-yGoogle Scholar
Timberlake, W. (1990). Natural learning in laboratory paradigms. In Dewsbury, D. A. (Ed.), Contemporary issues in comparative psychology (pp. 3154). Sinauer Associates.Google Scholar
Timberlake, W. (1994). Behavior systems, associationism, and Pavlovian conditioning. Psychonomic Bulletin & Review, 1, 405420. https://doi.org/10.3758/BF03210945Google Scholar
Timberlake, W. (2001). Integrating niche-related and general process approaches in the study of learning. Behavioural Processes, 54, 7994. http://10.1016/S0376-6357(01)00151-6Google Scholar
Timberlake, W. (2004). Trends in the study of Pavlovian conditioning. International Journal of Comparative Psychology, 17, 119130.Google Scholar
Timberlake, W., & Grant, D. L. (1975). Auto-shaping in rats to the presentation of another rat predicting food. Science, 190, 690692. https://doi.org/10.1126/science.190.4215.690Google Scholar
Timberlake, W., & Lucas, G. A. (1989). Behavior systems and learning: From misbehavior to general principles. In Klein, S. B. & Mowrer, R. R. (Eds.), Contemporary learning theories: Instrumental conditioning theory and the impact of biological constraints on learning (pp. 237275). Erlbaum.Google Scholar
Timberlake, W., & Silva, F. J. (1994). Observation of behavior, inference of function, and the study of learning. Psychonomic Bulletin & Review, 1, 7388. https://doi.org/10.3758/BF03200762Google Scholar
Timberlake, W., Wahl, G., & King, D. (1982). Stimulus and response contingencies in the misbehavior of rats. Journal of Experimental Psychology: Animal Behavior Processes, 8, 6285. https://doi.org/10.1037/0097-7403.8.4.328Google Scholar
Tinsley, M. R., Timberlake, W., Sitomer, M., & Widman, D. R. (2002). Conditioned inhibitory effects of discriminated Pavlovian training with food in rats depend on interactions of search modes, related repertoires, and response measures. Animal Learning & Behavior, 30, 217227. https://doi.org/10.3758/BF03192831Google Scholar
Wagner, A. R. (1981). SOP: A model of automatic memory processing in animal behavior. In Spear, N. E. & Miller, R. R. (Eds.), Information processing in animals: Memory mechanisms (pp. 547). Erlbaum.Google Scholar
Wagner, A. R., & Brandon, S. E. (1989). Evolution of a structured connectionist model of Pavlovian conditioning (AESOP). In Klein, S. B. & Mowrer, R. R. (Eds.), Contemporary learning theories: Pavlovian conditioning and the status of traditional learning theory (pp. 149189). Erlbaum.Google Scholar

References

Arbuthnott, G. W., Ingham, C. A., & Wickens, J. R. (2000). Dopamine and synaptic plasticity in the neostriatum. Journal of Anatomy, 196, 587596. https://doi.org/10.1046/j.1469-7580.2000.19640587.xGoogle Scholar
Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105, 442481. https://doi.org/10.1037/0033-295X.105.3.442Google Scholar
Ashby, F. G., & Ell, S. W. (2001). The neurobiology of human category learning. Trends in Cognitive Sciences, 5, 204210. https://doi.org/10.1016/S1364-6613(00)01624-7Google Scholar
Ashby, F. G., & Maddox, W. T. (2011). Human category learning 2.0. Annals of the New York Academy of Sciences, 1224, 147161. https://doi.org/10.1111/j.1749-6632.2010.05874.xGoogle Scholar
Ashby, F. G., Maddox, W. T., & Bohil, C. J. (2002). Observational versus feedback training in rule-based and information-integration category learning. Memory & Cognition, 30, 666677. https://doi.org/10.3758/BF03196423Google Scholar
Ashby, F. G., Smith, J. D., & Rosedahl, L. (2020). Dissociations between rule-based and information-integration categorization are not caused by differences in task difficulty. Memory & Cognition, 48, 541552. https://doi.org/10.3758/s13421-019-00988-4Google Scholar
Ashby, F. G., & Valentin, V. V. (2017). Multiple systems of perceptual category learning: Theory and cognitive tests. In Cohen, H. & Lefebvre, C. (Eds.), Handbook of Categorization in Cognitive Science (2nd ed., pp. 157188). Elsevier. https://doi.org/10.1016/B978-0-08-101107-2.00007-5Google Scholar
Basile, B. M., Schroeder, G. R., Brown, E. K., Templer, V. L., & Hampton, R. R. (2015). Evaluation of seven hypotheses for metamemory performance in rhesus monkeys. Journal of Experimental Psychology: General, 144, 85102. https://doi.org/10.1037/xge0000031Google Scholar
Beran, M. J., Smith, J. D., & Perdue, B. M. (2013). Language-trained chimpanzees name what they have seen but look first at what they have not seen. Psychological Science, 24, 660666. https://doi.org/10.1177/0956797612458936Google Scholar
Broschard, M. B., Kim, J., Love, B. C., Wasserman, E. A., & Freeman, J. H. (2019). Selective attention in rat visual category learning. Learning & Memory, 26, 8492. https://doi.org/10.1101/lm.048942.118Google Scholar
Casale, M. B, Roeder, J. L., & Ashby, F. G. (2012). Analogical transfer in perceptual categorization. Memory & Cognition, 40, 434449. https://doi.org/10.3758/s13421-011-0154-4Google Scholar
Elliott, R., & Dolan, R. J. (1998). Activation of different anterior cingulate foci in association with hypothesis testing and response selection. Neuroimage, 8, 1729. https://doi.org/10.1006/nimg.1998.0344Google Scholar
Fagot, J., & Thompson, R. K. R. (2011). Generalized relational matching by guinea baboons (Papio papio) in two-by-two-item analogy problems. Psychological Science, 22, 13041309. https://doi.org/10.1177/0956797611422916Google Scholar
Fuster, J. M. (1989). The Prefrontal Cortex (2nd ed.). Raven Press.Google Scholar
Garner, W. (1974). The Processing of Information and Structure. Wiley.Google Scholar
Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neuroscience, 1, 304309. https://doi.org/10.1038/1124Google Scholar
Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit learning system in humans. Science, 273(5280), 13991402. https://doi.org/10.1126/science.273.5280.1399Google Scholar
Maddox, W. T., & Ashby, F. G. (2004). Dissociating explicit and procedural-learning based systems of perceptual category learning. Behavioural Processes, 66, 309332. https://doi.org/10.1016/j.beproc.2004.03.011Google Scholar
Maddox, W. T., & Ing, A. D. (2005). Delayed feedback disrupts the procedural-learning system but not the hypothesis-testing system in perceptual category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 100107. https://doi.org/10.1037/0278-7393.31.1.100Google Scholar
Maugard, A., Marzouki, Y., & Fagot, J. (2013). Contribution of working memory processes to relational matching-to-sample performance in baboons (Papio papio). Journal of Comparative Psychology, 127, 370379. http://doi.org/10.1037/a0032336Google Scholar
Morgan, C. L. (1906). An introduction to comparative psychology. W. Scott.Google Scholar
Pavlov, I. P. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Oxford University Press. https://doi.org/10.5214/ans.0972-7531.1017309Google Scholar
Pearce, J. M., Esber, G. R., George, D. N., & Haselgrove, M. (2008). The nature of discrimination learning in pigeons. Learning & Behavior, 36, 188199. https://doi.org/10.3758/LB.36.3.188Google Scholar
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542. https://doi.org/10.1146/annurev.ne.13.030190.000325Google Scholar
Qadri, M. A.-J., Ashby, F. G., Smith, J. D., & Cook, R. G. (2019). Testing analogical rule transfer in pigeons (Columba livia). Cognition, 183, 256268. https://doi.org/10.1016/j.cognition.2018.11.011Google Scholar
Rao, S. M., Bobholz, J. A., Hammeke, T. A., Rosen, A. C., Woodley, S. J., Cunningham, J. M., & Binder, J. R. (1997). Functional MRI evidence for subcortical participation in conceptual reasoning skills. Neuroreport, 8, 19871993. https://doi.org/10.1097/00001756-199705260-00038Google Scholar
Roberts, A. C. (1996). Comparison of cognitive function in human and non-human primates. Cognitive Brain Research, 3, 319327. https://doi.org/10.1016/0926-6410(96)00017-1Google Scholar
Robinson, A. L., Heaton, R. K., Lehman, R. A., & Stilson, D. W. (1980). The utility of the Wisconsin Card Sorting Test in detecting and localizing frontal lobe lesions. Journal of Consulting and Clinical Psychology, 48, 605614. https://doi.org/10.1037/0022-006X.48.5.605Google Scholar
Schultz, W. (1992). Activity of dopamine neurons in the behaving primate. Seminars in Neuroscience, 4, 129138. https://doi.org/10.1016/1044-5765(92)90011-PGoogle Scholar
Semendeferi, K., Lu, A., Schenker, N., & Damásio, H. (2002). Humans and great apes share a large frontal cortex. Nature Neuroscience, 5, 272276. https://doi.org/10.1038/nn814Google Scholar
Smith, J. D., Ashby, F. G., Berg, M. E., Murphy, M. S., Spiering, B., Cook, R. G., & Grace, R. C. (2011). Pigeons’ categorization may be exclusively nonanalytic. Psychonomic Bulletin & Review, 18, 414421. http://doi.org/10.3758/s13423-010-0047-8Google Scholar
Smith, J. D., Beran, M. J., Crossley, M. J., Boomer, J., & Ashby, F. G. (2010). Implicit and explicit category learning by macaques (Macaca mulatta) and humans (Homo sapiens). Journal of Experimental Psychology: Animal Behavior Processes, 36, 5465. https://doi.org/10.1037/a0015892Google Scholar
Smith, J. D., Berg, M. E., Cook, R. G., Boomer, J., Crossley, M. J., Murphy, M. S., Spiering, B., Beran, M. J., Church, B. A., Ashby, F. G., & Grace, R. C. (2012). Implicit and explicit categorization: A tale of four species. Neuroscience and Biobehavioral Reviews, 36, 23552369. https://doi.org/10.1016/j.neubiorev.2012.09.003Google Scholar
Smith, J. D., Boomer, J., Zakrzewski, A. C., Roeder, J. L., Church, B. A., & Ashby, F. G. (2014). Deferred feedback sharply dissociates implicit and explicit category learning. Psychological Science, 25, 447457. https://doi.org/10.1177/0956797613509112Google Scholar
Smith, J. D. & Church, B. A. (2018). Dissociable learning processes in comparative psychology. Psychonomic Bulletin & Review, 25, 15651584. http://doi.org/10.3758/s13423-017-1353-1Google Scholar
Smith, J. D., Couchman, J. J., & Beran, M. J. (2012). The highs and lows of theoretical interpretation in animal metacognition research. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 12971309. https://doi.org/10.1098/rstb.2011.0366Google Scholar
Smith, J. D., Coutinho, M. V. C., Church, B. A., & Beran, M. J. (2013). Executive-attentional uncertainty responses by rhesus macaques (Macaca mulatta). Journal of Experimental Psychology: General, 142, 458475. https://doi.org/10.1037/a0029601Google Scholar
Smith, J. D., Crossley, M. J., Boomer, J., Church, B. A., Beran, M. J., & Ashby, F. G. (2012). Implicit and explicit category learning by capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 126, 294304. https://doi.org/10.1037/a0026031Google Scholar
Smith, J. D., & Ell, S. W. (2015). One giant leap for categorizers: One small step for categorization theory. PLoS ONE, 10(9), e0137334. https://doi.org/10.1371/journal.pone.0137334Google Scholar
Smith, J. D., Flemming, T. M., Boomer, J., Beran, M. J., & Church, B. A. (2013). Fading perceptual resemblance: A path for rhesus macaques (Macaca mulatta) to conceptual matching? Cognition, 129, 15981614. https://doi.org/10.1016/j.cognition.2013.08.001Google Scholar
Smith, J. D., Jackson, B. N., & Church, B. A. (2019). Breaking the perceptual-conceptual barrier: Relational matching and working memory. Memory & Cognition, 47, 544560. https://doi.org/10.3758/s13421-018-0890-9Google Scholar
Smith, J. D., Jackson, B. N., & Church, B. A. (2020). Monkeys (Macaca mulatta) learn two-choice discriminations under displaced reinforcement. Journal of Comparative Psychology, 134, 423434. https://doi.org/10.1037/com0000227Google Scholar
Smith, J. D., Jamani, S., Boomer, J., & Church, B. A. (2018). One-back reinforcement dissociates implicit-procedural and explicit-declarative category learning. Memory & Cognition, 46, 261273. https://doi.org/10.3758/s13421-017-0762-8Google Scholar
Smith, J. D., Zakrzewski, A. C., Johnston, J. J. R., Roeder, J. L., Boomer, J., Ashby, F. G., & Church, B. A. (2015). Generalization of category knowledge and dimensional categorization in humans (Homo sapiens) and nonhuman primates (Macaca mulatta). Journal of Experimental Psychology: Animal Learning and Cognition, 41, 322335. https://doi.org/10.1037/xan0000071Google Scholar
Smith, J. D., Zakrzewski, A. C., Johnson, J. M., Valleau, J. C., & Church, B. A. (2016). Categorization: The view from animal cognition. Behavioural Science, 6, 12. https://doi.org/10.3390/bs6020012Google Scholar
Sutton, J. E., & Shettleworth, S. J. (2008). Memory without awareness: Pigeons do not show metamemory in delayed matching to sample. Journal of Experimental Psychology: Animal Behavior Processes, 34, 266282. https://doi.org/10.1037/0097-7403.34.2.266Google Scholar
Waldron, E. M., & Ashby, F. G. (2001). The effects of concurrent task interference on category learning: Evidence for multiple category learning systems. Psychonomic Bulletin & Review, 8, 168176. https://doi.org/10.3758/BF03196154Google Scholar
Waldschmidt, J. G., & Ashby, F. G. (2011). Cortical and striatal contributions to automaticity in information-integration categorization. NeuroImage, 56, 17911802. https://doi.org/10.1016/j.neuroimage.2011.02.011Google Scholar
Washburn, D. A. (1994). Stroop-like effects for monkeys and humans: Processing speed or strength of association? Psychological Science, 5, 375379. https://doi.org/10.1111/j.1467-9280.1994.tb00288.xGoogle Scholar
Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G. C. R., Urakubo, H., Ishii, S., & Kasai, H. (2014). A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science, 345(6204), 16161620. https://doi.org/10.1126/science.1255514Google Scholar
Yin, H. H., Ostlund, S. B., Knowlton, B. J., & Balleine, B. W. (2005). The role of the dorsomedial striatum in instrumental conditioning. European Journal of Neuroscience, 22(2), 513523. https://doi.org/10.1111/j.1460-9568.2005.04218.xGoogle Scholar
Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46, 441517. https://doi.org/10.1006/jmla.2002.2864Google Scholar
Young, M. E., Wasserman, E. A., & Garner, K. L. (1997). Effects of number of items on the pigeon’s discrimination of same from different visual displays. Journal of Experimental Psychology: Behavior Processes, 23, 491501. https://doi.org/10.1037/0097-7403.23.4.491Google Scholar
Zakrzewski, A. C., Church, B. A., & Smith, J. D. (2018). The transfer of category knowledge by macaques (Macaca mulatta) and humans (Homo sapiens). Journal of Comparative Psychology, 132, 5874. https://doi.org/10.1037/com0000095Google Scholar
Zakrzewski, A. C., Johnson, J. M., & Smith, J. D. (2017). The comparative psychology of metacognition. In Call, J., Burghardt, G. M., Pepperberg, I. M., Snowdon, C. T., & Zentall, T. (Eds.), APA handbook of comparative psychology: Perception, learning, and cognition (pp. 703721). American Psychological Association. https://doi.org/10.1037/0000012-031Google Scholar

References

Acerbi, A. (2019). Cognitive attraction and online misinformation. Palgrave Communications, 5, 15. https://doi.org/10.1057/s41599-019-0224-yGoogle Scholar
Aplin, L. M., Farine, D. R., Moran-Ferron, J., Cockburn, A., Thornton, A., & Sheldon, B. (2015). Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature, 518, 538541. https://doi.org/10.1038/nature13998Google Scholar
Aplin, L. M. Sheldon, B. C., & McElreath, R. (2017). Conformity does not perpetuate suboptimal traditions in a wild population of songbirds. Proceedings of the National Academy of Sciences, 114, 78307837. https://doi.org/10.1073/pnas.1621067114Google Scholar
Aplin, L.M., Sheldon, B., & Morand-Ferron, J. (2013). Milk-bottles revisited: Social learning and individual variation in the blue tit, Cyanistes caeruleus. Animal Behaviour, 85, 12251232. https://doi.org/10.1016/j.anbehav.2013.03.009Google Scholar
Apps, M. A. J., Rushworth, M. F. S., & Chang, S. W. C. (2016). The anterior cingulate gyrus and social cognition: Tracking the motivation of others. Neuron, 90, 692707. https://doi.org/10.1016/j.neuron.2016.04.018Google Scholar
Apps, M. A. J., & Sallet, J. (2017). Social learning in the medial prefrontal cortex. Trends in Cognitive Sciences, 21, 151152. https://doi.org/10.1016/j.tics.2017.01.008Google Scholar
Avarguès-Weber, A., Lachlan, R., & Chittka, L., (2018). Bumblebee social learning can lead to suboptimal foraging choices. Animal Behaviour, 135, 209214. https://doi.org/10.1016/j.anbehav.2017.11.022Google Scholar
Baracchi, D., Vasas, V., Iqbal, S. J., & Alem, S. (2017). Foraging bumblebees use social cues more when the task is difficult. Behavioural Ecology, 29, 186192. https://doi.org/10.1093/beheco/arx143Google Scholar
Barrett, B. J., McElreath, R. L., & Perry, S. (2017). Payoff-biased social learning underlies the diffusion of novel extractive foraging traditions in a wild primate. Proceedings of the Royal Society B, Biological Sciences, 284, 20170358. https://doi.org/10.1098/rspb.2017.0358Google Scholar
van Bergen, Y., Coolen, I., & Laland, K.N. (2004). Nine-spined sticklebacks exploit the most reliable source when public and private information conflict. Proceedings of the Royal Society B, Biological Sciences, 271, 957962. https://doi.org/10.1098/rspb.2004.2684Google Scholar
Bolhuis, J. J., Okanoya, K., & Scharff, C. (2010). Twitter evolution: converging mechanisms in bird song and human speech. Nature Reviews Neuroscience, 11, 747759. https://doi.org/10.1038/nrn2931Google Scholar
Bono, A. E. J., Whiten, A., van Schaik, C., Krützen, M., Eichenberger, F., Schnider, A., & van de Waal, E. (2018). Payoff- and sex-biased social learning interact in a wild primate population. Current Biology, 2, 28002805. https://doi.org/10.1016/j.cub.2018.06.015Google Scholar
Boogert, N. J., Zimmer, C., & Spencer, K. A. (2013). Pre- and post-natal stress have opposing effects on social information use. Biology Letters, 9, 20121088. https://doi.org/10.1098/rsbl.2012.1088Google Scholar
Boyd, J. L., Skove, S. L., Rouanet, J. P., Pilaz, L.-J., Bepler, T., Gordân, R., Wray, G. A., & Silver, D. L. (2015) Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex. Current Biology, 25, 772779. https://doi.org/10.1016/j.cub.2015.01.041Google Scholar
Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process. University of Chicago Press.Google Scholar
Boyd, R., Richerson, P. J., & Henrich, J. (2011). The cultural niche: Why social learning is essential for human adaptation. Proceedings of the National Academy of Sciences, 108, 1091810925. https://doi.org/10.1073/pnas.1100290108Google Scholar
Brent, L. J. N., Franks, D. W., Foster, E. A., Balcomb, K. C., Cant, M. A., & Croft, D. P. (2015). Ecological knowledge, leadership, and the evolution of menopause in killer whales. Current Biology, 25, 746750. https://doi.org/10.1016/j.cub.2015.01.037Google Scholar
Byrne, R. (1994). The evolution of intelligence. In Slater, P. J. B. & Halliday, T. R. (Eds.), Behaviour and evolution (pp. 223265). Cambridge University Press.Google Scholar
Byrne, R. W. (2002). Imitation of novel complex actions: What does the evidence from animals mean? Advances in the Study of Behavior, 31, 77105. https://doi.org/10.1016/S0065-3454(02)80006-7Google Scholar
Call, J. (2017). APA handbook of comparative psychology. The American Psychological Association.Google Scholar
Canteloup, C., Hoppitt, W., & van de Waal, E. (2020). Wild primates copy higher ranked individuals in a social transmission experiment. Nature Communications, 11, 459. https://doi.org/10.1038/s41467-019-14209-8Google Scholar
Carr, K., Kendal, R. L., & Flynn, E. G. (2015). Imitate or innovate? Children’s innovation is influenced by the efficacy of observed behaviour. Cognition, 142, 322332. https://doi.org/10.1016/j.cognition.2015.05.005Google Scholar
Chudek, M., Heller, S., Birch, S., & Henrich, J. (2012). Prestige-biased cultural learning: Bystander’s differential attention to potential models influences children’s learning. Evolution & Human Behavior, 33, 4656. https://doi.org/10.1016/j.evolhumbehav.2011.05.005Google Scholar
Clegg, J. M., & Legare, C. H. (2016). A cross-cultural comparison of children’s imitative flexibility. Developmental Psychology, 52, 14351444. https://psycnet.apa.org/doi/10.1037/dev0000131Google Scholar
Coelho, C. G., Falotico, T., Izar, P., Mannu, M., Resende, B. D., Siqueira, J. O., & Ottoni, E. B. (2015). Social learning strategies for nut-cracking by tufted capuchin monkeys (Sapajus spp.). Animal Cognition, 18, 911919. https://doi.org/10.1007/s10071-015-0861-5Google Scholar
Coolen, I., van Bergen, Y., Day, R. L., & Laland, K. N. (2003). Species differences in adaptive use of public information in sticklebacks. Proceedings of the Royal Society B, Biological Sciences, 270, 24132419. https://doi.org/10.1098/rspb.2003.2525Google Scholar
Danchin, E., Nobel, S., Pocheville, A., Dagaeff, A.-C., Demay, L., Alphand, M., Ranty-Roby, S., van Renssen, L., Monier, M., Gazagne, E., Allain, M., & Isabel, G. (2018). Cultural flies: Conformist social learning in fruitflies predicts long-lasting mate-choice traditions. Science, 362, 10251030. https://doi/10.1126/science.aat1590Google Scholar
Dawson, B. V., & Foss, B. M. (1965). Observational learning in budgerigars. Animal Behavior, 13(4), 470474. https://psycnet.apa.org/doi/10.1016/0003-3472(65)90108-9Google Scholar
Dean, L., Kendal, R. L., Schapiro, S., Lambeth, S., Thierry, B., & Laland, K. N. (2012). Identification of the social and cognitive processes underlying human cumulative culture. Science, 335, 1114–118. https://doi/doi/10.1126/science.1213969Google Scholar
Dean, L. G., Vale, G. L., Laland, K. N., Flynn, E., & Kendal, R. L. (2014). Human cumulative culture: A comparative perspective. Biological Reviews, 89(2), 284301. https://doi.org/10.1111/brv.12053Google Scholar
Dunstone, J., & Caldwell, C. A. (2018). Cumulative culture and explicit metacognition: A review of theories, evidence and key predictions. Palgrave Communications, 4(1), 111. https://doi.org/10.1057/s41599-018-0200-yGoogle Scholar
Efferson, C., Lalive, R., Richerson, P. J., McElreath, R., & Lubell, M. (2008). Conformists and mavericks: The empirics of frequency-dependent cultural transmission. Evolution & Human Behavior 29, 5664. https://doi.org/10.1016/j.evolhumbehav.2007.08.003Google Scholar
Enquist, M., Eriksson, K., & Ghirlanda, S. (2007). Critical social learning: A solution to Roger’s paradox of non-adaptive culture. American Anthropologist, 109, 727734. https://doi.org/10.1525/aa.2007.109.4.727Google Scholar
Eriksson, K., Enquist, M., & Ghirlanda, S. (2007). Critical points in current theory of conformist social learning. Journal of Evolutionary Psychology, 5, 6787. https://doi.org/10.1556/jep.2007.1009Google Scholar
Evans, C., Laland, K. N., Carpenter, M., & Kendal, R. L. (2018). Selective copying of the majority suggests children are broadly “optimal-” rather than “over-” imitators. Developmental Science, 21, e12637. https://doi.org/10.1111/desc.12637Google Scholar
Farine, D. R., Spencer, K. A., & Boogert, N. J. (2015). Early-life stress triggers juvenile zebra finches to switch social learning strategies. Current Biology, 25, 21842188. https://doi.org/10.1016/j.cub.2015.06.071Google Scholar
Fawcett, T. W., Hamblin, S., & Giraldeau, L.-A. (2013). Exposing the behavioral gambit: The evolution of learning and decision rules. Behavioral Ecology, 24, 211. https://doi.org/10.1093/beheco/ars085Google Scholar
Feldman, M. W., Aoki, K., & Kumm, J. (1996). Individual versus social learning: Evolutionary analysis in a fluctuating environment. Anthropological Science, 104, 209231. https://doi.org/10.1537/ase.104.209Google Scholar
Fiorito, G., & Scotto, P. (1992). Observational learning in Octopus vulgaris. Science, 256, 545547. https://doi.org/10.1126/science.256.5056.545Google Scholar
Flynn, E. G., Turner, C., & Giraldeau, L.-A. (2016). Selectivity in social and asocial learning: Investigating the prevalence, effect and development of young children’s learning preferences. Philosophical Transactions of the Royal Society B, 371, 20150189. https://doi.org/10.1098/rstb.2015.0189Google Scholar
Flynn, E., & Whiten, A. (2012). Experimental “microcultures” in young children: Identifying biographic, cognitive, and social predictors of information transmission. Child Development, 83, 911925. https://doi.org/10.1111/j.1467-8624.2012.01747.xGoogle Scholar
Galef, B. G. (1988). Imitation in animals: History, definition, and interpretation of the data from the laboratory. In Zentall, T. R. & Galef, B. G. (Eds.), Social learning: Psychological and biological perspectives (pp. 327). Lawrence Elbaum Associates.Google Scholar
Galef, B. G. (1992). The question of animal culture. Human Nature, 3, 157178. https://doi.org/10.1007/BF02692251Google Scholar
Galef, B. G. & Yarkovsky, N. (2009). Further studies of reliance on socially acquired information when foraging in potentially risky situations. Animal Behaviour, 77, 13291335. https://doi.org/10.1016/j.anbehav.2009.01.038Google Scholar
Griffin, A. (2004). Social learning about predators: a review and prospectus. Learning & Behavior, 32, 131140. https://doi.org/10.3758/BF03196014Google Scholar
Haun, D. B. M., Rekers, Y., & Tomasello, M. (2012). Majority-biased transmission in chimpanzees and human children, but not orangutans. Current Biology, 22, 727731. https://doi.org/10.1016/j.cub.2012.03.006Google Scholar
Henrich, J., & Boyd, R. (1998). The evolution of conformist transmission and the emergence of between-group differences. Evolution & Human Behavior, 19(4), 215241. https://doi.org/10.1016/S1090-5138(98)00018-XGoogle Scholar
Henrich, J., & Broesch, J. (2011). On the nature of cultural transmission networks: Evidence from Fijian villages for adaptive learning biases. Philosophical Transactions of the Royal Society, B, 366, 11391148. https://doi.org/10.1098/rstb.2010.0323Google Scholar
Heyes, C. M. (2012). What’s social about social learning? Journal of Comparative Psychology, 126, 193202. https://psycnet.apa.org/doi/10.1037/a0025180Google Scholar
Heyes, C. M. (2016a). Blackboxing: Social learning strategies and cultural evolution. Philosophical Transactions of the Royal Society, B, 371, 20150369. https://doi.org/10.1098/rstb.2015.0369Google Scholar
Heyes, C. M. (2016b). Who knows? Metacognitive social learning strategies. Trends in Cognitive Sciences, 20(3), 204213. https://doi.org/10.1016/j.tics.2015.12.007Google Scholar
Heyes, C. M., Jaldow, E., & Dawson, G. R. (1994). Imitation in rats: Conditions of occurrence in a bidirectional control procedure. Learning & Motivation 25, 276287. https://doi.org/10.1016/0376-6357(94)90074-4Google Scholar
Heyes, C. M., & Pearce, J. M. (2015). Not-so-social learning strategies. Proceedings of the Royal Society B, Biological Sciences, 282, 20141709. https://doi.org/10.1098/rspb.2014.1709Google Scholar
Hill, M. R., Boorman, E. D., & Itzhak, F. (2016). Observational learning computations in neurons of the human anterior cingulate cortex. Nature Communications, 7, 12722. https://doi.org/10.1038/ncomms12722Google Scholar
Hinde, R. A., & Fisher, J. (1951). Further observations on the opening of milk bottles by birds. British Birds, 44, 393396.Google Scholar
Hoppitt, W., & Laland, K. N. (2008). Social processes influencing learning in animals: A review of the evidence. Advances in the Study of Behavior, 38, 105166. https://doi.org/10.1016/S0065-3454(08)00003-XGoogle Scholar
Hoppitt, W., & Laland, K. N. (2013). Social learning mechanisms: An introduction to mechanisms, methods and models. Princeton University Press.Google Scholar
Horner, V., & Whiten, A. (2005). Causal knowledge and imitation/emulation switching in chimpanzees (Pan troglodytes) and children (Homo sapiens). Animal Cognition, 8, 164181. https://doi.org/10.1007/s10071-004-0239-6Google Scholar
Howard, L. H., Wagner, K. E., Woodward, A. L., Ross, S. R., & Hopper, L. M. (2017). Social models enhance apes’ memory for novel events. Scientific Reports, 7, 40926. https://doi.org/10.1038/srep40926Google Scholar
Jesse, F., & Riebel, K. (2012). Social facilitation of male song by male and female conspecifics in the zebra finch, Taeniopygia guttata. Behavioural Processes 91(3), 262266. https://doi.org/10.1016/j.beproc.2012.09.006Google Scholar
Jones, P. L., Ryan, M. J., & Chittka, L. (2015). The influence of past experience with flower reward quality on social learning in bumblebees. Animal Behaviour, 101, 1118. https://doi.org/10.1016/j.anbehav.2014.12.016Google Scholar
Jones, P. L., Ryan, M. J., Flores, V., & Page, R. A. (2013). When to approach novel prey cues? Social learning strategies in frog-eating bats. Proceedings of the Royal Society B, Biological Sciences, 280, 20132330. https://doi.org/10.1098/rspb.2013.2330Google Scholar
Kendal, R. L., Coolen, I., & Laland, K. N. (2004). The role of conformity in foraging when personal and social information conflict. Behavioral Ecology, 15, 269277. https://doi.org/10.1093/beheco/arh008Google Scholar
Kendal, R. L., Kendal, J. R., Hoppitt, W., & Laland, K. N. (2009a). Identifying social learning in animal populations: A new ‘option-bias’ method. PLoS ONE, 4, e6541. https://doi.org/10.1371/journal.pone.0006541Google Scholar
Kendal, J. R., Rendell, L., Pike, T. W., & Laland, K. N. (2009b). Nine-spined sticklebacks deploy a hill-climbing social learning strategy. Behavioral Ecology, 20(2), 238244. https://doi.org/10.1093/beheco/arp016Google Scholar
Kendal, J. R., Giraldeau, L.-A., & Laland, K. N. (2009c). The evolution of social learning rules: Payoff-biased and frequency-dependent biased transmission. Journal of Theoretical Biology, 260, 210219. https://doi.org/10.1016/j.jtbi.2009.05.029Google Scholar
Kendal, R. L., Hopper, L. M., Whiten, A., Brosnan, S. F., Lambeth, S. P., Schapiro, S. J., & Hoppitt, W. (2015). Chimpanzees copy dominant and knowledgeable individuals: Implications for cultural diversity. Evolution & Human Behavior, 36, 6572. https://doi.org/10.1016/j.evolhumbehav.2014.09.002Google Scholar
Kendal, R. L., Boogert, N., Rendell, L., Laland, K. N., Webster, M. & Jones, P. L. (2018). Social learning strategies: Bridge-building between fields. Trends in Cognitive Sciences, 22(7), 651665. https://doi.org/10.1016/j.tics.2018.04.003Google Scholar
Laland, K. N. (2004). Social learning strategies. Learning & Behavior, 32, 414. https://doi.org/10.3758/BF03196002Google Scholar
Laland, K. N. (2017). Darwin’s unfinished symphony: How culture made the human mind. Princeton University Press.Google Scholar
Laland, K. N., Richerson, P. J., and Boyd, R. (1996). Developing a theory of animal social learning. In Heyes, C. M. and Galef, B. G., Jr. (Eds.), Social learning in animals: The roots of culture. San Diego, CA: Academic Press. https://psycnet.apa.org/doi/10.1016/B978-012273965-1/50008-XGoogle Scholar
Laland, K. N., & Williams, K. (1997). Shoaling generates social learning of foraging information in guppies. Animal Behaviour, 53, 11611169. https://doi.org/10.1006/anbe.1996.0318Google Scholar
Laland, K. N., & Janik, V. M. (2006). The animal cultures debate. Trends in Ecology & Evolution, 21(10), 542547. https://doi.org/10.1016/j.tree.2006.06.005Google Scholar
Laland, K. N., Atton, N., & Webster, M. M. (2011). From fish to fashion: Experimental and theoretical insights into the evolution of culture. Philosophical Transactions of the Royal Society B., 366, 958968. https://doi.org/10.1098/rstb.2010.0328Google Scholar
van Leeuwen, E. J. C., Acerbi, A., Kendal, R. L., Tennie, C., & Haun, D. B. M. (2016). A reappreciation of “conformity.” Animal Behaviour, 122, e5e10. https://doi.org/10.1016/j.anbehav.2016.09.010Google Scholar
van Leeuwen, E. J. C., and Call, J. (2017). Conservatism and “copy-if-better” in chimpanzees (Pan troglodytes). Animal Cognition, 20(3), 575579. https://doi/10.1007/s10071-016-1061-7Google Scholar
van Leeuwen, E. J. C., Cronin, K. A., Schütte, S., Call, J., & Haun, D. B. M. (2013). Chimpanzees (Pan troglodytes) flexibly adjust their behaviour in order to maximize payoffs, not to conform to majorities. PLoS ONE, 8, e80945. https://doi.org/10.1371/journal.pone.0080945Google Scholar
van Leeuwen, E. J. C., Cronin, K. A., & Haun, D. B. (2014). A group-specific arbitrary tradition in chimpanzees (Pan troglodytes). Animal Cognition 17(6), 14211425. https://doi.org/10.1007/s10071-014-0766-8Google Scholar
van Leeuwen, E. J. C., Kendal, R. L., Tennie, C., & Haun, D. B. M. (2015). Conformity and its look-a-likes. Animal Behaviour, 110, e1e4.Google Scholar
Leris, I., & Reader, S. M. (2016). Age and early social environment influence guppy social learning propensities. Animal Behaviour, 120, 1119. https://doi.org/10.1016/j.anbehav.2016.07.012Google Scholar
Luncz, L., Mundry, R., & Boesch, C. (2012). Evidence for cultural differences between neighboring chimpanzee communities. Current Biology, 22(10), 922926. https://doi.org/10.1016/j.cub.2012.03.031Google Scholar
Mesoudi, A. (2011). An experimental comparison of human social learning strategies: Payoff-biased social learning is adaptive but underused. Evolution & Human Behavior, 32(5), 334342. https://doi.org/10.1016/j.evolhumbehav.2010.12.001Google Scholar
Mesoudi, A., Chang, L., Dall, S. R. X., & Thornton, A. (2016). The evolution of individual and cultural variation in social learning. Trends in Ecology and Evolution, 31(3), 215225. https://doi.org/10.1016/j.tree.2015.12.012Google Scholar
Mesoudi, A., Whiten, A., & Dunbar, R. (2006). A bias for social information in human cultural transmission. British Journal of Psychology, 97, 405423. https://doi.org/10.1348/000712605X85871Google Scholar
Matsuzawa, T. (1994). Field experiments on use of stone tools by chimpanzees in the wild. In Wrangham, R. W., McGrew, W. C., de Waal, F. B. M., & Heltne, P. (Eds.), Chimpanzee cultures (pp. 351370). Harvard University Press.Google Scholar
McElreath, R., Bell, A. V., Efferson, C., Lubell, M., Richerson, P. J., & Waring, T. M. (2008). Beyond existence and aiming outside the laboratory: Estimating frequency-dependent and pay-off-biased social learning strategies. Philosophical Transactions of the Royal Society B, 363, 35153528. https://doi.org/10.1098/rstb.2008.0131Google Scholar
Mineka, S., & Cook, M. (1988). Social learning and the acquisition of snake fear in monkeys. In Galef, B. G. & Zentall, T. R. (Eds.), Social learning: Psychological and biological perspectives (pp. 5173). Lawrence Erlbaum.Google Scholar
Morgan, T. J. H., Rendell, L. E., Ehn, M., Hoppitt, W., & Laland, K. N. (2011). The evolutionary basis of human social learning. Proceedings of the Royal Society B, Biological Sciences, 279, 653662. https://doi.org/10.1098/rspb.2011.1172Google Scholar
Morgan, T. J. H., & Laland, K. N. (2012). The biological bases of conformity. Frontiers in Neuroscience, 6, 87. https://doi.org/10.3389/fnins.2012.00087Google Scholar
Rieucau, G., & Giraldeau, L.-A. (2011). Exploring the costs and benefits of social information use: An appraisal of current experimental evidence. Philosophical Transactions of the Royal Society, B, 366, 949957. https://doi.org/10.1098/rstb.2010.0325Google Scholar
Rendell, L., Fogarty, L., & Laland, K. N. (2010). Roger’s paradox recast and resolved: Population structure and the evolution of social learning strategies. Evolution, 64, 534548. https://doi.org/10.1111/j.1558-5646.2009.00817.xGoogle Scholar
Rendell, L., Fogarty, L., Hoppitt, W. J. E., Morgan, T. J. H., Webster, M. M., & Laland, K. N. (2011). Cognitive culture: Theoretical and empirical insights into social learning strategies. Trends in Cognitive Science, 15, 6876. https://doi.org/10.1016/j.tics.2010.12.002Google Scholar
Schlag, K. H. (1998). Why imitate, and if so, how? A bounded rationality approach to multi-armed bandits. Journal of Economic Theory, 78, 130156. https://doi.org/10.1006/jeth.1997.2347Google Scholar
Sherry, D. F., & Galef, B. G. (1990). Social learning without imitation. Animal Behaviour, 40, 987989. https://psycnet.apa.org/doi/10.1016/S0003-3472(05)81004-8Google Scholar
Spence, K. W. (1937). Experimental studies of learning and the higher mental processes in infra-human primates. Psychological Bulletin, 34(10), 806. https://psycnet.apa.org/doi/10.1037/h0061498Google Scholar
Sperber, D., & Hirschfeld, L. A. (2004). The cognitive foundations of cultural stability and diversity. Trends in Cognitive Science 8(1), 4046. https://doi.org/10.1016/j.tics.2003.11.002Google Scholar
Stroeymert, N., Giurfa, M., & Franks, N. R. (2017). Information certainty determines social and private information use in ants. Scientific Reports, 7, 43607. https://doi.org/10.1038/srep43607Google Scholar
Stubbersfield, J. M., Tehrani, J. J., Flynn, E. G. (2015). Serial killers, spiders and cybersex: Social and survival information bias in the transmission of urban legends. British Journal of Psychology, 106, 288307. https://doi.org/10.1111/bjop.12073Google Scholar
Tan, A. W. Y., Hemelrijk, C. K., Malaivijitnond, S., & Gumert, M. D. (2018). Young macaques (Macaca fascicularis) preferentially bias attention towards closer, older, and better tool users. Animal Cognition, 21, 551563. https://doi.org/10.1007/s10071-018-1188-9Google Scholar
Thornton, A., & Malapert, A. ( 2009). Experimental evidence for social transmission of food acquisition techniques in wild meerkats. Animal Behaviour, 78(2), 255264. https://doi.org/10.1016/j.anbehav.2009.04.021Google Scholar
Thorpe, W. H. (1956). Learning and instinct in animals. Methuen & Co., Ltd.Google Scholar
Toelch, U., Bruce, M. J., Newson, L., Richerson, P. J., & Reader, S. M. (2014). Individual consistency and flexibility in human social information use. Proceedings of the Royal Society B, Biological Sciences, 281, 20132864. https://doi.org/10.1098/rspb.2013.2864Google Scholar
Tomasello, M. (1994). The question of chimpanzee culture. In Wrangham, R. W., McGrew, W. C., de Waal, F. B. M., & Heltne, P. (Eds.), Chimpanzee cultures (pp. 301317). Harvard University Press.Google Scholar
Toyokawa, W., Whalen, A., & Laland, K. N. (2019). Social learning strategies regulate the wisdom and madness of interactive crowds. Nature Human Behaviour, 3, 183193. https://doi.org/10.1038/s41562-018-0518-xGoogle Scholar
Tylor, E. B. (1871). Primitive culture: Researches into the development of mythology, philosophy, religion, art and custom. Murray.Google Scholar
Vale, G. L., Flynn, E. G., Kendal, J. R., Rawlings, B., Hopper, L. M., Schapiro, S. J., Lambeth, S. P., & Kendal, R. L. (2017). Testing differential use of payoff-biased social learning strategies in children and chimpanzees. Proceedings of the Royal Society B, Biological Sciences, 284, 1751. https://doi.org/10.1098/rspb.2017.1751Google Scholar
Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359, 11461151. https://doi.org/10.1126/science.aap9559Google Scholar
van de Waal, E., Renevey, N., Favre, C. M., & Bshary, R. (2010). Selective attention to philopatric models causes directed social learning in wild vervet monkeys. Proceedings of the Royal Society B, Biological Sciences, 277, 21052111. https://doi.org/10.1098/rspb.2009.2260Google Scholar
van de Waal, E., Borgeaud, C., & Whiten, A. (2013). Potent social learning and conformity shape a wild primate’s foraging decisions. Science, 340 (6131), 483485. https://doi.org/10.1126/science.1232769Google Scholar
Watson, R., Morgan, T., Kendal, R.L., van de Vyver, J., Kendal, J.R. (2021). Social learning strategies and cooperative behaviour: Evidence of payoff bias, but not prestige or conformity, in a social dilemma game. Games, 12, 89. https://doi.org/10.3390/g12040089Google Scholar
Watson, S. K., Reamer, L. A., Mareno, M. C., Vale, G., Harrison, R. A., Lambeth, S. P., & Schapiro, S. J. (2017). Socially transmitted diffusion of a novel behavior from subordinate chimpanzees. American Journal of Primatology, 79, e22642. https://doi.org/10.1002/ajp.22642Google Scholar
Webster, M. M., & Laland, K. N. (2008). Social learning strategies and predation risk: minnows copy only when using private information would be costly. Proceedings of the Royal Society B. Biological Sciences, 275, 28692876. https://doi.org/10.1098/rspb.2008.0817Google Scholar
Webster, M. M., & Laland, K. N. (2011). Reproductive state affects reliance on public information in sticklebacks. Proceedings of the Royal Society B, Biological Sciences, 278, 619627. https://doi.org/10.1098/rspb.2010.1562Google Scholar
Whalen, A., Griffiths, T. L., & Buchsbaum, D. (2017). Sensitivity to shared information in social learning. Cognitive Science, 42, 168187. https://doi.org/10.1111/cogs.12485Google Scholar
Whiten, A., & Ham, R. (1992). On the nature and evolution of imitation in the animal kingdom: Reappraisal of a century of research. Advances in the Study of Behavior, 21, 239283.Google Scholar
Whiten, A., & van Schaik, C. P. (2007). The evolution of animal “cultures” and social intelligence. Philosophical Transactions of the Royal Society B, 362(1480), 603620. https://doi.org/10.1098/rstb.2006.1998Google Scholar
Whiten, A., & Erdal, D. (2012). The human sociocognitive niche and its evolutionary origins. Philosophical Transactions of the Royal Society B., 367, 21192129. https://doi.org/10.1098/rstb.2012.0114Google Scholar
Whiten, A., Horner, V., & de Waal, F. B. M. (2005). Conformity to cultural norms of tool use in chimpanzees. Nature, 437(7059), 737740. https://doi.org/10.1038/nature04047Google Scholar
Wilkinson, A., Kuenstner, K., Mueller, J., & Huber, L. (2010). Social learning in a non-social reptile (Geochelone carbonaria). Biology Letters, 6, 614616. https://doi.org/10.1098/rsbl.2010.0092Google Scholar
Wood, L. A., Kendal, R. L., & Flynn, E. G. (2012). Context-dependent model-based biases in cultural transmission: Children’s imitation is affected by model age over model knowledge state. Evolution & Human Behavior, 33, 387394. https://doi.org/10.1016/j.evolhumbehav.2011.11.010Google Scholar
Wood, L. A., Kendal, R. L., & Flynn, E. G. (2013). Copy me or copy you? The effect of prior experience on social learning. Cognition, 127, 203213. https://doi.org/10.1016/j.cognition.2013.01.002Google Scholar
Wood, L. A. (2013). Chimpanzee tool-use is biased by the prior proficiency of known conspecifics. In The influence of model-based biases and observer prior experience on social learning mechanisms and strategies. Durham theses, Durham University. http://etheses.dur.ac.uk/7274/Google Scholar

References

Abrahms, B., Hazen, E. L., Aikens, E. O., Savoca, M. S., Goldbogen, J. A., Bograd, S. J., Jacox, M. G., Irvine, L. M., Palacios, D. M., & Mate, B. R. (2019). Memory and resource tracking drive blue whale migrations. Proceedings of the National Academy of Sciences, 116, 55825587. https://doi.org/10.1073/pnas.1819031116Google Scholar
Ancel, L. W. (2000). Undermining the Baldwin expediting effect: Does phenotypic plasticity accelerate evolution? Theoretical Population Biology, 58, 307319. https://doi.org/10.1006/tpbi.2000.1484Google Scholar
Aoki, K., & Feldman, M. W. (2014). Evolution of learning strategies in temporally and spatially variable environments: A review of theory. Theoretical Population Biology, 91, 319. https://doi.org/10.1016/j.tpb.2013.10.004Google Scholar
Aoki, M. (2001). Toward a comparative institutional analysis. MIT Press.Google Scholar
Aplin, L. M. (2019). Culture and cultural evolution in birds: A review of the evidence. Animal Behaviour, 147, 179187. https://doi.org/10.1016/j.anbehav.2018.05.001Google Scholar
Atton, N. (2013). Investigations into Stickleback Social Learning [PhD dissertation, University of St Andrews].Google Scholar
Baldwin, J. M. (1896). A new factor in evolution. The American Naturalist, 30(354), 441451.Google Scholar
Beltman, J. B., Haccou, P., & ten Cate, C. (2003). The impact of learning foster species' song on the evolution of specialist avian brood parasitism. Behavioral Ecology, 14(6), 917923. https://doi.org/10.1093/beheco/arg082Google Scholar
Beltman, J., Haccou, P., & ten Cate, C. (2004). Learning and colonization of new niches: A first step toward speciation. Evolution, 58, 3546. https://doi.org/10.1554/03-339Google Scholar
Boivin, N. L., Zeder, M. A., Fuller, D. Q., Crowther, A., Larson, G., Erlandson, J. M., Denham, T., & Petraglia, M. D. (2016). Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions. Proceedings of the National Academy of Sciences, 113(23), 63886396. https://doi.org/10.1073/pnas.1525200113Google Scholar
Bonduriansky, R. & Day, T. (2018). Extended heredity. Princeton University Press.Google Scholar
Borenstein, E., Meilijson, I., & Ruppin, E. (2006). The effect of phenotypic plasticity on evolution in multipeaked fitness landscapes. Journal of Evolutionary Biology, 19(5), 15551570. https://doi.org/10.1111/j.1420-9101.2006.01125.xGoogle Scholar
Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process. University of Chicago Press.Google Scholar
Brown, C., & Laland, K. N. (2001). Social learning and life skills training for hatchery reared fish. Journal of Fish Biology, 59(3), 471493. https://doi.org/10.1111/j.1095-8649.2001.tb02354.xGoogle Scholar
Brown, C., & Laland, K. N. (2003). Social learning in fishes: A review. Fish and Fisheries, 4(3), 280288. https://doi.org/10.1046/j.1467-2979.2003.00122.xGoogle Scholar
Carroll, E. L., Baker, C. S., Watson, M., Alderman, R., Bannister, J., Gaggiotti, O. E., Gröcke, D. R., Patenaude, N., & Harcourt, R. (2015). Cultural traditions across a migratory network shape the genetic structure of southern right whales around Australia and New Zealand. Scientific Reports, 5(1), 16182. https://doi.org/10.1038/srep16182Google Scholar
ten Cate, C., & Rowe, C. (2007). Biases in signal evolution: learning makes a difference. Trends in Ecology and Evolution, 22, 380387. https://doi.org/10.1016/j.tree.2007.03.006Google Scholar
Cavalli-Sforza, L. L., & Feldman, M. W. (1973). Models for cultural inheritance I. Group mean and within group variation. Theoretical Population Biology, 4(1), 4255. https://doi.org/10.1016/0040-5809(73)90005-1Google Scholar
Cavalli-Sforza, L. L., & Feldman, M. W. (1981). Cultural transmission and evolution: A quantitative approach. Princeton University Press.Google Scholar
Clark, A. D., Deffner, D., Laland, K. N., Odling-Smee, J., & Endler, J. (2019). Niche construction affects the variability and strength of natural selection. The American Naturalist, 195(1), 1630. https://doi.org/10.5061/dryad.g66n3h5Google Scholar
Coolen, I., Bergen, Y. V., Day, R. L., & Laland, K. N. (2003). Species difference in adaptive use of public information in sticklebacks. Proceedings of the Royal Society B: Biological Sciences, 270, 24132419. https://doi.org/10.1098/rspb.2003.2525Google Scholar
Curio, E. (1988). Cultural transmission of enemy recognition by birds. In Zentall, T. R. & Galef, B. G. (Eds.), Social learning: Psychological and biological perspectives (pp. 7597). Lawrence Erlbaum Associates, Inc.Google Scholar
Currie, T. E., Greenhill, S. J., Gray, R. D., Hasegawa, T., & Mace, R. (2010). Rise and fall of political complexity in island South-East Asia and the Pacific. Nature, 467(7317), 801804. https://doi.org/10.1038/nature09461Google Scholar
Danchin, É. G. J., Blanchet, S., Mery, F., & Wagner, R. H. (2010). Do invertebrates have culture? Communicative & Integrative Biology, 3(4), 303305. https://doi.org/10.4161/cib.3.4.11970Google Scholar
Danchin, É. G. J., Charmantier, A., Champagne, F. A., Mesoudi, A., Pujol, B., & Blanchet, S. (2011). Beyond DNA: Integrating inclusive inheritance into an extended theory of evolution. Nature Reviews Genetics, 12, 475486. https://doi.org/10.1038/nrg3028Google Scholar
Davies, N. B., & Welbergen, J. A. (2009). Social transmission of a host defense against cuckoo parasitism. Science, 324(5932), 13181320. https://doi.org/10.1126/science.1172227Google Scholar
Dean, L. G., Kendal, R. L., Schapiro, S. J., Thierry, B., & Laland, K. N. (2012). Identification of the social and cognitive processes underlying human cumulative culture. Science, 335, 11141118. https://doi.org/10.1126/science.1213969Google Scholar
Deneubourg, J. L., Pasteels, J. M., & Verhaeghe, J. C. (1983). Probabilistic behaviour in ants: A strategy of errors? Journal of Theoretical Biology, 105(2), 259271. https://doi.org/10.1016/S0022-5193(83)80007-1Google Scholar
Dornhaus, A., & Chittka, L. (1999). Evolutionary origins of bee dances. Nature, 401(6748), 38. https://doi.org/10.1038/43372Google Scholar
Dunbar, R. I. M., & Shultz, S. (2017). Why are there so many explanations for primate brain evolution? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1727), 20160244. https://doi.org/10.1098/rstb.2016.0244Google Scholar
Durham, W. H. (1991). Coevolution: Genes, culture, and human diversity. Stanford University Press.Google Scholar
Edelaar, P., Jovani, R., & Gomez-Mestre, I. (2017). Should I change or should I go? Phenotypic plasticity and matching habitat choice in the adaptation to environmental heterogeneity. The American Naturalist, 190(4), 506520. https://doi.org/10.1086/693345Google Scholar
Fisher, J. B., & Hinde, R. A. (1949). Opening of milk bottles by birds. British Birds, XLII, 347357.Google Scholar
Flack, J. C., Girvan, M., de Waal, F. B. M., & Krakauer, D. C. (2006). Policing stabilizes construction of social niches in primates. Nature, 439, 426429. https://doi.org/10.1038/nature04326Google Scholar
Foote, A. D., Vijay, N., Ávila-Arcos, M. C., Baird, R. W., Durban, J. W., Fumagalli, M., Gibbs, R. A., Hanson, M. B., Korneliussen, T. S., Martin, M. D., Robertson, K. M., Sousa, V. C., Vieira, F. G., Vinař, T., Wade, P., Worley, K. C., Excoffier, L., Morin, P. A., Gilbert, M. T. P., & Wolf, J. B. W. (2016). Genome-culture coevolution promotes rapid divergence of killer whale ecotypes. Nature Communications, 7, 11693. https://doi.org/10.1038/ncomms11693Google Scholar
Forsman, J. T., & Seppänen, J.-T. (2011). Learning what (not) to do: Testing rejection and copying of simulated heterospecific behavioural traits. Animal Behaviour, 81(4), 879883. https://doi.org/10.1016/j.anbehav.2011.01.029Google Scholar
Fragaszy, D. M. (2011). Community resources for learning: How capuchin monkeys construct technical traditions. Biological Theory, 6(3), 231240. https://doi.org/10.1007/s13752-012-0032-8Google Scholar
Frank, S. A. (2011). Natural selection. II. Developmental variability and evolutionary rate. Journal of Evolutionary Biology, 24(11), 23102320. https://doi.org/10.1111/j.1420-9101.2011.02373.xGoogle Scholar
Galef, B. G., & Beck, M. (1985). Aversive and attractive marking of toxic and safe foods by Norway rats. Behavioral and Neural Biology, 43(3), 298310. https://doi.org/10.1016/s0163-1047(85)91645-0Google Scholar
Galef, B. G., & Buckley, L. L. (1996). Use of foraging trails by Norway rats. Animal Behaviour, 51, 765771. https://doi.org/10.1006/anbe.1996.0081Google Scholar
Galef, B. G., & Heiber, L. (1976). Role of residual olfactory cues in the determination of feeding site selection and exploration patterns of domestic rats. Journal of Comparative and Physiological Psychology, 90, 727739. https://doi.org/10.1037/h0077243Google Scholar
Gerbault, P., Liebert, A., Itan, Y., Powell, A., Currat, M., Burger, J., Swallow, D. M., & Thomas, M. G. (2011). Evolution of lactase persistence: An example of human niche construction. Philosophical Transactions of the Royal Society B: Biological sciences, 366, 863877. https://doi.org/10.1098/rstb.2010.0268Google Scholar
Gerhart, J., & Kirschner, M. (1997). Cells, embryos & evolution. Wiley.Google Scholar
Goodall, J. (1986). The chimpanzees of Gombe: patterns of behavior. Harvard University Press.Google Scholar
Griffiths, P. E. (2002). What is innateness? The Monist, 85, 7085. https://doi.org/10.5840/monist20028518Google Scholar
Griffin, A. S., & Guez, D. (2014). Innovation and problem solving: A review of common mechanisms. Behavioural Processes, 109, 121134. https://doi.org/10.1016/j.beproc.2014.08.027Google Scholar
Gunst, N., Boinski, S., & Fragaszy, D. (2008). Acquisition of foraging competence in wild brown capuchins (Cebus apella), with special reference to conspecifics’ foraging artefacts as an indirect social influence. Behaviour, 145, 195229. https://doi.org/10.1163/156853907783244701Google Scholar
Gunst, N., Boinski, S., & Fragaszy, D. (2010). Development of skilled detection and extraction of embedded prey by wild brown capuchin monkeys (Cebus apella apella). Journal of Comparative Psychology, 124, 194204. https://doi.org/10.1037/a0017723Google Scholar
Henrich, J. (2016). The secret of our success: How culture is driving human evolution, domesticating our species, and making us smarter. Princeton University Press.Google Scholar
Herrmann, E., Call, J., Hernàndez-Lloreda, M. V., Hare, B., & Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science, 317(5843), 13601366. https://doi.org/10.1126/science.1146282Google Scholar
Hinton, G. E., & Nowlan, S. J. (1987). How learning can guide evolution. Complex systems, 1, 495502.Google Scholar
Hoelzel, A. R., & Moura, A. E. (2016). Killer whales differentiating in geographic sympatry facilitated by divergent behavioural traditions. Heredity, 117, 481482. https://doi.org/10.1038/hdy.2016.112Google Scholar
Hoppitt, W., & Laland, K. N. (2013). Social learning: An introduction to mechanisms, methods, and models. Princeton University Press.Google Scholar
Jesmer, B. R., Merkle, J. A., Goheen, J. R., Aikens, E. O., Beck, J. L., Courtemanch, A. B., Hurley, M. A., McWhirter, D. E., Miyasaki, H. M., Monteith, K. L., & Kauffman, M. J. (2018). Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science, 361, 10231025. https://doi.org/10.1126/science.aat0985Google Scholar
Jones, B. C., & DuVal, E. H. (2019). Mechanisms of social influence: A meta-analysis of the effects of social information on female mate choice decisions [Systematic Review]. Frontiers in Ecology and Evolution, 7, 390. https://doi.org/10.3389/fevo.2019.00390Google Scholar
Kaplan, H., Hill, K., Lancaster, J., & Hurtado, A. M. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology: Issues, News, and Reviews, 9, 156185. https://doi.org/10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7Google Scholar
Kawai, M. (1965). Newly-acquired pre-cultural behavior of the natural troop of Japanese monkeys on Koshima islet. Primates, 6, 130. https://doi.org/10.1007/BF01794457Google Scholar
Kendal, J., Tehrani, J. J., & Odling-Smee, J. (2011). Human niche construction in interdisciplinary focus. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 785792. https://doi.org/10.1098/rstb.2010.0306Google Scholar
Kendal, R. L., Boogert, N. J., Rendell, L., Laland, K. N., Webster, M., & Jones, P. L. (2018). Social learning strategies: Bridge-building between fields. Trends in Cognitive Sciences, 22, 651665. https://doi.org/10.1016/j.tics.2018.04.003Google Scholar
Lachlan, R. F., & Slater, P. J. B. (1999). The maintenance of vocal learning by gene-culture interaction: The cultural trap hypothesis. Proceedings of the Royal Society B: Biological Sciences, 266, 701706. https://doi.org/10.1098/rspb.1999.0692Google Scholar
Laland, K. N. (1994a). Sexual selection with a culturally transmitted mating preference. Theoretical Population Biology, 45, 115. https://doi.org/10.1006/tpbi.1994.1001Google Scholar
Laland, K. N. (1994b). On the evolutionary consequences of sexual imprinting. Evolution, 48, 477489. https://doi.org/10.1111/j.1558-5646.1994.tb01325.x.Google Scholar
Laland, K. N. (2004). Social learning strategies. Animal Learning & Behavior, 32, 414. https://doi.org/10.3758/BF03196002Google Scholar
Laland, K. N. (2017). Darwin’s Unfinished Symphony: How culture made the human mind. Princeton University Press.Google Scholar
Laland, K. N., Matthews, B., & Feldman, M. W. (2016). An introduction to niche construction theory. Evolutionary Ecology, 30, 191202. https://doi.org/10.1007/s10682-016-9821-zGoogle Scholar
Laland, K. N., & O’Brien, M. J. (2011). Cultural niche construction: An introduction. Biological Theory, 6, 191202. https://doi.org/10.1007/s13752-012-0026-6Google Scholar
Laland, K. N., Odling-Smee, J., & Feldman, M. W. (2001). Cultural niche construction and human evolution. Journal of Evolutionary Biology, 14, 2233. https://doi.org/10.1073/pnas.96.18.10242Google Scholar
Laland, K. N., Odling-Smee, J., & Myles, S. (2010). How culture shaped the human genome: Bringing genetics and the human sciences together. Nature Reviews Genetics, 11, 137148. https://doi.org/10.1038/nrg2734Google Scholar
Laland, K. N., & Plotkin, H. C. (1991). Excretory deposits surrounding food sites facilitate social learning of food preferences in Norway rats. Animal Behaviour, 41, 9971005. https://doi.org/10.1016/S0003-3472(05)80638-4Google Scholar
Laland, K. N., Toyokawa, W., & Oudman, T. (2019). Animal learning as a source of developmental bias. Evolution & Development, 22, 126142. https://doi.org/10.1111/ede.12311Google Scholar
Le, Q. V., Isbell, L. A., Matsumoto, J., Nguyen, M., Hori, E., Maior, R. S., Tomaz, C., Tran, A. H., Ono, T., & Nishijo, H. (2013). Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. Proceedings of the National Academy of Sciences, 110, 19000. https://doi.org/10.1073/pnas.1312648110Google Scholar
Leadbeater, E., & Chittka, L. (2007). Social learning in insects – From miniature brains to consensus building. Current Biology, 17, R703R713. https://doi.org/10.1016/j.cub.2007.06.012Google Scholar
Leadbeater, E., & Dawson, E. H. (2017). A social insect perspective on the evolution of social learning mechanisms. Proceedings of the National Academy of Sciences, 114, 7838. https://doi.org/10.1073/pnas.1620744114Google Scholar
Lefebvre, L., Whittle, P., Lascaris, E., & Finkelstein, A. (1997). Feeding innovations and forebrain size in birds. Animal Behaviour, 53, 549560. https://doi.org/10.1006/anbe.1996.0330Google Scholar
Levis, N. A., & Pfennig, D. W. (2016). Evaluating ‘plasticity-first’ evolution in nature: Key criteria and empirical approaches. Trends in Ecology and Evolution, 31, 563574. https://doi.org/10.1016/j.tree.2016.03.012Google Scholar
Lewontin, R. C. (1983). Gene, organism, and environment. In Bendall, D. S. (Ed.), Evolution from molecules to men (pp. 273285). Cambridge University Press.Google Scholar
Marler, P., & Tamura, M. (1964). Culturally transmitted patterns of vocal behavior in sparrows. Science, 146(3650), 14831486. https://doi.org/10.1126/science.146.3650.1483Google Scholar
Mason, J. R., & Reidinger, R. F. (1982). Observational learning of food aversions in red-winged blackbirds (Agelaius phoeniceus). The Auk, 99, 548554. https://doi.org/10.1093/auk/99.3.548Google Scholar
Mercader, J., Barton, H., Gillespie, J., Harris, J., Kuhn, S., Tyler, R., & Boesch, C. (2007). 4,300-Year-old chimpanzee sites and the origins of percussive stone technology. Proceedings of the National Academy of Sciences, 104, 3043. https://doi.org/10.1073/pnas.0607909104Google Scholar
Mills, R., & Watson, R. A. (2006). On crossing fitness valleys with the Baldwin effect. In Rocha, L. M., Bedau, M., Floreano, D., Goldstone, R., Vespignani, A., & Yaeger, L. (Eds.), Proceedings of the tenth international conference on the simulation and synthesis of living systems (pp. 493499). MIT Press.Google Scholar
Mineka, S., & Cook, M. (1988). Social learning and the acquisition of snake fear in monkeys. In Galef, B. G. & Zentall, T. R. (Eds.), Social learning: Psychological and biological perspectives (pp. 5173). Lawrence Erlbaum.Google Scholar
Musgrave, S., Morgan, D., Lonsdorf, E., Mundry, R., & Sanz, C. (2016). Tool transfers are a form of teaching among chimpanzees. Scientific Reports, 6, 34783. https://doi.org/10.1038/srep34783Google Scholar
Muthukrishna, M., & Henrich, J. (2016). Innovation in the collective brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1690), 20150192. https://doi.org/10.1098/rstb.2015.0192Google Scholar
Navarrete, A. F., Reader, S. M., Street, S. E., Whalen, A., & Laland, K. N. (2016). The coevolution of innovation and technical intelligence in primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1690), 20150186. https://doi.org/10.1098/rstb.2015.0186Google Scholar
Nicolakakis, N., Sol, D., & Lefebvre, L. (2003). Behavioural flexibility predicts species richness in birds, but not extinction risk. Animal Behaviour, 65, 445452. https://doi.org/10.1006/anbe.2003.2085Google Scholar
O’Brien, M. J., & Laland, K. N. (2012). Genes, culture, and agriculture: An example of human niche construction. Current Anthropology, 53, 434470. https://doi.org/10.1086/666585Google Scholar
Odling-Smee, F., Laland, K., & Feldman, M. (2003). Niche construction: The neglected process in evolution. Princeton University Press.Google Scholar
Odling-Smee, J., Erwin, D. H., Palkovacs, E. P., Feldman, M. W., & Laland, K. N. (2013). Niche construction theory: A practical guide for ecologists. The Quarterly Review of Biology, 88, 328. https://doi.org/10.1086/669266Google Scholar
Olsson, A., & Phelps, E. A. (2007). Social learning of fear. Nature Neuroscience, 10, 10951102. https://doi.org/10.1038/nn1968Google Scholar
Oudman, T., Laland, K., Ruxton, G., Tombre, I., Shimmings, P., & Prop, J. (2020). Young birds switch but old birds lead: how barnacle geese adjust migratory habits to environmental change. Frontiers in Ecology and Evolution, 7, 502). https://doi.org/10.3389/fevo.2019.00502Google Scholar
Overington, S. E., Morand-Ferron, J., Boogert, N. J., & Lefebvre, L. (2009). Technical innovations drive the relationship between innovativeness and residual brain size in birds. Animal Behaviour, 78, 10011010. https://doi.org/10.1016/j.anbehav.2009.06.033Google Scholar
Paenke, I., Sendhoff, B., & Kawecki, Tadeusz J. (2007). Influence of plasticity and learning on evolution under directional selection. The American Naturalist, 170, E47E58. https://doi.org/10.1086/518952Google Scholar
Price, T. D., Qvarnström, A., & Irwin, D. E. (2003). The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society B: Biological Sciences, 270, 14331440. https://doi.org/10.1098/rspb.2003.2372Google Scholar
Reader, S. M., Hager, Y., & Laland, K. N. (2011). The evolution of primate general and cultural intelligence. Philosophical Transactions of the Royal Society B, 366, 10171027. https://doi.org/10.1098/rstb.2010.0342Google Scholar
Reader, S. M., & Laland, K. N. (2002). Social intelligence, innovation, and enhanced brain size in primates. Proceedings of the National Academy of Sciences, 99, 4436. https://doi.org/10.1073/pnas.062041299Google Scholar
Reader, S. M., & Laland, K. N. (2003). Animal innovation: An introduction. In Reader, S. M. & Laland, K. N. (Eds.), Animal innovation (pp. 335). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198526223.003.0001Google Scholar
Reader, S. M., Morand-Ferron, J., & Flynn, E. (2016). Animal and human innovation: Novel problems and novel solutions. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150182. https://doi.org/10.1098/rstb.2015.0182Google Scholar
Rendell, L., Boyd, R., Cownden, D., Enquist, M., Eriksson, K., Feldman, M. W., Fogarty, L., Ghirlanda, S., Lillicrap, T., & Laland, K. N. (2010). Why copy others? Insights from the social learning strategies tournament. Science, 328, 208213. https://doi.org/10.1126/science.1184719Google Scholar
Rendell, L., Fogarty, L., & Laland, K. N. (2011). Runaway cultural niche construction. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 823835. https://doi.org/10.1098/rstb.2010.0256Google Scholar
Rendell, L., & Whitehead, H. (2001). Culture in whales and dolphins. Behavioral and Brain Sciences, 24, 309324; discussion 324–382. https://doi.org/10.1017/s0140525x0100396xGoogle Scholar
Richerson, P., & Henrich, J. (2012). Tribal social instincts and the cultural evolution of institutions to solve collective action problems. Cliodynamics: The Journal of Theoretical and Mathematical History, 3, 3880. http://dx.doi.org/10.2139/ssrn.1368756Google Scholar
Riesch, R., Barrett-Lennard, L., Ellis, G., Ford, J., & Deecke, V. (2012). Cultural traditions and the evolution of reproductive isolation: Ecological speciation in killer whales? Biological Journal of the Linnean Society, 106, 117. https://doi.org/10.1111/j.1095-8312.2012.01872.xGoogle Scholar
Russon, A. E. (2003). Innovation and creativity in forest-living rehabilitant orangutans. In Reader, S. M. & Laland, K. N. (Eds.), Animal innovation (pp. 279306). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198526223.003.0013Google Scholar
Ryan, P. A., Powers, S. T., & Watson, R. A. (2016). Social niche construction and evolutionary transitions in individuality. Biology & Philosophy, 31, 5979. https://doi.org/10.1007/s10539-015-9505-zGoogle Scholar
Sargeant, B. L., & Mann, J. (2009). Developmental evidence for foraging traditions in wild bottlenose dolphins. Animal Behaviour, 78, 715721. https://doi.org/10.1016/j.anbehav.2009.05.037Google Scholar
Sarin, S., & Dukas, R. (2009). Social learning about egg-laying substrates in fruitflies. Proceedings of the Royal Society B: Biological Sciences, 276, 43234328. https://doi.org/10.1098/rspb.2009.1294Google Scholar
Seppänen, J.-T., Forsman, J. T., Mönkkönen, M., Krams, I., & Salmi, T. (2011). New behavioural trait adopted or rejected by observing heterospecific tutor fitness. Proceedings of the Royal Society B: Biological sciences, 278, 17361741. https://doi.org/10.1098/rspb.2010.1610Google Scholar
Sherry, D., & Galef, B. (1984). Cultural transmission without imitation: Milk bottle opening by birds. Animal Behaviour, 32, 937938. https://doi.org/10.1016/S0003-3472(84)80185-2Google Scholar
Slagsvold, T., & Wiebe, K. (2007). Learning the ecological niche. Proceedings of the Royal Society B: Biological Sciences, 274, 1923. https://doi.org/10.1098/rspb.2006.3663Google Scholar
Snell-Rood, E. C., Kobiela, M. E., Sikkink, K. L., & Shephard, A. M. (2018). Mechanisms of plastic rescue in novel environments. Annual Review of Ecology, Evolution, and Systematics, 49, 331354. https://doi.org/10.1146/annurev-ecolsys-110617-062622Google Scholar
Sol, D., & Lefebvre, L. (2000). Behavioural flexibility predicts invasion success in birds introduced to New Zealand. Oikos, 90, 599605. https://doi.org/10.1034/j.1600-0706.2000.900317.xGoogle Scholar
Sol, D., Stirling, D. G., & Lefebvre, L. (2005). Behavioral drive or behavioral inhibition in evolution: Subspecific diversification in Holarctic passerines. Evolution, 59, 26692677. https://doi.org/10.1111/j.0014-3820.2005.tb00978.xGoogle Scholar
Staddon, J. E. R. (2016). Adaptive behavior and learning (2nd ed.). Cambridge University Press.Google Scholar
Stephenson, G. (1967). Cultural acquisition of a specific learned response among rhesus monkeys. In Starek, D., Schneider, R., & Kuhn, H.J. (Eds.), Progress in Primatology (pp. 279288). Gustav Fisher Verlag.Google Scholar
Stickland, T. R., Britton, N. F., & Franks, N. R. (1995). Complex trails and simple algorithms in ant foraging. Proceedings of the Royal Society B: Biological Sciences, 260, 5358. https://doi.org/10.1098/rspb.1995.0058Google Scholar
Street, S. E., Navarrete, A. F., Reader, S. M., & Laland, K. N. (2017). Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates. Proceedings of the National Academy of Sciences, 114, 7908. https://doi.org/10.1073/pnas.1620734114Google Scholar
Suboski, M. D., Bain, S., Carty, A. E., McQuoid, L. M., Seelen, M. I., & Seifert, M. (1990). Alarm reaction in acquisition and social transmission of simulated-predator recognition by zebra danio fish (Brachydanio rerio). Journal of Comparative Psychology, 104, 101112. https://doi.org/10.1037/0735-7036.104.1.101Google Scholar
Sutherland, W. J. (1998). Evidence for flexibility and constraint in migration systems. Journal of Avian Biology, 29, 441446. https://doi.org/10.2307/3677163Google Scholar
Thorogood, R., & Davies, N. B. (2012). Cuckoos combat socially transmitted defenses of reed warbler hosts with a plumage polymorphism. Science, 337(6094), 578580. https://doi.org/10.1126/science.1220759Google Scholar
Tombre, I. M., Oudman, T., Shimmings, P., Griffin, L., & Prop, J. (2019). Northward range expansion in spring-staging barnacle geese is a response to climate change and population growth, mediated by individual experience. Global Change Biology, 25, 36803693. https://doi.org/10.1111/gcb.14793Google Scholar
Uller, T., Moczek, A. P., Watson, R. A., Brakefield, P. M., & Laland, K. N. (2018). Developmental bias and evolution: A regulatory network perspective. Genetics, 209, 949. https://doi.org/10.1534/genetics.118.300Google Scholar
Varela, S. A. M., Matos, M., & Schlupp, I. (2018). The role of mate-choice copying in speciation and hybridization. Biological Reviews, 93, 13041322. https://doi.org/10.1111/brv.12397Google Scholar
Verzijden, M. N., & ten Cate, C. (2007). Early learning influences species assortative mating preferences in Lake Victoria cichlid fish. Biology Letters, 3, 134136. https://doi.org/10.1098/rsbl.2006.0601Google Scholar
Verzijden, M. N., ten Cate, C., Servedio, M. R., Kozak, G. M., Boughman, J. W., & Svensson, E. I. (2012). The impact of learning on sexual selection and speciation. Trends in Ecology and Evolution, 27, 511519. https://doi.org/10.1016/j.tree.2012.05.007Google Scholar
Waddington, C. H. (1953). Genetic assimilation of an acquired character. Evolution, 7, 118126. https://doi.org/10.1111/j.1558-5646.1953.tb00070.xGoogle Scholar
West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.Google Scholar
Whalen, A., Cownden, D., & Laland, K. (2015). The learning of action sequences through social transmission. Animal Cognition, 18, 10931103. https://doi.org/10.1007/s10071-015-0877-xGoogle Scholar
Whitehead, H., Laland, K. N., Rendell, L., Thorogood, R., & Whiten, A. (2019). The reach of gene–culture coevolution in animals. Nature Communications, 10(1), 110. https://doi.org/10.1038/s41467-019-10293-yGoogle Scholar
Whitehead, H., and Rendell, L. (2014). The cultural lives of whales and dolphins. University of Chicago Press.Google Scholar
Whiten, A. (2017). A second inheritance system: The extension of biology through culture. Interface Focus, 7, 20160142. https://doi.org/10.1098/rsfs.2016.0142Google Scholar
Whiten, A., Goodall, J., McGrew, W. C., Nishida, T., Reynolds, V., Sugiyama, Y., Tutin, C. E., Wrangham, R. W., & Boesch, C. (1999). Cultures in chimpanzees. Nature, 399, 682685. https://doi.org/10.1038/21415Google Scholar
Wilkinson, G. S. (1992). Information transfer at evening bat colonies. Animal Behaviour, 44, 501518. https://doi.org/10.1016/0003-3472(92)90059-IGoogle Scholar
Yamagishi, T., & Hashimoto, H. (2016). Social niche construction. Current Opinion in Psychology, 8, 119124. https://doi.org/10.1016/j.copsyc.2015.10.003Google Scholar
Zohar, O., & Terkel, J. (1996). Social and environmental factors modulate the learning of pine-cone stripping techniques by black rats, Rattus rattus. Animal Behaviour, 51(3), 611618. https://doi.org/10.1006/anbe.1996.0065Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×