Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T02:27:35.598Z Has data issue: false hasContentIssue false

26 - Constraints on Learning and Memory

A Resolution

from Part II - Evolution of Memory Processes

Published online by Cambridge University Press:  26 May 2022

Mark A. Krause
Affiliation:
Southern Oregon University
Karen L. Hollis
Affiliation:
Mount Holyoke College, Massachusetts
Mauricio R. Papini
Affiliation:
Texas Christian University
Get access

Summary

We review a selective history of the literature on related concepts such as belongingness, selective associations, and constraints on learning, as well as evidence for general learning processes. We then review the more recent and nascent literature on adaptive memory specializations in humans, vis-a-vis general models of memory. Following this introduction, we propose two insights that resolve the tension between general processes of learning and memory, on the one hand, and adaptive specializations, on the other. In the first insight, we use the analogy of how the general processes of DNA transcription and translation produce adaptively specialized proteins that are cell- and tissue-specific to serve as a model for understanding how learning and memory processes can reflect a common process at one level of analysis (e.g., cell-molecular) and adaptive specializations at another level of analysis (e.g., neural circuitry). The second insight comes from understanding how similarities in behavioral phenomena can arise due to shared ancestry (homology) or convergent evolution (homoplasy). These insights promise to unite psychological explanations of behavior with the rest of biology.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, W. C., Jones, O. D., & Glanzman, D. L. (2019). Is plasticity of synapses the mechanism of long-term memory storage? Npj Science of Learning, 4, 9. https://doi.org/10.1038/s41539-019-0048-yCrossRefGoogle ScholarPubMed
Akins, C. K., Domjan, M., & Gutiérrez, G. (1994). Topography of sexually conditioned behavior in male Japanese quail (Coturnix japonica) depends on the CS-US interval. Journal of Experimental Psychology: Animal Behavior Processes 20(2), 199209. https://doi.org/10.1037/0097-7403.20.2.199Google ScholarPubMed
Aslan, A., & Bäuml, K.-H. T. (2012). Adaptive memory: Young children show enhanced retention of fitness-related information. Cognition, 122(1), 118122. https://doi.org/10.1016/j.cognition.2011.10.001Google Scholar
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In Spence, K. W. & Spence, J. T. (Eds.), Psychology of learning and motivation: Advances in research and theory (Vol. 2, pp. 89195). Academic Press. http://dx.doi.org/10.1016/s0079-7421(08)60422-3Google Scholar
Baddeley, A. (1992). Working memory. Science, 255(5044), 556559. https://doi.org/10.1126/SCIENCE.1736359Google Scholar
Bitterman, M. E. (1975). The comparative analysis of learning. Science, 188(4189), 699709. www.jstor.org/stable/1741035CrossRefGoogle ScholarPubMed
Bitterman, M. E. (1996). Comparative analysis of learning in honeybees. Animal Learning and Behavior, 24, 123141 https://doi.org/10.3758/BF03198961Google Scholar
Blaisdell, A. P., Stolyarova, A., & Stahlman, W. D. (2016). The law of expect or a modified law of effect? Outcome expectation and variation in learned behavior. Conductual, 4(2), 6190. https://doi.org/ISSN:2340-0242CrossRefGoogle Scholar
Bolles, R. C., & Fanselow, M. S. (1980). A perceptual-defensive-recuperative model of fear and pain. Behavioral and Brain Sciences, 3(2), 291301. https://doi.org/10.1017/S0140525X0000491XGoogle Scholar
Bonin, P., Gelin, M., Laroche, B. et al. (2020) “Survival processing of the selfish gene?”: Adaptive memory and inclusive fitness. Evolutionary Psychological Science, 6, 155165. https://doi.org/10.1007/s40806-019-00220-1Google Scholar
Bonin, P., Thiebaut, G., Witt, A., & Méot, A. (2019). Contamination is “good” for your memory! Further evidence for the adaptive view of memory. Evolutionary Psychological Science, 5, 300316. https://doi.org/10.1007/s40806-019-00188-yCrossRefGoogle Scholar
Breland, K., & Breland, M. (1961). The misbehavior of organisms. American Psychologist, 16(11), 681684. https://doi.org/10.1037/h0040090CrossRefGoogle Scholar
Bush, R. R., & Mostellar, F. (1955). Stochastic models for learning. John Wiley & Sons.Google Scholar
Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671684. https://doi.org/10.1016/S0022-5371(72)80001-XGoogle Scholar
Domjan, M. (1983). Biological constraints on instrumental and classical conditioning: Implications for general process theory. Psychology of Learning and Motivation, 17, 215277. https://doi.org/10.1016/S0079-7421(08)60100-0Google Scholar
Domjan, M. (1997). Behavior systems and the demise of equipotentiality: Historical antecedents and evidence from sexual conditioning. In Bouton, M. E. & Fanselow, M. S. (Eds.), Learning, motivation, and cognition: The functional behaviorism of Robert C. Bolles (pp. 3151). American Psychological Association.Google Scholar
Domjan, M., & Krause, M. (2017). Generality of the laws of learning: From biological constraints to ecological perspectives. In Byrne, J. H. (Ed.), Learning and Memory: A Comprehensive Reference (pp. 189201). Academic Press. https://doi.org/10.1016/b978-0-12-809324-5.21012-2Google Scholar
Escobar, M., & Miller, R. R. (2004). A review of the empirical laws of basic learning in Pavlovian conditioning. International Journal of Comparative Psychology, 17, 279303.Google Scholar
Everitt, B. J., Cardinal, R. N., Parkinson, J. A., & Robbins, T. W. (2003). Appetitive behavior: Impact of amygdala-dependent mechanisms of emotional learning. Annals of the New York Academy of Sciences, 985, 233250. https://doi.org/10.1111/j.1749-6632.2003.tb07085.xGoogle Scholar
Fernandes, N. L., Pandeirada, J. N. S., Soares, S. C., & Nairne, J. S. (2017). Adaptive memory: The mnemonic value of contamination. Evolution and Human Behavior, 38, 451460 https://doi.org/10.1016/j.evolhumbehav.2017.04.003Google Scholar
Foree, D. D., & LoLordo, V. M. (1973). Attention in the pigeon: Differential effects of food-getting versus shock-avoidance procedures. Journal of Comparative and Physiological Psychology, 85(3), 551558. https://doi.org/10.1037/h0035300Google Scholar
Garcia, J., Ervin, F. R., & Koelling, R. A. (1966). Learning with prolonged delay of reinforcement. Psychonomic Science, 5(3), 121122. https://doi.org/10.3758/BF03328311Google Scholar
Garcia, J., Kimeldorf, D. J., & Koelling, R. A. (1955). Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science, 122, 157158. https://doi.org/10.1126/SCIENCE.122.3160.157Google Scholar
Garcia, J., & Koelling, R. A. (1966). Relation of cue to consequence in avoidance learning. Psychonomic Science, 4(1), 123124. https://doi.org/10.3758/BF03342209CrossRefGoogle Scholar
Gelin, M., Bonin, P., Méot, A., & Bugaiska, A. (2018). Do animacy effects persist in memory for context? Quarterly Journal of Experimental Psychology, 71(4), 965974. https://doi.org/10.1080/17470218.2017.1307866Google Scholar
Gemberling, G. A., & Domjan, M. (1982). Selective associations in one-day-old rats: Taste-toxicosis and texture-shock aversion learning. Journal of Comparative and Physiological Psychology, 96(1), 105113. https://doi.org/10.1037/h0077855Google Scholar
Gould, E. (2007). How widespread is adult neurogenesis in mammals? Nature Reviews Neuroscience, 8(6), 481488. https://doi.org/10.1038/nrn2147Google Scholar
Güntürkün, O., & Bugnyar, T. (2016). Cognition without cortex. Trends in Cognitive Sciences, 20, 291303. https://doi.org/10.1016/j.tics.2016.02.001Google Scholar
Hall, B. K. (2013). Homology, homoplasy, novelty, and behavior. Developmental Psychobiolog, 55, 412. https://doi.org/10.1002/dev.21039CrossRefGoogle ScholarPubMed
Haralson, J. V., Groff, C. I., & Haralson, S. J. (1975). Classical conditioning in the sea anemone, Cribrina xanthogrammica. Physiology and Behavior, 15, 455460. https://doi.org/10.1016/0031-9384(75)90259-0CrossRefGoogle ScholarPubMed
Hawkins, R. D., Greene, W., & Kandel, E. R. (1998). Classical conditioning, differential conditioning, and second-order conditioning of the Aplysia gill-withdrawal reflex in a simplified mantle organ preparation. Behavioral Neuroscience, 112, 636645. https://doi.org/10.1037/0735-7044.112.3.636Google Scholar
Holland, P. C. (1981). Acquisition of representation-mediated conditioned food aversions. Learning and Motivation, 12, 118. https://doi.org/10.1016/0023-9690(81)90022-9Google Scholar
Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neuroscience, 1, 304309. https://doi.org/10.1038/1124CrossRefGoogle ScholarPubMed
Howe, M. L., & Otgaar, H. (2013). Proximate mechanisms and the development of adaptive memory. Current Directions in Psychological Science, 22(1), 1622. https://doi.org/10.1177/0963721412469397Google Scholar
Hull, C. L. (1943). Principles of behavior: An introduction to behavior theory. Appleton-Century-Crofts.Google Scholar
Kang, S. H. K., McDermott, K. B., & Cohen, S. M. (2008). The mnemonic advantage of processing fitness-relevant information. Memory & Cognition, 36, 11511156. https://doi.org/10.3758/MC.36.6.1151Google Scholar
Keifer, J., & Summers, C. H. (2016). Putting the “biology” back into “neurobiology”: The strength of diversity in animal model systems for neuroscience research. Frontiers in Systems Neuroscience, 10, 19. https://doi.org/10.3389/fnsys.2016.00069CrossRefGoogle ScholarPubMed
Knoblich, J. A. (2008). Mechanisms of asymmetric stem cell division. Cell, 132, 583597. https://doi.org/10.1016/j.cell.2008.02.007Google Scholar
Krause, M. A., Trevino, S., Cripps, A., Chilton, K., Sower, E., & Taylor, J. P. (2019). Inclusive fitness does not impact the survival processing effect. Animal Behavior and Cognition, 6, 1331. https://doi.org/10.26451/abc.06.01.02.2019Google Scholar
Liang, Z. S., Nguyen, T., Mattila, H. R., Rodriguez-Zas, S. L., Seeley, T. D., & Robinson, G. E. (2012). Molecular determinants of scouting behavior in honey bees. Science, 335, 12251228. https://doi.org/10.1126/science.1213962Google Scholar
Logue, A. W. (1979). Taste aversion and the generality of the laws of learning. Psychological Bulletin, 86, 276296. https://doi.org/10.1037/0033-2909.86.2.276CrossRefGoogle Scholar
Logue, A. W. (1985). Conditioned food aversion learning in humans. Annals of the New York Academy of Sciences, 443, 316329. https://doi.org/10.1111/j.1749-6632.1985.tb27082.xGoogle Scholar
Loy, I., Álvarez, B., Strempler-Rubio, E. C., & Rodríguez, M. (2017). Coordinating associative and ecological accounts of learning in the garden snail Cornu aspersum. Behavioural Processes, 129, 2632. https://doi.org/10.1016/j.beproc.2017.03.004Google Scholar
Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. W. H. Freeman.Google Scholar
Miller, R. R., & Escobar, M. (2002). Learning: Laws and models of basic conditioning. In Pashler, H. & Gallistel, R. (Eds.), Stevens’ handbook of experimental psychology (pp. 47102). John Wiley & Sons.Google Scholar
Mittelbach, M., Kolbaia, S., Weigend, M., & Henning, T. (2019). Flowers anticipate revisits of pollinators by learning from previously experienced visitation intervals. Plant Signaling and Behavior, 14, 6. https://doi.org/10.1080/15592324.2019.1595320Google Scholar
Mohammad, F., Aryal, S., Ho, J. et al. (2016). Ancient anxiety pathways influence Drosophila defense behaviors. Current Biology, 26, 981986. https://doi.org/10.1016/j.cub.2016.02.031Google Scholar
Muszynski, N. M. (2018). Same/Different concept learning and category discrimination in honeybees. University of Hawai’i at Manoa. http://hdl.handle.net/10125/62751Google Scholar
Muszynski, N. M., & Couvillon, P. A. (2015). Relational learning in honeybees (Apis mellifera): Oddity and nonoddity discrimination. Behavioural Processes, 115, 8193. https://doi.org/10.1016/j.beproc.2015.03.001CrossRefGoogle ScholarPubMed
Nairne, J. S. (2010). Adaptive memory: Evolutionary constraints on remembering. Psychology of Learning and Motivation, 53, 132. https://doi.org/10.1016/S0079-7421(10)53001-9Google Scholar
Nairne, J. S., & Pandeirada, J. N. S. (2008). Adaptive memory: Is survival processing special? Journal of Memory and Language, 59, 377385. https://doi.org/10.1016/J.JML.2008.06.001CrossRefGoogle Scholar
Nairne, J. S., Thompson, S. R., & Pandeirada, J. N. S. (2007). Adaptive memory: Survival processing enhances retention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 263273. https://doi.org/10.1037/0278-7393.33.2.263Google ScholarPubMed
Nairne, J. S., VanArsdall, J. E., & Cogdill, M. (2017). Remembering the Living. Current Directions in Psychological Science, 26, 2227. https://doi.org/10.1177/0963721416667711CrossRefGoogle Scholar
Nairne, J. S., VanArsdall, J. E., Pandeirada, J. N. S., Cogdill, M., & LeBreton, J. M. (2013). Remembering the living: Episodic memory is tuned to animacy. Psychological Science, 24, 20992105. https://doi.org/10.1177/0956797613480803CrossRefGoogle Scholar
New, J., Krasnow, M. M., Truxaw, D., & Gaulin, S. J. (2007). Spatial adaptations for plant foraging: women excel and calories count. Proceedings of the Royal Society B: Biological Sciences, 274, 26792684. https://doi.org/10.1098/rspb.2007.0826Google Scholar
Öhman, A., & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108, 483522. https://doi.org/10.1037/0033-295X.108.3.483CrossRefGoogle ScholarPubMed
Otgaar, H., & Smeets, T. (2010). Adaptive memory: Survival processing increases both true and false memory in adults and children. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 10101016. https://doi.org/10.1037/a0019402Google Scholar
Pandeirada, J. N. S., Fernandes, N. L., Vasconcelos, M., & Nairne, J. S. (2017). Adaptive memory: Remembering potential mates. Evolutionary Psychology, 15, 147470491774280. https://doi.org/10.1177/1474704917742807Google Scholar
Papini, M. R. (2002). Pattern and process in the evolution of learning. Psychological review, 109, 186201. https://doi.org/10.1037//0033-295X.109.1.186Google Scholar
Papini, M. R. (2020). Comparative psychology: Evolution and development of brain and behavior. Taylor & Francis. https://doi.org/10.4324/9781003080701Google Scholar
Pearce, K., Cai, D., Roberts, A. C., & Glanzman, D. L. (2017). Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia. Elife, 6, e18299. https://doi.org/10.1016/j.tins.2018.10.005Google Scholar
Perisse, E., Owald, D., Barnstedt, O., Talbot, C. B. B., Huetteroth, W., & Waddell, S. (2016). Aversive learning and appetitive motivation toggle feed-forward inhibition in the Drosophila mushroom body. Neuron, 90, 10861089. https://doi.org/10.1016/j.neuron.2016.04.034Google Scholar
Reaume, C. J., & Sokolowski, M. B. (2011). Conservation of gene function in behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 21002110. https://doi.org/10.1098/rstb.2011.0028Google Scholar
Rescorla, R. (1988). Behavioral studies of Pavlovian conditioning. Annual Review of Neuroscience, 11, 329352. https://doi.org/10.1146/annurev.neuro.11.1.329Google Scholar
Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Black, A. H. & Prokasy, W. F. (Eds.), Classical conditioning II: Current research and theory (pp. 64–99). https://pdfs.semanticscholar.org/afaf/65883ff75cc19926f61f181a687927789ad1.pdfGoogle Scholar
Rumelhart, D. E., & Mcclelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Volume 1: Foundations. MIT Press. https://pdfs.semanticscholar.org/ff2c/2e3e83d1e8828695484728393c76ee07a101.pdfGoogle Scholar
Scarborough, D. L., Cortese, C., & Scarborough, H. S. (1977). Frequency and repetition effects in lexical memory. Journal of Experimental Psychology: Human Perception and Performance, 3, 117. https://doi.org/10.1037/0096-1523.3.1.1Google Scholar
Seitz, B. M., Blaisdell, A. P., Polack, C. W., & Miller, R. R. (2019). The role of biological significance in human learning and memory. International Journal of Comparative Psychology, 32, 120.Google Scholar
Seitz, B. M., Blaisdell, A., & Tomiyama, A. J. (2021). Calories count: Memory of eating is evolutionarily special. Journal of Memory and Language, 117, https://doi.org/10.1016/j.jml.2020.104192CrossRefGoogle Scholar
Seitz, B. M., Polack, C. W., & Miller, R. R. (2018). Adaptive memory: Is there a reproduction-processing effect? Journal of Experimental Psychology: Learning, Memory, and Cognition, 44, 11671179. https://doi.org/10.1037/xlm0000513https://doi.org/10.1037/xlm0000513Google Scholar
Seitz, B. M., Polack, C. W., & Miller, R. R. (2020). Adaptive memory: Generality of the parent 44 processing effect and effects of biological relatedness on recall. Evolutionary Psychological Science, 6, 246260. https://doi.org/10.1007/s40806-020-00233-1Google Scholar
Seitz, B. M., Tomiyama, A. J., & Blaisdell, A. P. (2021). Eating behavior as a new frontier in memory research. Neuroscience & Biobehavioral Reviews, 127, 795807. https://doi.org/10.1016/j.neubiorev.2021.05.024CrossRefGoogle ScholarPubMed
Seligman, M. E. (1970). On the generality of the laws of learning. Psychological Review, 77, 406418. https://doi.org/10.1037/h0029790CrossRefGoogle Scholar
Shepard, R. N. (1967). Recognition memory for words, sentences, and pictures. Journal of Verbal Learning and Verbal Behavior, 6, 156163. https://doi.org/10.1016/S0022-5371(67)80067-7Google Scholar
Shettleworth, S. J. (1975). Reinforcement and the organization of behavior in golden hamsters: Hunger, environment, and food reinforcement. Journal of Experimental Psychology: Animal Behavior Processes, 1, 5687. https://doi.org/10.1037/0097-7403.1.1.56Google Scholar
Shomrat, T., & Levin, M. (2013). An automated training paradigm reveals long-term memory in planarians and its persistence through head regeneration. Journal of Experimental Biology, 216, 37993810. https://doi.org/10.1242/jeb.087809Google ScholarPubMed
Sigurdsson, T., Doyère, V., Cain, C. K., & LeDoux, J. E. (2007). Long-term potentiation in the amygdala: A cellular mechanism of fear learning and memory. Neuropharmacology, 52, 215227. https://doi.org/10.1016/j.neuropharm.2006.06.022CrossRefGoogle ScholarPubMed
Silva, K. M., Silva, F. J., & Machado, A. (2019). The evolution of the behavior systems framework and its connection to interbehavioral psychology. Behavioural Processes, 158, 117125. https://doi.org/10.1016/j.beproc.2018.11.001Google Scholar
Smith, M. C., Coleman, S. R., & Gormezano, I. (1969). Classical conditioning of the rabbit’s nictitating membrane response at backward, simultaneous, and forward CS-US intervals. Journal of Comparative and Physiological Psychology, 69, 226231. https://doi.org/10.1037/h0028212CrossRefGoogle ScholarPubMed
Staddon, J. E., & Simmelhag, V. L. (1971). The “supersitition” experiment: A reexamination of its implications for the principles of adaptive behavior. Psychological Review, 78, 343. https://doi.org/10.1037/h0030305CrossRefGoogle Scholar
Thompson, R. F. (1986). The neurobiology of learning and memory. Science, 233, 941947. https://doi.org/10.1126/science.3738519CrossRefGoogle ScholarPubMed
Thorndike, E. L. (1898). Animal intelligence: An experimental study of the associative processes in animals. Columbia University Press. https://doi.org/10.1037/10780-000CrossRefGoogle Scholar
Thorndike, E. L. (1911). Animal intelligence: Experimental studies. Macmillan.Google Scholar
Timberlake, W., & Lucas, G. A. (1989). Behavior systems and learning: From misbehavior to general principles. In Klein, S. B. & Mowrer, R. R. (Eds.), Contemporary learning theories: Instrumental conditioning and the impact of biological constraints on learning (pp. 237275). Erlbaum.Google Scholar
Waelti, P., Dickinson, A., & Schultz, W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412, 4348. https://doi.org/10.1038/35083500Google Scholar
Wen, J. Y. M., Kumar, N., Morrison, G., Rambaldini, G., Runciman, S., Rousseau, J., & Van Der Kooy, D. (1997). Mutations that prevent associative learning in C. elegans. Behavioral Neuroscience, 111, 354368. https://doi.org/10.1037/0735-7044.111.2.354CrossRefGoogle ScholarPubMed
Wright, A. A., Santiago, H. C., Sands, S. F., Kendrick, D. F., & Cook, R. G. (1985). Memory processing of serial lists by pigeons, monkeys, and people. Science, 229 (4710), 287289. https://doi.org/10.1126/science.9304205Google Scholar
Wright, W. G., Kirschman, D., Rozen, D., & Maynard, B. (1996). Phylogenetic analysis of learning-related neuromodulation in molluscan mechanosensory neurons. Evolution, 50, 22482263. https://doi.org/10.2307/2410695Google Scholar
Zelikowsky, M., & Fanselow, M. S. (2010). Opioid regulation of Pavlovian overshadowing in fear conditioning. Behavioral Neuroscience, 124, 510519. https://doi.org/10.1037/a0020083CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×