Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T06:09:34.107Z Has data issue: false hasContentIssue false

8 - Compensatory Responses to Wildlife Control

Theoretical Considerations and Empirical Findings from the Invasive Common Myna

from Part I - Evolution of Learning Processes

Published online by Cambridge University Press:  26 May 2022

Mark A. Krause
Affiliation:
Southern Oregon University
Karen L. Hollis
Affiliation:
Mount Holyoke College, Massachusetts
Mauricio R. Papini
Affiliation:
Texas Christian University
Get access

Summary

Human predation not only reduces prey densities, but also induces profound phenotypical changes in prey. Changes are increasingly well documented in the context of wildlife exploitation and range from morphological and life history modifications to physiological and behavioral effects. We focus on a form of human predation that has received almost no attention until now: Predation inflicted by lethal control of nuisance, pest, and alien species. We highlight the potential consequences of phenotypical changes in target species and explain the mechanisms by which phenotypical changes can arise, with emphasis on the role of associative learning and generalization. We then present an overview of a research program examining the ways in which the invasive common myna (Acridotheres tristis), one of the most broadly distributed invasive birds globally, is changing its behavior in response to heavy trapping pressure in some areas of Australia. A series of studies demonstrate how mynas learn about novel threats. Free-ranging mynas display compensatory responses to the threats of trapping and the mechanism of change is likely to involve cognition. This work has expanded our understanding of the adaptive significance of learning and memory mechanisms in nonhumans and has informed trapping practices for pest birds in Australia. We hope the chapter will help stimulate more research into the phenotypical changes associated with lethal control for which our work can serve as a model.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allendorf, F. W., & Hard, J. J. (2009). Human-induced evolution caused by unnatural selection through harvest of wild animals. Proceedings of the National Academy of Sciences of the United States of America, 106(Suppl.), 99879994. https://doi.org/10.1073/pnas.0901069106Google Scholar
Andersen, K. H., Marty, L., & Arlinghaus, R. (2018). Evolution of boldness and life history in response to selective harvesting. Canadian Journal of Fisheries and Aquatic Sciences, 75, 271281. https://doi.org/10.1139/cjfas-2016-0350Google Scholar
Badyaev, A. V. (2005). Stress-induced variation in evolution: From behavioural plasticity to genetic assimilation. Proceedings of the Royal Society B, 272(1566), 877886. https://doi.org/10.1098/rspb.2004.3045Google Scholar
Barrett, L. P., Stanton, L. A., & Benson-Amram, S. (2019). The cognition of “nuisance” species. Animal Behaviour, 147, 167177. https://doi.org/10.1016/j.anbehav.2018.05.005Google Scholar
Bell, A. M., McGhee, K. E., & Stein, L. R. (2016). Effects of mothers’ and fathers’ experience with predation risk on the behavioral development of their offspring in threespined sticklebacks. Current Opinion in Behavioral Sciences, 7, 2832. https://doi.org/10.1016/j.cobeha.2015.10.011Google Scholar
Berger, J., Swenson, J. E., & Persson, I.-L. (2001). Recolonizing carnivores and naïve prey: Conservation lessons from pleistocene extinctions. Science, 291, 10361039. https://doi.org/10.1126/science.1056466Google Scholar
Blackburn, T. M., Pyšek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarošík, V., Wilson, J. R. U., & Richardson, D. M. (2011). A proposed unified framework for biological invasions. Trends in Ecology & Evolution, 26, 333339. https://doi.org/10.1016/j.tree.2011.03.023Google Scholar
Bouton, M. E., & Bolles, R. C. (1979). Contextual control of the extinction of conditioned fear. Learning and Motivation, 10(4), 445466. https://doi.org/https://doi.org/10.1016/0023-9690(79)90057-2Google Scholar
Brooks, R., & Endler, J. A. (2001). Direct and indirect sexual selection and quantitative genetics of male traits in guppies (Poecilia reticulata). Evolution, 55, 10021015. https://doi.org/10.1554/0014-3820(2001)055[1002:daissa]2.0.co;2Google Scholar
Brown, C. (2012). Experience and learning in changing environments. In Candolin, U. & Wong, B. B. M. (Eds.), Behavioural responses to a changing world: Mechanisms and consequences. Oxford University Press.Google Scholar
Burney, D. A., & Flannery, T. F. (2005). Fifty millennia of catastrophic extinctions after human contact. Trends in Ecology & Evolution, 20, 395401. https://doi.org/10.1016/j.tree.2005.04.022Google Scholar
Cain, S. W., McDonald, R. J., & Ralph, M. R. (2008). Time stamp in conditioned place avoidance can be set to different circadian phases. Neurobiology of Learning and Memory, 89, 591594. https://doi.org/10.1016/j.nlm.2007.07.011Google Scholar
CIMAG (2013). The Canberra Indian Myna Action Group Inc. www.indianmynaaction.org.au (accessed August 30, 2021)Google Scholar
Coss, R. G. (1978). Perceptual determinants of gaze aversion by the Lesser Mouse Lemur (Microcebus murinus), the role of two facing eyes. Behaviour, 64(3), 248270. https://doi.org/10.1163/156853978X00053Google Scholar
Coss, R. G. (1979). Delayed plasticity of an instinct: Recognition and avoidance of 2 facing eyes by the jewel fish. Developmental Psychobiology, 12(4), 335345. https://doi.org/https://doi.org/10.1002/dev.420120408Google Scholar
Coss, R. G. (1999). Effects of relaxed selection on the evolution of behavior. In Forster, S. A. & Endler, J. A. (Eds.), Geographic variation of behavior: An evolutionary perspective (pp. 180208). Oxford University Press.Google Scholar
Côté, I. M., Darling, E. S., Malpica-Cruz, L., Smith, N. S., Green, S. J., Curtis-Quick, J., & Layman, C. (2014). What doesn’t kill you makes you wary? Effect of repeated culling on the behaviour of an invasive predator. PLoS ONE, 9(4), e94248. https://doi.org/10.1371/journal.pone.0094248Google Scholar
Darimont, C. T., Carlson, S. M., Kinnison, M. T., Paquet, P. C., Reimchen, T. E., & Wilmers, C. C. (2009). Human predators outpace other agents of trait change in the wild. Proceedings of the National Academy of Sciences of the United States of America, 106, 952954. https://doi.org/10.1073/pnas.0809235106Google Scholar
Díaz Pauli, B., Wiech, M., Heino, M., & Utne-Palm, A. (2015). Opposite selection on behavioural types by active and passive fishing gears in a simulated guppy fishery. Journal of Fish Biology, 86, 10301045. https://doi.org/10.1111/jfb.12620Google Scholar
Diquelou, M. C. (2017). Responses of invasive birds to control: The case of common mynas in Australia. University of Newcastle.Google Scholar
Diquelou, M. C., & Griffin, A. S. (2019). It’s a trap! Invasive common mynas learn socially about control-related cues. Behavioral Ecology, 30, 13141323. https://doi.org/https://doi.org/10.1093/beheco/arz079Google Scholar
Diquelou, M. C., & Griffin, A. S. (2020). Behavioral responses of invasive and nuisance vertebrates to harvesting: A mechanistic framework. Frontiers in Ecology and Evolution, 8, 18. https://doi.org/https://doi.org/10.3389/fevo.2020.00177Google Scholar
Diquelou, M. C., MacFarlane, G. R., & Griffin, A. S. (2018). Investigating responses to control: A comparison of common myna behaviour across areas of high and low trapping pressure. Biological Invasions, 20(12), 35913604. https://doi.org/10.1007/s10530-018-1798-9Google Scholar
Dufty, A. M., Clobert, J., & Møller, A. P. (2002). Hormones, developmental plasticity and adaptation. Trends in Ecology & Evolution, 17, 190196. https://doi.org/10.1016/S0169-5347(02)02498-9Google Scholar
Endler, J. A. (1982). The impact of predation on life history evolution in trinidadian guppies (Poecilia reticulata). Evolution, 36, 160177. https://doi.org/10.2307/2407978Google Scholar
Ewart, K., Griffin, A. S., Johnson, R., Kark, S., Magory Cohen, T., Lo, N., & Major, R. (2018). Two speed invasion: Assisted and intrinsic dispersal of common mynas over 150-years of colonization. Journal of Biogeography, 46, 4557. https://doi.org/10.1111/jbi.13473Google Scholar
Fanselow, M. S., & Sterlace, S. R. (2014). Pavlovian fear conditioning: Function, cause, and treatment. In McSweeney, F. K. & Murphy, E. S. (Eds.), The Wiley Blackwell handbook of operant and classical conditioning (pp. 117143). Wiley Blackwell. https://doi.org/10.1002/9781118468135.ch6Google Scholar
Farr, J. (1977). Male rarity or novelty, female choice behavior, and sexual selection in the guppy, Poecilia reticulata Peters (Pisces: Poeciliidae). Evolution, 31(1), 162168. https://doi.org/10.2307/2407554Google Scholar
Ferrari, M. C. O., Crane, A. L., & Chivers, D. P. (2016). Certainty and the cognitive ecology of generalization of predator recognition. Animal Behaviour, 111, 207211. https://doi.org/10.1016/j.anbehav.2015.10.026Google Scholar
Ferrari, M. C. O., Messier, F., & Chivers, D. P. (2008). Can prey exhibit threat-sensitive generalization of predator recognition? Extending the predator recognition continuum hypothesis. Proceedings of the Royal Society B, 275, 18111816. https://doi.org/10.1098/rspb.2008.0305Google Scholar
Ferrari, M. C. O., Trowell, J. J., Brown, G. E., & Chivers, D. P. (2005). The role of learning in the development of threat-sensitive predator avoidance by fathead minnows. Animal Behaviour, 70, 777784. https://doi.org/10.1016/j.anbehav.2005.01.009Google Scholar
Ferrari, M. C. O., Wisenden, B. D., & Chivers, D. P. (2010). Chemical ecology of predator–prey interactions in aquatic ecosystems: A review and prospectus. Canadian Journal of Zoology, 88, 698724. https://doi.org/10.1139/Z10-029Google Scholar
Grarock, K., Tidemann, C. R., Wood, J., & Lindenmayer, D. B. (2012). Is it benign or is it a pariah? Empirical evidence for the impact of the common myna (Acridotheres tristis) on Australian birds. PLoS ONE, 7(7), e40622. https://doi.org/10.1371/journal.pone.0040622Google Scholar
Grarock, K., Tidemann, C. R., Wood, J. T., & Lindenmayer, D. B. (2014a). Understanding basic species population dynamics for effective control: A case study on community-led culling of the common myna (Acridotheres tristis). Biological Invasions, 16, 14271440. https://doi.org/10.1007/s10530-013-0580-2Google Scholar
Grarock, K., Tidemann, C. R., Wood, J. T., & Lindenmayer, D. B. (2014b). Are invasive species drivers of native species decline or passengers of habitat modification? A case study of the impact of the common myna (Acridotheres tristis) on Australian bird species. Austral Ecology, 39(1), 106114. https://doi.org/10.1111/aec.12049Google Scholar
Grether, G. F., Hudon, J., & Millie, D. F. (1999). Carotenoid limitation of sexual coloration along an environmental gradient in guppies. Proceedings of the Royal Society B, 266(1426), 13171322. https://doi.org/10.1098/rspb.1999.0781Google Scholar
Griffin, A. S. (2003). Training tammar wallabies (Macropus eugenii) to respond to predators: A review linking experimental psychology to conservation. International Journal of Comparative Psychology, 16, 111129. http://escholarship.org/uc/item/706146b6Google Scholar
Griffin, A. S. (2004). Social learning about predators: A review and prospectus. Learning & Behavior, 32, 131140. https://doi.org/10.3758/BF03196014Google Scholar
Griffin, A. S. (2008). Social learning in Indian mynahs, Acridotheres tristis: The role of distress calls. Animal Behaviour, 75(1), 7989. https://doi.org/10.1016/j.anbehav.2007.04.008Google Scholar
Griffin, A. S. (2009). Temporal limitations on social learning of novel predators by Indian mynahs, Acridotheres tristis. Ethology, 115(3), 287295. https://doi.org/10.1111/j.1439-0310.2008.01594.xGoogle Scholar
Griffin, A. S., Blumstein, D. T., & Evans, C. S. (2000). Training captive-bred or translocated animals to avoid predators. Conservation Biology, 14, 13171326. https://doi.org/10.1046/j.1523-1739.2000.99326.xGoogle Scholar
Griffin, A. S., & Boyce, H. M. (2009). Indian mynahs, Acridotheres tristis, learn about dangerous places by observing the fate of others. Animal Behaviour, 78, 7984. https://doi.org/10.1016/j.anbehav.2009.03.012Google Scholar
Griffin, A. S., Boyce, H. M., & MacFarlane, G. R. (2010). Social learning about places: Observers may need to detect both social alarm and its cause in order to learn. Animal Behaviour, 79, 459465. https://doi.org/10.1016/j.anbehav.2009.11.029Google Scholar
Griffin, A. S., & Evans, C. S. (2003). Social learning of antipredator behaviour in a marsupial. Animal Behaviour, 66, 485492. https://doi.org/10.1006/anbe.2003.2207Google Scholar
Griffin, A. S., Evans, C. S., & Blumstein, D. T. (2001). Learning specificity in acquired predator recognition. Animal Behaviour, 62, 577589. https://doi.org/10.1006/anbe.2001.1781Google Scholar
Griffin, A. S., & Haythorpe, K. (2011). Learning from watching alarmed demonstrators: Does the cause of alarm matter? Animal Behaviour, 81, 11631169. www.sciencedirect.com/science/article/pii/S0003347211000753Google Scholar
Healy, S. D., & Jones, C. M. (2002). Animal learning and memory: An integration of cognition and ecology. Zoology (Jena, Germany), 105, 321327. https://doi.org/10.1078/0944-2006-00071Google Scholar
Hendry, A. P., Farrugia, T. J., & Kinnison, M. T. (2008). Human influences on rates of phenotypic change in wild animal populations. Molecular Ecology, 17, 2029. https://doi.org/10.1111/j.1365-294X.2007.03428.xGoogle Scholar
Hilborn, R., Amoroso, R. O., Anderson, C. M., Baum, J. K., Branch, T. A., Costello, C., De Moor, C. L., Faraj, A., Hively, D., Jensen, O. P., Kurota, H., Little, L. R., Mace, P., McClanahan, T., Melnychuk, M. C., Minto, C., Osio, G. C., Parma, A. M., Pons, M., … Ye, Y. (2020). Effective fisheries management instrumental in improving fish stock status. Proceedings of the National Academy of Sciences of the United States of America, 117, 22182224. https://doi.org/10.1073/pnas.1909726116Google Scholar
Hollis, K. L. (1982). Pavlovian conditioning of signal-centered action patterns and autonomic behavior: A biological analysis of function. Advances in the Study of Behavior, 12, 164. https://doi.org/10.1016/S0065-3454(08)60045-5Google Scholar
Houde, A. E. (1997). Evolutionary mismatch of mating preferences and male colour patterns in guppies. Animal Behaviour, 53, 343351. https://doi.org/10.1006/anbe.1996.0399Google Scholar
Hughes, K. A., Rodd, F. H., & Reznick, D. N. (2005). Genetic and environmental effects on secondary sex traits in guppies (Poecilia reticulata). Journal of Evolutionary Biology, 18, 3545. https://doi.org/10.1111/j.1420-9101.2004.00806.xGoogle Scholar
King, D. H. (2010). The effect of trapping pressure on trap avoidance and the role of foraging strategies in anti-predator beahviour of common mynahs (Sturnus tristis). Canberra Notes, 35, 85108.Google Scholar
Laland, K. N., Toyokawa, W., & Oudman, T. (2020). Animal learning as a source of developmental bias. Evolution and Development, 22, 126142. https://doi.org/10.1111/ede.12311Google Scholar
LeDoux, J. E. (2014). Coming to terms with fear. Proceedings of the National Academy of Sciences of the United States of America, 111(8), 28712878. https://doi.org/10.1073/pnas.1400335111Google Scholar
Lönnstedt, O. M., McCormick, M. I., Meekan, M. G., Ferrari, M. C. O., & Chivers, D. P. (2012). Learn and live: Predator experience and feeding history determines prey behaviour and survival. Proceedings of the Royal Society B, 279, 20912098. https://doi.org/10.1098/rspb.2011.2516Google Scholar
Lowe, S., Browne, M., Boudjelas, S., De Poorter, M., & World Conservation Union (IUCN). (2000). 100 of the world’s worst invasive alien species: A selection from the Global Invasive Species Database. Invasive Species Specialist Group.Google Scholar
Mack, R. N., Simberloff, D., Lonsdale, W. M., Evans, H., Clout, M., & Bazzaz, F. A. (2000). Causes, epidemiology, global consequences, and control. Ecological Applications, 10(3), 689710. https://doi.org/10.1890/0012-9623(2005)86[249b:IIE]2.0.CO;2Google Scholar
Magrath, R. D., Haff, T. M., Mclachlan, J. R., Igic, B., Magrath, R. D., Haff, T. M., Mclachlan, J. R., & Igic, B. (2015). Wild birds learn to eavesdrop on heterospecific alarm calls. Current Biology, 25(15), 20472050. https://doi.org/10.1016/j.cub.2015.06.028Google Scholar
McGhee, K. E., & Bell, A. M. (2014). Paternal care in a fish: Epigenetics and fitness enhancing effects on offspring anxiety. Proceedings of the Royal Society B, 281, 27. https://doi.org/10.1098/rspb.2014.1146Google Scholar
Mineka, S., & Cook, M. (1988). Social learning and the acquisition of snake fear in monkeys. In Zentall, T. R. & Galef, B. G. J. (Eds.), Psychological and biological perspectives (pp. 5173). Lawrence Erlbaum.Google Scholar
Miner, B. G., Sultan, S. E., Morgan, S. G., Padilla, D. K., & Relyea, R. a. (2005). Ecological consequences of phenotypic plasticity. Trends in Ecology & Evolution, 20, 685692. https://doi.org/10.1016/j.tree.2005.08.002Google Scholar
Mommer, B. C., & Bell, A. M. (2014). Maternal experience with predation risk influences genome-wide embryonic gene expression in threespined sticklebacks (Gasterosteus aculeatus). PloS One, 9(6), e98564. https://doi.org/10.1371/journal.pone.0098564Google Scholar
Muñoz, A.-R., & Real, R. (2006). Assessing the potential range expansion of the exotic monk parakeet in Spain. Diversity and Distributions, 12, 656665. https://doi.org/10.1111/j.1366-9516.2006.00272.xGoogle Scholar
National Pest Control Agencies. (2015). Possum population monitoring using the trap-catch, waxtag and chewcard methods. In National Pest Control Agencies. www.npca.org.nzGoogle Scholar
Palkovacs, E. P., Moritsch, M. M., Contolini, G. M., & Pelletier, F. (2018). Ecology of harvest-driven trait changes and implications for ecosystem management. Frontiers in Ecology and the Environment, 16(1), 2028. https://doi.org/10.1002/fee.1743Google Scholar
Palumbi, S. R. (2001). Humans as the world’s greatest evolutionary force. Science, 293(5536), 17861790. http://references.260mb.com/Evolucion/Palumbi2001.pdfGoogle Scholar
Parsons, H., Major, R. E., & French, K. (2006). Species interactions and habitat associations of birds inhabiting urban areas of Sydney, Australia. Austral Ecology, 31(2), 217227. https://doi.org/10.1111/j.1442-9993.2006.01584.xGoogle Scholar
Pavlov, I. P. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Oxford University Press.Google Scholar
Peacock, D. S., Rensburg, B. J. Van, & Robertson, M. P. (2007). The distribution and spread of the invasive alien common myna, Acridotheres tristis L. (Aves: Sturnidae), in southern Africa. South African Journal of Science, 103, 465473. www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-23532007000600008&lng=en&nrm=isoGoogle Scholar
Peacock, T. (2007). Community on-ground cane toad control in the Kimberley. In A Review conducted for the Hon. David Templeman MP, Minister for the Environment, Climate Change and Peel. www.feral.org.au/wp-content/uploads/2010/03/Peacock_Community-toad-control-report_lr.pdfGoogle Scholar
Pell, A. S., & Tidemann, C. R. (1997). The impact of two exotic hollow-nesting birds on two native parrots in savannah and woodland in the Eastern Australia. Biological Conservation, 79(96), 145153. https://doi.org/10.1016/S0006-3207(96)00112-7Google Scholar
Pimental, D., Lach, L., Zuniga, R., & Morrison, D. (2000). Environmental and economic costs associated with non-indigenous species in the United States. BioScience, 50, 5365. https://doi.org/10.1641/0006-3568(2000)050Google Scholar
Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52(3 Spec. Iss.), 273288. https://doi.org/10.1016/j.ecolecon.2004.10.002Google Scholar
Reeder, D. M., & Kramer, K. M. (2005). Stress in free-ranging mammals: Integrating physiology, ecology, and natural history. Journal of Mammalogy, 86(2), 225235. https://doi.org/10.1644/BHE-003.1Google Scholar
Reznick, D. (1982). The impact of predation on life history evolution in trinidadian guppies: Genetic basis of observed life history patterns. Evolution, 36, 12361250. https://doi.org/10.2307/2408156Google Scholar
Roche, D. P., McGhee, K. E., & Bell, A. M. (2012). Maternal predatorexposure has lifelong consequences for offspring learning in threespined sticklebacks. Biology Letters, 8(6), 932935. https://doi.org/10.1098/rsbl.2012.0685Google Scholar
Shettleworth, S. J. (2010). Cognition, evolution, and behavior (2nd ed.). Oxford University Press.Google Scholar
Sol, D., Bartomeus, I., & Griffin, A.S. (2012). The paradox of invasion in birds: Competitive superiority or ecological opportunism? Oecologia, 169, 553564. https://doi.org/10.1007/s00442-011-2203-xGoogle Scholar
Stamps, J. A. (2015). Individual differences in behavioural plasticities. Biological Reviews, 7, 137. https://doi.org/10.1111/brv.12186Google Scholar
Sullivan, A. P., Bird, D. W., & Perry, G. H. (2017). Human behaviour as a long-term ecological driver of non-human evolution. Nature Ecology and Evolution, 1, 0065. https://doi.org/10.1038/s41559-016-0065Google Scholar
Sultan, S. E., & Stearns, S. C. (2005). Environmentally contingent variation: Phenotypic plasticity and norms of reaction. In Hall, B. & Hallgrimsson, B. (Eds.), Variation: A central concept in biology (pp. 303332). Academic Press. https://doi.org/10.1016/B978-012088777-4/50016-8Google Scholar
Tidemann, C. (2005). Indian Mynas – Can the problems be controlled? Urban Animal Management Conference Proceedings 2005.Google Scholar
Wong, B. B. M., & Candolin, U. (2015). Lessons for a changing world: A response to comments on Wong and Candolin. Behavioral Ecology, 26(3), 679680. https://doi.org/10.1093/beheco/arv040Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×