Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T19:11:58.406Z Has data issue: false hasContentIssue false

20 - Nitrogen as a threat to European terrestrial biodiversity

from Part IV - Managing nitrogen in relation to key societal threats

Published online by Cambridge University Press:  16 May 2011

Nancy B. Dise
Affiliation:
Manchester Metropolitan University
Mike Ashmore
Affiliation:
University of York
Salim Belyazid
Affiliation:
Belyazid Consulting and Communication AB
Albert Bleeker
Affiliation:
Energy Research Centre of the Netherlands
Roland Bobbink
Affiliation:
Radboud University
Wim de Vries
Affiliation:
Wageningen University and Research Centre
Jan Willem Erisman
Affiliation:
Energy Research Centre of the Netherlands
Till Spranger
Affiliation:
Federal Ministry for the Environment, Nature Conservation and Nuclear Safety
Carly J. Stevens
Affiliation:
Open University
Leon van den Berg
Affiliation:
Radboud University Nijmegen
Mark A. Sutton
Affiliation:
NERC Centre for Ecology and Hydrology, UK
Clare M. Howard
Affiliation:
NERC Centre for Ecology and Hydrology, UK
Jan Willem Erisman
Affiliation:
Vrije Universiteit, Amsterdam
Gilles Billen
Affiliation:
CNRS and University of Paris VI
Albert Bleeker
Affiliation:
Energy Research Centre of the Netherlands
Peringe Grennfelt
Affiliation:
Swedish Environmental Research Institute (IVL)
Hans van Grinsven
Affiliation:
PBL Netherlands Environmental Assessment Agency
Bruna Grizzetti
Affiliation:
European Commission Joint Research Centre
Get access

Summary

Executive summary

Nature of the problem

  • Biodiversity is the variability among living organisms, from genes to the biosphere. The value of biodiversity is multifold, from preserving the integrity of the biosphere as a whole, to providing food and medicines, to spiritual and aesthetic well-being.

  • One of the major drivers of biodiversity loss in Europe is atmospheric deposition of reactive nitrogen (Nr).

Approaches

  • This chapter focuses on Nr impacts on European plant species diversity; in particular, the number and abundance of different species in a given area, and the presence of characteristic species of sensitive ecosystems.

  • We summarise both the scientific and the policy aspects of Nr impacts on diversity and identify, using a range of evidence, the most vulnerable ecosystems and regions in Europe.

Key findings/state of knowledge

  • Reactive nitrogen impacts vegetation diversity through direct foliar damage, eutrophication, acidification, and susceptibility to secondary stress.

  • Species and communities most sensitive to chronically elevated Nr deposition are those that are adapted to low nutrient levels, or are poorly buffered against acidification. Grassland, heathland, peatland, forest, and arctic/montane ecosystems are recognised as vulnerable habitats in Europe; other habitats may be vulnerable but are still poorly studied.

  • It is not yet clear if different wet-deposited forms of Nr (e.g. nitrate, NO3 versus ammonium, NH4+) have different effects on biodiversity. However, gaseous ammonia (NH3) can be particularly harmful to vegetation, especially lower plants, through direct foliar damage.

  • […]

Type
Chapter
Information
The European Nitrogen Assessment
Sources, Effects and Policy Perspectives
, pp. 463 - 494
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaby, B. (1994). Monitoring Danish raised bogs. In: Mires and Man: Mire Conservation in a Densely Populated Country – The Swiss Experience, ed. Grunig, A., Kosmos, Birmensdorf, pp. 284–300.Google Scholar
Alveteg, M. (1998). Dynamics of forest soil chemistry. PhD thesis, Department of Chemical Engineering II, Lund University, Lund, Sweden.Google Scholar
Arens, S. J. T., Sullivan, P. F. and Welker, J. M. (2008). Nonlinear responses to nitrogen and strong interactions with nitrogen and phosphorus additions drastically alters the structure and function of a high arctic ecosystem. Journal of Geophysical Research, 113, G03209.CrossRefGoogle Scholar
Ashmore, M. R. (2005). Assessing the future global impacts of ozone on vegetation. Plant, Cell and Environment, 28, 949–964.CrossRefGoogle Scholar
Asman, W. A. H., Sutton, M. A. and Schjorring, J. K. (1998). Ammonia: emission, atmospheric transport and deposition. New Phytologist, 139, 27–48.CrossRefGoogle Scholar
Balmford, A., Bennun, L., ten Brink, B.et al. (2005). The Convention on Biological Diversity's 2010 target. Science, 307, 212–213.CrossRefGoogle ScholarPubMed
Barker, C. G. (2001). The impact of management on heathland response to increased nitrogen deposition. PhD thesis, University of London.Google Scholar
Bassin, S., Volk, M., Suter, M., Buchmann, N. and Fuhrer, J. (2007). Nitrogen deposition but not ozone affects productivity and community composition of subalpine grassland after 3 yr of treatment. New Phytologist, 175, 523–534.CrossRefGoogle ScholarPubMed
Bates, J. W. (2002). Effects on bryophytes and lichens. In: Air Pollution and Plant Life (2nd edition), ed. Bell, J. N. B. and Treshow, M., John Wiley and Sons, Chichester, pp. 309–342.Google Scholar
Belyazid, S., Westling, O. and Sverdrup, H. (2006). Modelling changes in forest soil chemistry at 16 Swedish coniferous forest sites following deposition reduction. Environmental Pollution, 144, 596–609.CrossRefGoogle ScholarPubMed
Bender, D. J., Contreras, T. A. and Fahrig, L. (1998). Habitat loss and population decline: a meta-analysis of patch size effect. Ecology, 79, 517–533.CrossRefGoogle Scholar
Berdowski, J. J. M. (1993). The effect of external stress and disturbance factors on Calluna-dominated heathland vegetation. In: Heathlands: Patterns and Processes in a Changing Environment, ed. R. Aerts, and G. W. Heil, Kluwer, Dordrecht, pp. 85–124.Google Scholar
Bergamini, A. and Pauli, D. (2001). Effects of increased nutrient supply on bryophytes in montane calcareous fens. Journal of Bryology, 23, 331–339.CrossRefGoogle Scholar
Beusink, P., Nijssen, M., Duinen, G.-J. and Esselink, H. (2003). Broed- en voedselecologie van Grauwe klauwieren in intacte kustduinen bij Skagen, Denemarken. Stichting Bargerveen, Afdeling Dierecologie, K.U. Nijmegen.Google Scholar
Bobbink, R. (1991). Effects of nutrient enrichment in Dutch chalk grassland. Journal of Applied Ecology, 28, 28–41.CrossRefGoogle Scholar
Bobbink, R. (2008). The derivation of dose–response relationships 4 between N load, N exceedance and plant species richness for EUNIS habitat classes. In: Critical Load, Dynamic Modelling and Impact Assessment in Europe, ed. Hetterling, J.-P, Posch, M., and Slootweg, J., Coordination Centre for Effects, Netherlands Environmental Assessment Agency, pp. 63–72. http://www.mnp.nl/en/themasites/cce/publications/cce-status-report-2008/Google Scholar
Bobbink, R., Hornung, M. and Roelofs, J. G. M. (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717–738.CrossRefGoogle Scholar
Bobbink, R. and Lamers, L. P. M. (2002). Effects of increased nitrogen deposition. In: Air Pollution and Plant Life (2nd edition), ed. Bell, J. N. B. and Treshow, M., John Wiley and Sons, Chichester, pp. 201–235.Google Scholar
Bobbink, R., Ashmore, M., Braun, S., Flückiger, W. and Wyngaert, I. J. J. (2003). Empirical critical loads for natural and semi-natural ecosystems: 2002 update. In: Empirical Critical Loads of Nitrogen, ed. Achermann, B. and Bobbink, R., Swiss Agency for Environment Forests and Landscape, Bern, pp. 43–169.Google Scholar
Bobbink, R., Hicks, K., Galloway, J.et al. (2010). Global assessment of nitrogen deposition effects on plant terrestrial biodiversity: a synthesis. Ecological Applications, 20, 30–59.CrossRefGoogle ScholarPubMed
Bolan, N. S., Hedley, M. J. and White, R. E. (1991). Processes of soil acidification during nitrogen cycling with emphasis on legume-based pastures. Plant and Soil, 134, 53–63.CrossRefGoogle Scholar
Boxman, A. W., Blanck, K., Brandrud, T. E.et al. (1998). Vegetation and soil biota response to experimentally-changed nitrogen inputs in coniferous forest ecosystems of the NITREX project. Forest Ecology and Management, 101, 65–79.CrossRefGoogle Scholar
Bragazza, L. and Limpens, J. (2004). Dissolved organic nitrogen dominates in European peat bogs under increasing atmospheric nitrogen deposition. Global Biogeochemical Cycles, 18, GB4018.CrossRefGoogle Scholar
Britton, A. J. and Fisher, J. M. (2007). Interactive effects of nitrogen deposition, fire, and grazing on diversity and composition of low-alpine prostrateCalluna vulgaris heathland. Journal of Applied Ecology, 44, 125–135.Google Scholar
Brunet, J., Diekmann, M. and Falkengren-Grerup, U. (1998). Effects of nitrogen deposition on field layer vegetation in south Swedish oak forests. Environmental Pollution, 102, 35–40.CrossRefGoogle Scholar
Brunsting, A. M. H. and Heil, G. W. (1985). The role of nutrients in the interactions between a herbivorous beetle and some competing plant species in heathlands. Oikos, 44, 23–26.CrossRefGoogle Scholar
Calvo, L., Alonso, I., Fernandez, A. J. and Luis, E. (2005). Short-term study of effects of fertilisation and cutting treatments on the vegetation dynamics of mountain heathlands in Spain. Plant Ecology, 179, 181–191.CrossRefGoogle Scholar
Cape, J. N, Eerden, L. J., Sheppard, L. J., Leith, I. D. and Sutton, M. A. (2009). Evidence for changing the critical level of ammonia. Environmental Pollution, 157, 1033–1037.CrossRefGoogle ScholarPubMed
Caporn, S. J. M., Carroll, J. A., Studhome, C. and Lee, J. A. (2006). Recovery of ombrotrophic Sphagnum mosses in relation to air pollution in the southern Pennines. Report to Moors for the Future, Edale.
Carey, P. D., Wallis, S., Chamberlain, P. M.et al. (2008). Countryside Survey: UK Results from 2007. NERC/Centre for Ecology and Hydrology, Edinburgh.
,CEC (2001). EU Sustainable Development Strategy, 2006 Update and 2009 Review. http://ec.europa.eu/environment/eussd/
,CEC (2002). 6th Community Environment Action Programme. http://ec.europa.eu/environment/newprg/index.htm
,CEC (2006). Halting the Loss of Biodiversity by 2010 – and Beyond – Sustaining Ecosystem Services for Human Well-Being. http://ec.europa.eu/environment/nature/biodiversity/comm2006/bap_2006.htm
Clark, C. M. and Tilman, D. (2008). Loss of prairie grass species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 712–715.Google Scholar
Clark, C. M., Cleland, E. E., Collins, S. L.et al. (2007). Environmental and plant community determinants of species loss following nitrogen enrichment. Ecology Letters, 10, 596–607.CrossRefGoogle ScholarPubMed
,CLRTAP: Convention on Long-Range Transboundary Air Pollution. (2010). http://www.unece.org/env/lrtap
,Convention on Biological Diversity (CBD) (1992). Text of the Convention on Biological Diversity. http://www.cbd.int/convention/
,Convention on Biological Diversity (CBD) (2010). International Year of Biodiversity. http://www.cbd.int/2010
Cosby, B. J., Ferrier, R. C., Jenkins, A. and Wright, R. F., (2001). Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrology and Earth System Sciences, 5, 499–517.CrossRefGoogle Scholar
Graaf, M. C. C., Bobbink, R., Roelofs, J. G. M. and Verbeek, P. J. M. (1998). Differential effects of ammonium and nitrate on three heathland species. Plant Ecology, 135, 185–196.CrossRefGoogle Scholar
Graaf, M. C. C., Bobbink, R., Smits, N. A. C., Diggelen, R. and Roelofs, J. G. M. (2009). Biodiversity, vegetation gradients and key biogeochemical processes in the heathland landscape. Biological Conservation, 142, 2191–2201.CrossRefGoogle Scholar
Vries, W., Kros, J., Reinds, G. J.et al. (2007). Developments in Modelling Critical Nitrogen Loads for Terrestrial Ecosystems in Europe, Alterra Wageningen UR, Wageningen, the Netherlands. Report 1382.Google Scholar
Vries, W., Posch, M. and Kämäri, J. ( 1989). Simulation of the long-term soil response to acid deposition in various buffer ranges. Water, Air and Soil Pollution, 48, 349–390.CrossRefGoogle Scholar
Vries, W., Wamelink, W., Dobben, H.et al. (2010). Use of dynamic soil-vegetation models to assess impacts of nitrogen deposition on plant species composition and to estimate critical loads: an overview. Ecological Applications, 20, 60–79.CrossRefGoogle Scholar
Dise, N. B., Rothwell, J. J., Gauci, V., Salm, C. and Vries, W. (2009). Predicting dissolved inorganic nitrogen leaching in European forests using two independent databases. Science of the Total Environment, 407, 1798–1808.CrossRefGoogle ScholarPubMed
Duprè, C., Stevens, C. J., Ranke, T.et al. (2010). Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Global Change Biology, 16, 344–357.CrossRefGoogle Scholar
Edmondson, J. L., Carroll, J. A., Price, E. A. C. and Caporn, S. J. M. (2010). Bio-indicators of nitrogen pollution in heather moorland. Science of the Total Environment, 408, 6202–6209.CrossRefGoogle ScholarPubMed
,EEA (2009). Progress towards the European 2010 Biodiversity Target, EEA Report No. 04/2009, EEA Copenhagen. http://www.eea.europe.eu/publications/progress-towards-the-european-2010-biodiversity-target
Ehrlich, P. A. and Ehrlich, A. H. (1992). Economics of biodiversity loss. Ambio, 21, 219–226.Google Scholar
Ellenberg, H. (1996). Vegetation Mitteleuropas Mit Den Alpen, 5th edn. Stuttgart, Verlag Eugen Ulmer.http://www.eea.europe.eu/publications/progress-towards-the-european-2010-biodiversity-target
Elser, J. J., Bracken, M. E. S., Cleland, E. E.et al. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135–1142.CrossRefGoogle ScholarPubMed
Esselink, H., Duinen, G.-J., Nijssen, M.et al. (2007). De grauwe klauwier mist kevers door verruigende duinen. Vakblad Natuur, Bos und Landschap, 2007–4, 22–24.Google Scholar
,EU NEC 2001 Directive 2001/81/EC of the European Parliament and the Council; http://ec.europa.eu/environment/air/pdf/nec_eu_27.pdf
Falkengren-Grerup, U. (1998). Nitrogen response of herbs and graminoids in experiments with simulated acid soil solution. Environmental Pollution, 102 (Suppl), 93–99.CrossRefGoogle Scholar
Fenn, M. E., Baron, J. S., Allen, E. B.et al. (2003). Ecological effects of nitrogen deposition in the western United States. BioScience, 53, 404–420.CrossRefGoogle Scholar
Fenn, M. E., Jovan, S., Yuan, F.et al. (2008). Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests. Environmental Pollution, 155, 492–511.CrossRefGoogle ScholarPubMed
Flückiger, W., Braun, S. and Hiltbrunner, E. (2002). Effects of air pollutants on biotic stress. In: Air Pollution and Plant Life (2nd edition), ed. Bell, J. N. B., and Treshow, M., John Wiley and Sons, Chichester, pp. 379–406.Google Scholar
Fowler, D. (2002). Pollutant deposition and uptake by vegetation. In: Air Pollution and Plant Life (2nd edition), ed. Bell, J. N. B., and Treshow, M., John Wiley and Sons, Chichester, pp. 43–67.Google Scholar
Frati, L., Santoni, S., Nicolardi, V.et al. (2007). Lichen biomonitoring of ammonia emission and nitrogen deposition around a pig stockfarm. Environmental Pollution, 146, 311–316.CrossRefGoogle ScholarPubMed
Gaston, K. J. (1996). What is biodiversity? In: Biodiversity: A Biology of Numbers and Difference, ed. Gaston, K. J., Blackwell Science, Oxford.Google Scholar
Gaston, K. J. and Spicer, J. I. (2004). Biodiversity: An Introduction. Blackwell Science, Oxford.Google Scholar
Gerdol, R., Petraglia, A., Bragazza, L., Iacumin, P. and Brancaleoni, L. (2007). Nitrogen deposition interacts with climate in affecting production and decomposition rate in Sphagnum mosses. Global Change Biology, 13, 1810–1821.CrossRefGoogle Scholar
Gigon, A. and Rorison, I. H. (1972). The response of some ecologically distinct plant species to nitrate- and to ammonium-nitrogen. Journal of Ecology, 60, 93–102.CrossRefGoogle Scholar
Gimeno, B. S. (2009). New results on critical loads of nitrogen in southern Europe. In: Proceedings of the workshop of the Coordination Centre for Effects, 11–15 May 2009. http://www.pbl.nl/en/themasites/cce/workshops/stockholm-2009/index.html.
Gordon, C., Wynn, J. M. and Woodin, S. J. (2001). Impacts of increased nitrogen supply on high Arctic heath: the importance of bryophytes and phosphorus availability. New Phytologist, 149, 461–471.CrossRefGoogle Scholar
Gotelli, N. J. and Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4, 379–391.CrossRefGoogle Scholar
Grizzetti, B., Bouraoui, F., Billen, G.et al. (2011). Nitrogen as a threat to European water quality. In: The European Nitrogen Assessment, ed. Sutton, M. A., Howard, C. M., Erisman, J. W.et al., Cambridge University Press.Google Scholar
Gunnarsson, U., Malmer, N. and Rydin, H. (2002). Dynamics or constancy in Sphagnum dominated mire ecosystems: a 40 year study. Ecography, 25, 685–704.CrossRefGoogle Scholar
Grupa, S. V. (2003). Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environmental Pollution, 124, 179–221.Google Scholar
Hallingback, T. (1992). The effect of air pollution on mosses in Southern Sweden. Biological Conservation, 59, 163–170.CrossRefGoogle Scholar
Hampe, A. and Petit, R. J. (2005). Conserving biodiversity under climate change: the rear edge matters. Ecology Letters, 8, 461–467.CrossRefGoogle ScholarPubMed
Hegg, O., Feller, U., Dähler, W. and Scherrer, C. (1992). Long-term influence of fertilization in a Nardetum: phytosociology of the pasture and nutrient contents in leaves. Vegetatio, 103, 151–158.Google Scholar
Heil, G. W. and Diemont, W. H. (1983). Raised nutrient levels change heathland into grassland. Vegetatio, 53, 113–120.CrossRefGoogle Scholar
Hertel, O., Reis, S. and Ambelas Skjøth, C. (2011). Nitrogen processes in the atmosphere. In: The European Nitrogen Assessment, ed. Sutton, M. A., Howard, C. M., Erisman, J. W.et al., Cambridge University Press.Google Scholar
Hettelingh, J. P., Posch, M., Slootweg, J., Bobbink, R. and Alkemade, R. (2008a). Tentative dose–response function applications for integrated assessment. In: Critical Load, Dynamic Modelling and Impact Assessment in Europe, ed. Hettelingh, J.-P., M. Posch, and J. Slootweg, Coordination Centre for Effects, Netherlands Environmental Assessment Agency, pp. 83–89. http://www.mnp.nl/en/themasites/cce/publications/cce-status-report-2008/Google Scholar
Hettelingh, J.-P., Posch, M. and Slootweg, J. (2008b). Status of the critical loads database and impact assessment. In: Critical Load, DynamicModelling and Impact Assessment in Europe. eds. J.-P. Hettelingh, M. Posch, and J. Slootweg, Coordination Centre for Effects, Netherlands Environmental Assessment Agency, pp. 15–28. http://www.mnp.nl/en/themasites/cce/publications/cce-status-report-2008/
,Intergovernmental Panel on Climate Change (IFCC) (2007). Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds. S. Solomon, D. Qin, M. Manning et al. Cambridge University Press.Google Scholar
Jenssen, M. (2008). Analysing and modelling the effects of nitrogen deposition on species diversity in North-east German forests. In: Proceedings of the workshop of the Coordination Centre for Effects, 21–23 April 2008. http://www.pbl.nl/en/themasites/cce/workshops/berne-2008/index.html.
Johnson, D. W. and Cole, D. W. (1980). Anion mobility in soils: relevance to nutrient transport from forest ecosystems. Environment International, 3, 79–90.CrossRefGoogle Scholar
Jones, M. L. M. (2005). Nitrogen deposition in upland grasslands: critical loads, management, and recovery. PhD thesis, University of Sheffield.
Jones, M. L. M., Wallace, H. L., Norris, D.et al. (2004). Changes in vegetation and soil characteristics in coastal sand dunes along a gradient of atmospheric nitrogen deposition. Plant Biology, 6, 598–605.CrossRefGoogle ScholarPubMed
Kinzel, S. (1982). Pflanzenökologie und Mineralstoffwechsel. Ullmer, Stuttgart.Google Scholar
Kleijn, D., Bekker, R. M., Bobbink, R., Graaf, M. C. C. and Roelofs, J. G. M. (2008). In search for key biogeochemical factors affecting plant species persistence in heathland and acidic grasslands: a comparison of common and rare species. Journal of Applied Ecology, 45, 680–687.CrossRefGoogle Scholar
Kros, J., Reinds, G. J., Vries, W., Latour, J. B. and Bollen, M. J. S., 1995. Modelling abiotic site factors in response to atmospheric deposition and upward seepage. In: Scenario Studies for the Rural Environment, ed. Schoute, J. F. T., Finke, P. A., Veeneklaas, F. R. and Wolfert, H. P., Kluwer, Dordrecht, pp. 445–448.Google Scholar
Latour, J. B. and Reiling, R. (1993). A multiple stress model for vegetation (‘MOVE’): a tool for scenario studies and standard-setting. Science of the Total Environment, 134, 1513–1526.CrossRefGoogle Scholar
Limpens, J., Berendse, F. and Klees, H. (2004). How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems, 7(8), 793–804.CrossRefGoogle Scholar
Mace, G., Masundire, H. and Baille, J. (2005). Biodiversity. In: Millenium Ecosystem Assessment Volume 1: Current States and Trends. Island Press, Washington.Google Scholar
Madan, N. J., Deacon, L. J. and Robinson, C. H. (2007). Greater nitrogen and/or phosphorus availability increase plant species' cover and diversity at a High Arctic polar semidesert. Polar Biology, 30, 559–570.CrossRefGoogle Scholar
Makipaa, R. and Heikkinen, J. (2003). Large-scale changes in abundance of terricolous bryophytes and macrolichens in Finland. Journal of Vegetation Science, 14, 497–508.CrossRefGoogle Scholar
Malmer, N., Albinsson, C., Svensson, B. and Wallen, B. (2003). Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation. Oikos, 100, 469–482.CrossRefGoogle Scholar
Maskell, L. C., Smart, S. M., Bullock, J. M., Thompson, K. and Stevens, C. J. (2010). Nitrogen deposition causes widespread loss of species richness in British habitats. Global Change Biology, 16, 671–679.CrossRefGoogle Scholar
Mitchell, E. A. D., Buttler, A., Grosvernier, P.et al. (2002). Contrasted effects of increased N and CO2 supply on two keystone species in peatland restoration and implications for global change. Journal of Ecology, 90, 529–533.CrossRefGoogle Scholar
Mitchell, R. J., Truscot, A. M., Leith, I. D.et al. (2005). A study of the epiphytic communities of Atlantic oak woods along an atmospheric nitrogen deposition gradient. Journal of Ecology, 93, 482–492.CrossRefGoogle Scholar
Mountford, J. O., Lakhani, K. H. and Holland, R. J. (1996). Reversion of grassland vegetation following the cessation of fertilizer application. Journal of Vegetation Science, 7, 219–228.CrossRefGoogle Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G.et al. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.CrossRefGoogle ScholarPubMed
Nellemann, C. and Thomsen, M. G. (2001). Long-term changes in forest growth: potential effects of nitrogen deposition and acidification. Water, Air and Soil Pollution, 128, 197–205.CrossRef
Nihlgård, B. (1985). The ammonium hypothesis: an additional explanation to the forest dieback in Europe. Ambio, 14, 2–8.Google Scholar
Nijssen, M., Alders, K., Smissen, N. and Esselink, H. (2001). Effects of grass encroachment and grazing management on carabid assemblages of dry dune grasslands. Proceedings Experimental and Applied Entomology. Amsterdam, 12, 113–120.Google Scholar
Nilsson, J. and Grennfelt, P. (eds.) (1988) Critical Loads for Sulphur and Nitrogen, UNECE/Nordic Council workshop report, Skokloster, Sweden. Nordic Council of Ministers, Copenhagen.CrossRef
Nordin, A., Strengbom, J., Witzell, J., Nasholm, T. and Ericson, L. (2005). Nitrogen deposition and the biodiversity of boreal forests: Implications for the nitrogen critical load. Ambio, 34, 20–24.CrossRefGoogle ScholarPubMed
Nordin, A., Strengbom, J. and Ericson, L. (2006). Responses to ammonium and nitrate additions by boreal plants and their natural enemies. Environmental Pollution, 141, 167–174.CrossRefGoogle ScholarPubMed
Ockinger, E., Hammarstedt, O., Nilsson, S. G. and Smith, H. G. (2006). The relationship of local extinctions of grassland butterflies and increased soil nitrogen levels. Biological Conservation, 128, 564–573.CrossRefGoogle Scholar
Oenema, O., Bleeker, A., Braathen, N. A.et al. (2011). Nitrogen in current European policies. In: The European Nitrogen Assessment. ed. Sutton, M. A., Howard, C. M., Erisman, J. W.et al., Cambridge University Press.Google Scholar
Olff, H. and Bakker, J. P. (1991). Long-term dynamics of standing crop and species composition after the cessation of fertilizer application to mown grassland. Journal of Applied Ecology, 28, 1040–1052.CrossRefGoogle Scholar
Olsson, M. O. and Falkengren-Grerup, U. (2000). Potential nitrification as an indicator of preferential uptake of ammonium or nitrate by plants in an oak understory. Annals of Botany, 85, 299–305.CrossRefGoogle Scholar
Pardo, L. H., Robin-Abbott, M. J. and Driscoll, C. T. (eds.) (2010). Assessment of N Deposition Effects and Empirical Critical Loads of N for Ecoregions of the United States, USDA Forest Service General Technical Report. http://www.nrs.fs.fed.us/clean_air_water/clean_water/critical_loads/local-resources/docs/Empirical_CLS_of_N_100414.pdf
Pauli, D., Peintinger, M. and Schmid, B. (2002). Nutrient enrichment in calcareous fens: effects on plant species and community structure. Basic and Applied Ecology, 3, 255–266.CrossRefGoogle Scholar
Paulissen, M. P. C. P., Ven, P. J. M., Dees, A. J. and Bobbink, R. (2004). Differential effects of nitrate and ammonium on three fen bryophyte species in relation to pollutant nitrogen input. New Phytologist, 164, 551–558.CrossRefGoogle Scholar
Pearce, I. S. K. and Wal, R. (2002). Effects of nitrogen deposition on growth and survival of montane Racomitrium lanuginosum heath. Biological Conservation, 104, 83–89.CrossRefGoogle Scholar
Pearson, J. and Stewart, G. R. (1993). The deposition of atmospheric ammonia and its effects on plants. New Phytologist, 125, 283–305.CrossRefGoogle Scholar
,PEBLDS (Pan-European Biological and Landscape Diversity Strategy) (2005). http://www.peblds.org
Phoenix, G. K., Hicks, W. K., Cinderby, S.et al. (2006). Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biology, 12, 470–476.CrossRefGoogle Scholar
Pinho, P., Branquinho, C., Cruz, C.et al. (2009). Assesment of critical levels of atmospheric ammonia for lichen diversity in cork-oak woodland, Portugal. In: Atmospheric Ammonia, ed. Sutton, M. A., Reis, S. and Baker, S. M. H., Springer, New York, pp. 109–120.Google Scholar
Pitcairn, C. E. R., Leith, I. D., Sheppard, L. J.et al. (1998). The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms. Environmental Pollution, 102, 41–48.CrossRefGoogle Scholar
Pitcairn, C. E. R., Leith, I. D., Dijk, N., et al. (2009). The application of transects to assess the effects of ammonia on woodland groundflora. In: Atmospheric Ammonia, ed. Sutton, M. A., Reis, S. and Baker, S. M. H., Springer, New York, pp. 59–69.Google Scholar
Porter, E. and Johnson, S. (2007). Translating science into policy: using ecosystem thresholds to protect resources in Rocky Mountain National Park. Environmental Pollution, 149, 268–280.CrossRefGoogle ScholarPubMed
Power, S. A., Green, E. R., Barker, C. G., Bell, J. N. B. and Ashmore, M. R. (2006). Ecosystem recovery: heathland response to a reduction in nitrogen deposition. Global Change Biology, 12, 1241–1252.CrossRefGoogle Scholar
Preston, C. D., Pearman, D. A. and Dines, T. D. (eds.) (2002). New Atlas of the British and Irish Flora. Oxford University Press.Google Scholar
Redbo-Tortensson, P. (1994). The demographic consequences of nitrogen fertilization of a population of sundew, Drosera rotundifolia. Acta botanica neerlandica, 43, 175–188.CrossRefGoogle Scholar
Remke, E., Brouwer, E., Kooijman, A.et al. (2009). Even low to medium nitrogen deposition impacts vegetation of dry, coastal dunes around the Baltic Sea. Environmental Pollution, 157, 792–800.CrossRefGoogle ScholarPubMed
Rihm, B., Urech, M. and Peter, K. (2009). Mapping ammonia emissions and concentrations for Switzerland: effects on lichen vegetation. In: Atmospheric Ammonia, ed. Sutton, M. A., Reis, S. and Baker, S. M. H., Springer, New York, pp. 87–92.Google Scholar
Roelofs, J. G. M., Kempers, A. J., Houdijk, A. L. F. M. and Janson, J. (1985). The effects of air-borne ammonium sulphate on Pinus nigra in the Netherlands. Plant and Soil, 42, 372–377.Google Scholar
,RoTAP (2010). Review of Transboundary Air Pollution. Acidification, Eutrophication, Ground-Level Ozone and Heavy Metals, in the UK. http://www.rotap.ceh.ac.uk.
Sala, O. E., Chapin III, F. S., Armesto, J. J.et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.CrossRefGoogle ScholarPubMed
Schlutow, A. and Hübener, P. (2004): The BERN Model: Bioindication for Ecosystem Regeneration towards Natural Conditions, UBA-Texte Nr 22/2004, http://www.umweltdaten.de/publikationen/fpdf-l/2784.pdf
Sheppard, L. J., Leith, I. D., Crossley, A.et al. (2009). Long-term cumulative exposure exacerbates the effects of atmospheric ammonia on an ombrotrophic bog: Implications for critical levels. In: Atmospheric Ammonia, eds. Sutton, M. A., Reis, S. and Baker, S. M. H., Springer, New York, pp. 49–58.Google Scholar
SchÖpa, W., Posch, M., Mylona, S. and Johansson, M. (2003). Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrology and Earth System Sciences, 7, 436–446.CrossRefGoogle Scholar
Slootweg, J., Posch, M. and Hettelingh, J.-P. (eds.) (2007). Critical Loads of Nitrogen and Dynamic Modelling, CCE Progress Report 2007. http://www.mnp.nl/en/themasites/cce/publications/cce-progress-report-2007/
Smits, N. A. C., Willems, J. H. and Bobbink, R. (2008). Long-term after-effects of fertilisation on the restoration of calcareous grasslands. Applied Vegetation Science, 11, 279–286.CrossRefGoogle Scholar
Spranger, T., Hettelingh, J.-P., Slootweg, J. and Posch, M. (2008). Modelling and mapping long-term risks due to reactive nitrogen effects: an overview of LRTAP convention activities. Environmental Pollution, 154, 482–487.CrossRefGoogle ScholarPubMed
Stevens, C. J., Dise, N. B., Mountford, J. O. and Gowing, D. J. (2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876–1879.CrossRefGoogle ScholarPubMed
Stevens, C. J., Dise, N. B., Gowing, D. J. G. and Mountford, J. O. (2006). Loss of forb diversity in relations to nitrogen deposition in the UK: regional trends and potential controls. Global Change Biology, 12, 1823–1833.CrossRefGoogle Scholar
Stevens, C. J., Maskell, L. C., Smart, S. M.et al. (2009). Identifying indicators of atmospheric nitrogen deposition impacts in acid grasslands. Biological Conservation 142, 2069–2075.CrossRefGoogle Scholar
Stevens, C. J., Dupré, C., Dorland, E.et al. (2010). Nitrogen deposition threatens species richness of grasslands across Europe. Environmental Pollution, in press.CrossRef
Strengbom, J., Nordin, A., Näsholm, T. and Ericson, L. (2001). Slow recovery of boreal forest ecosystem following decreased nitrogen input. Functional Ecology, 15, 451–457.CrossRefGoogle Scholar
Strengbom, J., Walheim, M., Näsholm, T. and Ericson, L. (2003). Regional differences in the occurrence of understorey species reflect nitrogen deposition in Swedish forests. Ambio, 32, 91–97.CrossRefGoogle ScholarPubMed
Suding, K. N., Collins, S. L., Gough, L.et al. (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the USA, 102, 4387–4392.CrossRefGoogle ScholarPubMed
Sutton, M. A., Erisman, J. W., Dentener, F. and Miller, D. (2008). Ammonia in the environment: from ancient times to present. Environmental Pollution, 156, 583–604.CrossRefGoogle ScholarPubMed
Sutton, M. A., Wolseley, P. A, Leith, I. D.et al. (2009). Estimation of the ammonia critical level for epiphytic lichens based on observations at farm, landscape and national scales. In: Atmospheric Ammonia, ed. Sutton, M. A., Reis, S. and Baker, S. M. H., Springer, New York, pp. 71–86.CrossRefGoogle Scholar
Sutton, M. A., Whitfield, C., Bealey, H. J. and Hicks, W. K. (2010). Summary for Policy Makers. In: Proceedings from a COST 729/Nine/ESF/CCW/JNCC workshop, Brussels, May 2009. http://cost729.ceh.ac.uk/n2workshiop/documents.
Sverdrup, H., Belyazid, S., Nihlgård, B. and Ericson, L. (2007). Modelling change in ground vegetation response to acid and nitrogen pollution, climate change and forest management in Sweden 1500–2100 A.D. Water, Air and Soil Pollution: Focus, 7, 163–179.CrossRefGoogle Scholar
Tamis, W. L. M., van't Zelfte, M., Meijden, R., Groen, C. L. G. and Udo de Haes, H. A. (2005). Ecological interpretation of changes in the Dutch flora in the 20th century. Biological Conservation, 125, 211–224.CrossRefGoogle Scholar
Taylor, K., Woof, C., Ineson, P.et al. (1999). Variation in seasonal precipitation chemistry with altitude in the northern Pennines, UK. Environmental Pollution, 104, 1–9.CrossRefGoogle Scholar
Thomas, C. D., Cameron, A., Green, R. E.et al. (2004). Extinction risk from climate change. Nature, 427, 145–148.CrossRefGoogle Scholar
Throop, H. L. and Lerdau, M. T. (2004). Effects of nitrogen deposition on insect herbivory: implications for community and ecosystem processes. Ecosystems, 7, 109–133.CrossRefGoogle Scholar
Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. and Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the USA 102, 8245–8250.CrossRefGoogle Scholar
Tilman, D. and Downing, J. A. (1994). Biodiversity and stability in grasslands. Nature, 367, 363–365.CrossRefGoogle Scholar
Tilman, D., Wedin, D. and Knops, J. (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718–720.CrossRefGoogle Scholar
Twenhöven, F. L. (1992). Competition between two Sphagnum species under different deposition levels. Journal of Bryology, 17, 71–80.CrossRefGoogle Scholar
Ulrich, B. (1983). Soil acidity and its relation to acid deposition. In: Effects of Accumulation of Air Pollutants in Ecosystems, ed. Ulrich, B., and Pankrath, J., Reidel Publishing, Boston, MA, pp. 127–146.CrossRefGoogle Scholar
,UNECE (2010). Protocol concerning the Control of Emissions of Nitrogen Oxides. http://www.unece.org/env/lrtap/nitr_h1.htm.
Usher, M. B. (1986). Invasibility and wildlife conservation: Invasive species on nature reserves. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 314, 695–709.CrossRefGoogle Scholar
Breemen, N., Burrough, P. A., Velthorst, E. J.et al. (1982). Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall. Nature, 299, 548–550.CrossRefGoogle Scholar
Berg, L. J. L., Dorland, E., Vergeer, P.et al. (2005a). Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytologist, 166, 551–564CrossRefGoogle ScholarPubMed
Berg, L. J. L., Tomassen, H. B. M., Roelofs, J. G. M. and Bobbink, R. (2005b). Effects of nitrogen enrichment on coastal dune grassland: A mesocosm study. Environmental Pollution, 138, 77–85.CrossRefGoogle ScholarPubMed
Berg, L. J. L., Peters, C. J. H., Ashmore, M. R. and Roelofs, J. G. M. (2008). Reduced nitrogen has a greater effect than oxidised nitrogen on dry heathland vegetation. Environmental Pollution, 154, 359–369.CrossRefGoogle Scholar
Berg, L. J. L., Vergeer, P., Rich, T. C. G, et al. (2010). Direct and indirect effects of nitrogen deposition on species composition change in calcareous grasslands. Global Change Biology, doi: 10.1111/j.1365-2486.2010.02345.x.CrossRef
Salm, C. A., Vries, W., Reinds, G. J. and Dise, N. B. (2007). N leaching across European forests: derivation and validation of empirical relationships using data from intensive monitoring plots. Forest Ecology and Management, 238, 81–91.CrossRefGoogle Scholar
Wal, R., Pearce, I., Brooker, R.et al. (2003). Interplay between nitrogen deposition and grazing causes habitat degradation. Ecology Letters, 6, 141–146.Google Scholar
Dijk, H. F. G., Louw, M. H. J., Roelofs, J. G. M. and Verburgh, J. J. (1990). Impact of artificial amonium-enriched rainwater on soils and young coniferous trees in a greenhouse. Part 2 - Effects on the trees. Environmental Pollution, 63, 41–60.CrossRefGoogle Scholar
Dobben, H. F., Hinsberg, A., Schouwenberg, E. P.et al. (2006). Simulation of critical loads for nitrogen for terrestrial plant communities in The Netherlands. Ecosystems, 9, 32–45.CrossRefGoogle Scholar
Herk, C. M., Mathijssen-Spiekman, E. A. M. and Zwart, D. (2003). Long distance nitrogen air pollution effects on lichens in Europe. Lichenologist, 35, 347–359.Google Scholar
Hinsberg, A., Reijnem, R., Goedhart, P., Knegt, B. and Esbroek, M. (2008). Relation between critical load exceedance and loss of protected species. In: Critical Load, Dynamic Modelling and Impact Assessment in Europe, ed. Hettelingh, J. P., Posch, M., and Slootweg, J., Coordination Centre for Effects, Netherlands Environmental Assessment Agency. http://www.pbl.nl/cce.Google Scholar
Velthof, G., Barot, S., Bloem, J.et al. (2011). Nitrogen as a threat to European soil quality. In: The European Nitrogen Assessment, ed. Sutton, M. A., Howard, C. M., Erisman, J. W.et al., Cambridge University Press.Google Scholar
Vergeer, P., Rengelink, R., Ouborg, N. J. and Roelofs, J. G. M. (2003). Effects of population size and genetic variation on the response of Succisa pratensis to eutrophication and acidification. Journal of Ecology, 91(4), 600–609.CrossRefGoogle Scholar
Walther, G.-R., Post, E., Convey, P.et al. (2002). Ecological responses to recent climate change. Nature, 416, 389–395.CrossRefGoogle ScholarPubMed
Wallman, P., Svenssson, M., Sverdrup, H. and Belyazid, S. (2005). ForSAFE: an integrated process-oriented forest model for long-term sustainability assessments. Forest Ecology and Management, 207, 19–36.CrossRefGoogle Scholar
Wamelink, G. W. W., Braak, C. F. J. and Dobben, H. F. (2003). Changes in large-scale patterns of plant biodiversity predicted from environmental economic scenarios. Landscape Ecology, 18, 513–527.CrossRefGoogle Scholar
Weiss, S. B. (1999). Cars, cows, and checkerspot butterflies: nitrogen deposition and management of nutrient-poor grasslands for a threatened species. Conservation Biology, 13, 1476–1486.CrossRefGoogle Scholar
Wiedermann, M. M., Nordin, A., Gunnarsson, U., Nilsson, M. B. and Ericson, L. (2007). Global change shifts vegetation and plant–parasite interactions in a boreal mire. Ecology 88, 454–464.CrossRefGoogle Scholar
Wiedermann, M. M., Gunnarsson, U., Nilsson, M. B., Nordin, A. and Ericson, L. (2009). Can small-scale experiments predict ecosystem responses? An example from peatlands. Oikos, 118, 449–456.CrossRefGoogle Scholar
Wilson, E. O. (ed.) 1988. Biodiversity. National Academy Press, Washington, DC.
Williams, D. H., Gaston, K. J. and Humphries, C. J. (1997). Mapping biodiversity value world-wide: combining higher-taxon richness from different groups. Proceedings of the Royal Society, Series B, 264, 141–148.CrossRefGoogle Scholar
Wolseley, P. A., Leith, I. D., Dijk, N. and Sutton, M. A. (2009). Macrolichens on twigs and trunks as indicators of ammonia concentrations across the UK: a practical method. In: Atmospheric Ammonia, ed. M. A. Sutton, S. Reis and S. M. H. Baker. Springer, pp. 101–108.Google Scholar
Wright, R. F. and Breemen, N. (1995). The NITREX project: an introduction. Forest Ecology and Management, 71, 1–5.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×