Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T19:12:24.046Z Has data issue: false hasContentIssue false

9 - Higher-order theory

Published online by Cambridge University Press:  06 July 2010

G. A. Young
Affiliation:
Imperial College of Science, Technology and Medicine, London
R. L. Smith
Affiliation:
University of North Carolina, Chapel Hill
Get access

Summary

In Chapter 8, we sketched the asymptotic theory of likelihood inference. It is our primary purpose in this chapter to describe refinements to that asymptotic theory, our discussion having two main origins. One motivation is to improve on the first-order limit results of Chapter 8, so as to obtain approximations whose asymptotic accuracy is higher by one or two orders. The other is the Fisherian proposition that inferences on the parameter of interest should be obtained by conditioning on an ancillary statistic, rather than from the original model. We introduce also in this chapter some rather more advanced ideas of statistical theory, which provide important underpinning of statistical methods applied in many contexts.

Some mathematical preliminaries are described in Section 9.1, most notably the notion of an asymptotic expansion. The concept of parameter orthogonality, and its consequences for inference, are discussed in Section 9.2. Section 9.3 describes ways of dealing with a nuisance parameter, through the notions of marginal likelihood and conditional likelihood. Parametrisation invariance (Section 9.4) provides an important means of discrimination between different inferential procedures. Two particularly important forms of asymptotic expansion, Edgeworth expansion and saddlepoint expansion, are described in Section 9.5 and Section 9.6 respectively. The Laplace approximation method for approximation of integrals is described briefly in Section 9.7. The remainder of the chapter is concerned more with inferential procedures. Section 9.8 presents a highlight of modern likelihood-based inference: the so-called p* approximation to the conditional density of a maximum likelihood estimator, given an ancillary statistic.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Higher-order theory
  • G. A. Young, Imperial College of Science, Technology and Medicine, London, R. L. Smith, University of North Carolina, Chapel Hill
  • Book: Essentials of Statistical Inference
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755392.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Higher-order theory
  • G. A. Young, Imperial College of Science, Technology and Medicine, London, R. L. Smith, University of North Carolina, Chapel Hill
  • Book: Essentials of Statistical Inference
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755392.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Higher-order theory
  • G. A. Young, Imperial College of Science, Technology and Medicine, London, R. L. Smith, University of North Carolina, Chapel Hill
  • Book: Essentials of Statistical Inference
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755392.010
Available formats
×