Book contents
- Frontmatter
- Contents
- Preface
- 1 Preview
- 2 Defining Equivariant Cohomology
- 3 Basic Properties
- 4 Grassmannians and flag varieties
- 5 Localization I
- 6 Conics
- 7 Localization II
- 8 Toric Varieties
- 9 Schubert Calculus on Grassmannians
- 10 Flag Varieties and Schubert Polynomials
- 11 Degeneracy Loci
- 12 Infinite-Dimensional Flag Varieties
- 13 Symplectic Flag Varieties
- 14 Symplectic Schubert Polynomials
- 15 Homogeneous Varieties
- 16 The Algebra of Divided Difference Operators
- 17 Equivariant Homology
- 18 Bott–Samelson Varieties and Schubert Varieties
- 19 Structure Constants
- Appendix A Algebraic Topology
- Appendix B Specialization in Equivariant Borel–Moore Homology
- Appendix C Pfaffians and Q-polynomials
- Appendix D Conventions for Schubert Varieties
- Appendix E Characteristic Classes and Equivariant Cohomology
- References
- Notation Index
- Subject Index
6 - Conics
Published online by Cambridge University Press: 07 October 2023
- Frontmatter
- Contents
- Preface
- 1 Preview
- 2 Defining Equivariant Cohomology
- 3 Basic Properties
- 4 Grassmannians and flag varieties
- 5 Localization I
- 6 Conics
- 7 Localization II
- 8 Toric Varieties
- 9 Schubert Calculus on Grassmannians
- 10 Flag Varieties and Schubert Polynomials
- 11 Degeneracy Loci
- 12 Infinite-Dimensional Flag Varieties
- 13 Symplectic Flag Varieties
- 14 Symplectic Schubert Polynomials
- 15 Homogeneous Varieties
- 16 The Algebra of Divided Difference Operators
- 17 Equivariant Homology
- 18 Bott–Samelson Varieties and Schubert Varieties
- 19 Structure Constants
- Appendix A Algebraic Topology
- Appendix B Specialization in Equivariant Borel–Moore Homology
- Appendix C Pfaffians and Q-polynomials
- Appendix D Conventions for Schubert Varieties
- Appendix E Characteristic Classes and Equivariant Cohomology
- References
- Notation Index
- Subject Index
Summary
- Type
- Chapter
- Information
- Equivariant Cohomology in Algebraic Geometry , pp. 79 - 92Publisher: Cambridge University PressPrint publication year: 2023