Published online by Cambridge University Press: 03 December 2009
The notion and quantification of shape
Shape is an intuitively accessible notion. We organize visual information in terms of shapes, and the shape of an object represents one of the first of its qualities referred to in an informal descriptive rendering of it. While our language presents us with a wide repertoire of verbal images for the approximate portrayal of the shape of a physical entity (“round,” “oblong,” “crescent,” “stellate” …) the precise characterization of a shape, in terms of a number, or set of numbers, has remained elusive. This is with good reason. It is well-known to mathematicians that the class consisting of the set of all curves is a higher order of infinity than the set of all real numbers. This means that there can be no one-to-one correspondence between curves and real numbers. As shapes, intuitively at least, bear a conceptual relationship to curves, it is plausible that the set of all shapes dwarfs in magnitude the set of real numbers, or of finite sets of real numbers.
On the other hand, if one is willing to content oneself with a general paradigm for the measurement of shape, there are ways of quantifying it in terms of numbers that have a certain descriptive and predictive utility. In fact, the numerical specification of shapes has acquired a certain urgency of late, in light of the widespread use of computer imaging and the concomitant focus on the development of codes for the creation and manipulation of pictorial quantities.
In this chapter, we will look at different ways of characterizing and measuring the shape of a random walk.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.