Book contents
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Experimental techniques for cross-section measurements
- 3 Background quantum mechanics in the atomic context
- 4 One-electron problems
- 5 Theory of atomic bound states
- 6 Formal scattering theory
- 7 Calculation of scattering amplitudes
- 8 Spin-independent scattering observables
- 9 Spin-dependent scattering observables
- 10 Ionisation
- 11 Electron momentum spectroscopy
- References
- Index
5 - Theory of atomic bound states
Published online by Cambridge University Press: 15 December 2009
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Experimental techniques for cross-section measurements
- 3 Background quantum mechanics in the atomic context
- 4 One-electron problems
- 5 Theory of atomic bound states
- 6 Formal scattering theory
- 7 Calculation of scattering amplitudes
- 8 Spin-independent scattering observables
- 9 Spin-dependent scattering observables
- 10 Ionisation
- 11 Electron momentum spectroscopy
- References
- Index
Summary
The problem of N bound electrons interacting under the Coulomb attraction of a single nucleus is the basis of the extensive field of atomic-spectroscopy. For many years experimental information about the bound eigenstates of an atom or ion was obtained mainly from the photons emitted after random excitations by collisions in a gas. Energy-level differences are measured very accurately. We also have experimental data for the transition rates (oscillator strengths) of the photons from many transitions. Photon spectroscopy has the advantage that the photon interacts relatively weakly with the atom so that the emission mechanism is described very accurately by first-order perturbation theory. One disadvantage is that the accessibility of states to observation is restricted by the dipole selection rule.
Photon spectroscopy associates two numbers with the pair of states involved in a transition, the energy-level difference and the transition rate. The correlated emission directions of photons in successive transitions are determined trivially by the dipole selection rule. In most cases it is impossible to solve the many-body problem accurately enough to reproduce spectroscopic data within experimental error and we are left wondering how good our theoretical methods really are.
Because our description of differential cross sections for momentum transfer in a reaction initiated by an electron beam depends on our ability to describe both the structure and the reaction mechanism, scattering provides much more information about bound states. This is even more true of ionisation. The information is less accurate than from photon spectroscopy and is obtained only after a thorough understanding of reactions, the subject of this book, is achieved. The understanding of structure and reactions is of course achieved iteratively.
- Type
- Chapter
- Information
- Electron-Atom Collisions , pp. 115 - 138Publisher: Cambridge University PressPrint publication year: 1995