Published online by Cambridge University Press: 30 May 2024
Readers who do not have strong schooling in physics can consult this book chapter for an introduction to key concepts such as ion fluxes, electric fields, electric potentials, and electric currents as well as for definitions of the ohmic, electrodiffusive, and capacitive currents that govern the electrodynamics of brain tissue. Building on the biophysical principles and approximations introduced here, we explain how the electric potential surrounding neurons can be computed based on the principles of current conservation and electroneutrality, and wegive a brief overview of modeling schemes designed to perform such computations on computers. Towards the end of the chapter, we show how the standard theory for computing extracellular potentials relates to Maxwell’s equations and list the approximations that we typically make when we apply these equations in a complex medium like brain tissue.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.