Published online by Cambridge University Press: 15 June 2023
Having developed the necessary mathematics in chapters 4 to 6, chapter 7 returns to physics Evidence for homogeneity and isotropy of the Universe at the largest cosmological scales is presented and Robertson-Walker metrics are introduced. Einstein’s equations are then used to derive the Friedmann equations, relating the cosmic scale factor to the pressure and density of matter in the Universe. The Hubble constant is discussed and an analytic form of the red-shift distance relation is derived, in terms of the matter density, the cosmological constant and the spatial curvature, and observational values of these three parameters are given. Some analytic solutions of the Friedmann equation are presented. The cosmic microwave background dominates the energy density in the early Universe and this leads to a description of the thermal history of the early Universe: the transition from matter dominated to radiation dominated dynamics and nucleosynthesis in the first 3 minutes. Finally the horizon problem and the inflationary Universe are described and the limits of applicability of Einstein's equations, when they might be expected to break down due to quantum effects, are discussed.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.