Skip to main content Accessibility help
×
Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-05-03T23:06:17.776Z Has data issue: false hasContentIssue false

Chapter 25 - Obstetric and Perinatal Outcome after Assisted Reproductive Technology Pregnancy Events and Complications

Published online by Cambridge University Press:  16 April 2025

Roy G. Farquharson
Affiliation:
Liverpool Women’s Hospital
Mary D. Stephenson
Affiliation:
University of Illinois, Chicago
Mariëtte Goddijn
Affiliation:
Amsterdam University Medical Centers
Get access

Summary

Singleton babies conceived through assisted reproductive technology (ART) using fresh embryo transfer are more likely to experience preterm birth, being born small-for-gestational age, and having a low birthweight. Conversely, pregnancies resulting from frozen embryo transfer (FET) are associated with an increased risk of hypertensive disorders in pregnancy (HDP) and preeclampsia. Additionally, babies conceived through FET are more prone to being born large-for-gestational age and having a high birthweight. These distinctions have been affirmed through randomized controlled trials comparing obstetric outcomes between singletons born after elective FET and those born after fresh embryo transfer.

Primarily drawing from extensive cohort studies and meta-analyses, other maternal and obstetric outcomes, such as antepartum haemorrhage and perinatal mortality, appear to be similar in singleton pregnancies resulting from FET and fresh embryo transfer. However, when compared with naturally conceived (NC) pregnancies, ART singletons in general carries a higher risk of perinatal mortality.

There is substantial evidence indicating an elevated risk of HDP and the need for a caesarean section following programmed cycle (PC)-FET compared with natural cycle FET. Moreover, current evidence also suggests an increased likelihood of post-term birth, preeclampsia, postpartum haemorrhage, and high birthweight after PC-FET cycles. Caution should be taken when interpreting the potential health implications of epigenetic changes associated with FET, as there is still a lack of evidence regarding the functional consequences or altered health outcomes in adulthood. In pregnancies after oocyte donation (OD) the risk of preeclampsia, preterm birth and small-for-gestational age babies is increased. This may be due to a combination of primarily immunological factors and the PC-FET that is obligatory in most OD recipient cycles.

Type
Chapter
Information
Early Pregnancy , pp. 262 - 281
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Kamath, M. S., Mascarenhas, M., Kirubakaran, R., Bhattacharya, S.. Number of embryos for transfer following in vitro fertilisation or intra-cytoplasmic sperm injection. Cochrane Database Syst Rev. 2020;8(8):CD003416.Google ScholarPubMed
Pandian, Z., Marjoribanks, J., Ozturk, O., Serour, G., Bhattacharya, S.. Number of embryos for transfer following in vitro fertilisation or intra-cytoplasmic sperm injection: summary of a Cochrane review. Fertil Steril. 2014;102(2):345–47.CrossRefGoogle Scholar
Pinborg, A.. IVF/ICSI twin pregnancies: risks and prevention. Hum Reprod Update. 2005;11(6):575–93.CrossRefGoogle ScholarPubMed
Sazonova, A., Källen, K., Thurin-Kjellberg, A., Wennerholm, U.-B., Bergh, C.. Neonatal and maternal outcomes comparing women undergoing two in vitro fertilization (IVF) singleton pregnancies and women undergoing one IVF twin pregnancy. Fertil Steril. 2013;99(3):731–37.CrossRefGoogle ScholarPubMed
Lorenz, J. M.. Neurodevelopmental outcomes of twins. Semin Perinatol. 2012;36(3):201–12.CrossRefGoogle ScholarPubMed
Goldsmith, S., Mcintyre, S., Badawi, N., Hensen, M.. Cerebral palsy after assisted reproductive technology: a cohort study. Dev Medi Child Neurol. 2017;60(1):7380.CrossRefGoogle ScholarPubMed
Spangmose, A. L., Christensen, L. H., Henningsen, A.-K. A., Forman, J., Opdahl, S., Bente Romundstad, L., et al. Cerebral palsy in ART children has declined substantially over time: a Nordic study from the CoNARTaS group. Hum Reprod. 2021;36(8):2358–70.CrossRefGoogle Scholar
Braat, D. D. M., Schutte, J. M., Bernardus, R. E., Mooij, T. M., van Leeuwen, F. E.. Maternal death related to IVF in the Netherlands 1984–2008. Hum Reprod. 2010;25(7):1782–86.CrossRefGoogle ScholarPubMed
Santana, D. S., Cecatti, J. G., Surita, F. G., Silveira, C., Costa, M. L., Souza, J. P., et al. Twin pregnancy and severe maternal outcomes. Obstet Gynecol. 2016;127(4):631–41.CrossRefGoogle ScholarPubMed
European IVF Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE), Wyns, C., De Geyter, C., Calhaz-Jorge, C., Kupka, M. S., et al. ART in Europe, 2018: results generated from European registries by ESHRE. Hum Reprod Open. 2022;2022(3):hoac022.Google ScholarPubMed
Pinborg, A., Lidegaard, Ø., la Cour Freiesleben, N., Andersen, A. N.. Consequences of vanishing twins in IVF/ICSI pregnancies. Hum Reprod. 2005;20(10):2821–29.CrossRefGoogle ScholarPubMed
Zhu, J., Wang, Z., Chen, L., Liu, P.. The late vanishing of a co-twin contributes to adverse perinatal outcomes in the surviving singleton. Hum Reprod. 2020;35(7):1553–61.CrossRefGoogle ScholarPubMed
Hvidtjørn, D., Grove, J., Schendel, D., Veath, M., Ernst, E., Nielsen, L., et al. “Vanishing embryo syndrome” in IVF/ICSI. Hum Reprod. 2005;20(9):2550–51.CrossRefGoogle Scholar
Hvidtjørn, D., Grove, J., Schendel, D., Schieve, L. A., Uldall, P., Ernst, E., Jacobsson, B., et al. Multiplicity and early gestational age contribute to an increased risk of cerebral palsy from assisted conception: a population-based cohort study. Hum Reprod. 2010;25(8):2115–23.CrossRefGoogle Scholar
Rissanen, A. R. S., Jernman, R. M., Gissler, M., Nupponen, I., Nuutila, M. E.. Maternal complications in twin pregnancies in Finland during 1987–2014: a retrospective study. BMC Pregnancy Childbirth. 2019;19(1):337.CrossRefGoogle ScholarPubMed
Waldenström, U., Cnattingius, S., Vixner, L., Norman, M.. Advanced maternal age increases the risk of very preterm birth, irrespective of parity: a population-based register study. BJOG. 2016;124(8):1235–44.Google ScholarPubMed
Storgaard, M., Loft, A., Bergh, C., Wennerholm, U. B., Söderström-Anttila, V., Romundstad, L. B., et al. Obstetric and neonatal complications in pregnancies conceived after oocyte donation: a systematic review and meta-analysis. Obstetric Anesthesia Digest. 2017;37(4):561–72.CrossRefGoogle Scholar
Pinborg, A., Ortoft, G., Loft, A., Rasmussen, S. C., Ingerslev, H. J.. Cervical conization doubles the risk of preterm and very preterm birth in assisted reproductive technology twin pregnancies. Hum Reprod. 2014;30(1):197204.CrossRefGoogle ScholarPubMed
Veleva, Z., Vilska, S., Hydén-Granskog, C., Tiitinen, A., Tapanainen, J. S., Martikainen, H.. Elective single embryo transfer in women aged 36–39 years. Hum Reprod. 2006;21(8):2098–102.CrossRefGoogle ScholarPubMed
Wang, Y., Shi, H., Chen, L., Zheng, D., Long, X., Zhang, Y., et al. Absolute risk of adverse obstetric outcomes among twin pregnancies after in vitro fertilization by maternal age. JAMA Netw Open. 2021;4(9):e2123634.CrossRefGoogle ScholarPubMed
Saket, Z., Källén, K., Lundin, K., Magnusson, Å., Bergh, C.. Cumulative live birth rate after IVF: trend over time and the impact of blastocyst culture and vitrification. Hum Reprod Open. 2021;2021(3):hoab021.CrossRefGoogle ScholarPubMed
De Geyter, C., Calhaz-Jorge, C., Kupka, M. S., Wyns, C., Mocanu, E., Motrenko, T., et al. ART in Europe, 2015: results generated from European registries by ESHRE. Hum Reprod Open. 2020;2020(1):hoaa038.CrossRefGoogle ScholarPubMed
Yokota, Y., Sato, S., Yokota, M., Yokota, H., Araki, Y.. Birth of a healthy baby following vitrification of human blastocysts. Fertil Steril. 2001;75(5):1027–29.CrossRefGoogle ScholarPubMed
Rienzi, L., Gracia, C., Maggiulli, R., LaBarbara, A. R., Kaser, D. J., Ubaldi, F. M., et al. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update. 2017;23(2):139–55.Google ScholarPubMed
Thurin, A., Hausken, J., Hillensjö, T., Jablonowska, B., Pinbord, A., Strandell, A., et al. Elective single-embryo transfer versus double-embryo transfer in in vitro fertilization. N Engl J Med. 2004;351(23):2392–402.CrossRefGoogle ScholarPubMed
López-Regalado, M. L., Clavero, A., Gonzalvo, M. C., Serrano, M., Martínez, L., Mozas, J., et al. Randomised clinical trial comparing elective single-embryo transfer followed by single-embryo cryotransfer versus double embryo transfer. Eur J Obstet Gynecol Reprod Biol. 2014;178:192–98.CrossRefGoogle ScholarPubMed
Vermey, B. G., Chua, S. J., Zafarmand, M. H., Wang, R., Longobardi, S., Cottell, E., et al. Is there an association between oocyte number and embryo quality? A systematic review and meta-analysis. Reprod Biomed Online. 2019;39(5):751–63.CrossRefGoogle ScholarPubMed
Opdahl, S., Henningsen, A. A., Tiitinen, A., Bergh, C., Pinborg, A., Romundstad, P. R., Wennerholm, U. B., et al. Risk of hypertensive disorders in pregnancies following assisted reproductive technology: a cohort study from the CoNARTaS group. Hum Reprod. 2015;30(7):1724–31.CrossRefGoogle ScholarPubMed
Marino, J. L., Moore, V. M., Willson, K. J., Rumbold, A., Whitrow, M. J., Giles, L. C., et al. Perinatal outcomes by mode of assisted conception and sub-fertility in an Australian data linkage cohort. PLoS One. 2014;9(1):e80398.CrossRefGoogle Scholar
Henningsen, A. A., Wennerholm, U. B., Gissler, M., Romundstad, L. B., Nygren, K. G., Tiitinen, A., et al. Risk of stillbirth and infant deaths after assisted reproductive technology: a Nordic study from the CoNARTaS group. Hum Reprod. 2014;29(5):1090–96.CrossRefGoogle ScholarPubMed
Qin, J.-B., Sheng, X.-Q., Wu, D., Gao, S.-Y., You, Y.-P., Yang, T.-B., et al. Worldwide prevalence of adverse pregnancy outcomes among singleton pregnancies after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Arch Gynecol Obstet. 2017;295(2):285301.CrossRefGoogle ScholarPubMed
Pandey, S., Shetty, A., Hamilton, M., Bhattacharya, S., Mahershwari, A.. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(5):485503.CrossRefGoogle ScholarPubMed
Berntsen, S., Söderström-Anttila, V., Wennerholm, U. B., Laivouri, H., Loft, A., Oldereid, N. B., et al. The health of children conceived by ART: “the chicken or the egg?” Hum Reprod Update. 2019;25(2):137–58.CrossRefGoogle Scholar
Maheshwari, A., Pandey, S., Amalraj Raja, E., Shetty, A., Hamilton, M., Bhattacharya, S.. Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer? Hum Reprod Update. 2017;24(1):3558.CrossRefGoogle Scholar
Roque, M., Haahr, T., Geber, S., Esteves, S. C., Humaidan, P.. Fresh versus elective frozen embryo transfer in IVF/ICSI cycles: a systematic review and meta-analysis of reproductive outcomes. Hum Reprod Update. 2018;25(1):214.CrossRefGoogle Scholar
Wennerholm, U. B., Söderström-Anttila, V., Bergh, C., Aittomäki, K., Hazekamp, J., Nygren, K.G., et al. Children born after cryopreservation of embryos or oocytes: a systematic review of outcome data. Hum Reprod. 2009;24(9):2158–72.CrossRefGoogle ScholarPubMed
Maheshwari, A., Pandey, S., Shetty, A., Hamilton, M., Bhattacharya, S.. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril. 2012;98(2):368–77.e9.CrossRefGoogle ScholarPubMed
Pinborg, A., Wennerholm, U. B., Romundstad, L. B., Loft, A., Söderström-Anttila, V., Nugren, K. G., et al. Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Hum Reprod Update. 2012;19(2):87104.CrossRefGoogle ScholarPubMed
Zhao, J., Xu, B., Zhang, Q., Li, Y. P.. Which one has a better obstetric and perinatal outcome in singleton pregnancy, IVF/ICSI or FET?: a systematic review and meta-analysis. Reprod Biol Endocrinol. 2016;14(1):51.CrossRefGoogle Scholar
Wennerholm, U. B., Henningsen, A. K. A., Romundstad, L. B., Bergh, C., Pinborg, A., Skjaerven, R., et al. Perinatal outcomes of children born after frozen-thawed embryo transfer: a Nordic cohort study from the CoNARTaS group. Hum Reprod. 2013;28(9):2545–53.CrossRefGoogle ScholarPubMed
Spijkers, S., Lens, J. W., Schats, R., Lambalk, C. B.. Fresh and frozen-thawed embryo transfer compared to natural conception: differences in perinatal outcome. Gynecol Obstet Invest. 2017;82(6):538–46.CrossRefGoogle ScholarPubMed
Terho, A. M., Pelkonen, S., Opdahl, S., Romundstad, L. B., Bergh, C., Wennerholm, U. B., et al. High birth weight and large-for-gestational-age in singletons born after frozen compared to fresh embryo transfer, by gestational week: a Nordic register study from the CoNARTaS group. Hum Reprod. 2021;36(4):1083–92.CrossRefGoogle Scholar
Pelkonen, S., Koivunen, R., Gissler, M., Noujua-Huttenen, S., Suikkari, A.-M., Hydén-Granskog, C., et al. Perinatal outcome of children born after frozen and fresh embryo transfer: the Finnish cohort study 1995–2006. Hum Reprod. 2010;25(4):914–23.CrossRefGoogle ScholarPubMed
Berntsen, S., Pinborg, A.. Large for gestational age and macrosomia in singletons born after frozen/thawed embryo transfer (FET) in assisted reproductive technology (ART). Birth Defects Res. 2018;110(8):630–43.CrossRefGoogle ScholarPubMed
Henningsen, A. K. A., Pinborg, A., Lidegaard, Ø., Vestergaard, C., Forman, J. L., Nyboe Andersen, A.. Perinatal outcome of singleton siblings born after assisted reproductive technology and spontaneous conception: Danish national sibling-cohort study. Fertil Steril. 2011;95(3):959–63.CrossRefGoogle ScholarPubMed
Luke, B., Brown, M. B., Wantman, E., Stern, J. E., Toner, J. P., Coddington, C. C.. Increased risk of large-for-gestational age birthweight in singleton siblings conceived with in vitro fertilization in frozen versus fresh cycles. J Assist Reprod Genet. 2017;34(2):191200.CrossRefGoogle ScholarPubMed
Westvik-Johari, K., Romundstad, L. B., Lawlor, D. A., Bergh, C., Gissler, M., Henningsen, A.-K. A., et al. Separating parental and treatment contributions to perinatal health after fresh and frozen embryo transfer in assisted reproduction: A cohort study with within-sibship analysis. PLoS Med. 2021;18(6):e1003683.CrossRefGoogle ScholarPubMed
Blockeel, C., Campbell, A., Coticchio, G., Esler, J., Garcia-Velasco, J. A., et al. Should we still perform fresh embryo transfers in ART? Hum Reprod. 2019;34(12):2319–29.CrossRefGoogle ScholarPubMed
Chen, Z. J., Shi, Y., Sun, Y., Zhang, B., Liang, X., Cao, Y., et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Eng J Med. 2016;375(6):523–33.CrossRefGoogle ScholarPubMed
Shi, Y., Sun, Y., Hao, C., Zhang, H., Wei, D., Zhang, Y., et al. Transfer of fresh versus frozen embryos in ovulatory women. N Eng J Med. 2018;378(2):126–36.CrossRefGoogle ScholarPubMed
Vuong, L. N., Dang, V. Q., Ho, T. M., Huynh, B. G., Ha, D. T., Pham, T. D., et al. IVF transfer of fresh or frozen embryos in women without polycystic ovaries. N Eng J Med. 2018;378(2):137–47.CrossRefGoogle ScholarPubMed
Wei, D., Liu, J. Y., Sun, Y., Shi, Y., Zhang, B., Liu, J.-Q., et al. Frozen versus fresh single blastocyst transfer in ovulatory women: a multicentre, randomised controlled trial. Lancet. 2019;393(10178):1310–18.CrossRefGoogle ScholarPubMed
Stormlund, S., Sopa, N., Zedeler, A., Bogstad, J., Prætorius, L., Nielsen, H. S., et al. Freeze-all versus fresh blastocyst transfer strategy during in vitro fertilisation in women with regular menstrual cycles: multicentre randomised controlled trial. BMJ. 2020;370:m2519.CrossRefGoogle ScholarPubMed
Zaat, T., Zagers, M., Mol, F., Goddijn, M., van Wely, M., Mastenbroek, S.. Fresh versus frozen embryo transfers in assisted reproduction. Cochrane Database Syst Rev. 2021;2021(2):CD011184.Google Scholar
Liu, S. Y., Teng, B., Fu, J, Li, X., Zheng, Y., Sun, X. X.. Obstetric and neonatal outcomes after transfer of vitrified early cleavage embryos. Hum Reprod. 2013;28(8):2093–100.CrossRefGoogle ScholarPubMed
Kaartinen, N., Kananen, K., Huhtala, H, Keränen, S., Tinkanen, H.. The freezing method of cleavage stage embryos has no impact on the weight of the newborns. J Assist Reprod Genet. 2016;33(3):393–99.CrossRefGoogle ScholarPubMed
Li, Z., Wang, Y. A., Ledger, W., Edgar, D. H., Sullivan, E. A.. Clinical outcomes following cryopreservation of blastocysts by vitrification or slow freezing: a population-based cohort study. Hum Reprod. 2014;29(12):2794–801.CrossRefGoogle ScholarPubMed
Ginström Ernstad, E., Spangmose, A. L., Opdahl, S., Aaris Henningsen, A. K., Bente Romundsrad, L., Tiitinen, A., et al. Perinatal and maternal outcome after vitrification of blastocysts: a Nordic study in singletons from the CoNARTaS group. Hum Reprod. 2019;34(11):2282–89.Google ScholarPubMed
Conrad, K. P., Baker, V. L.. Corpus luteal contribution to maternal pregnancy physiology and outcomes in assisted reproductive technologies. Am J Physiol Regul Integr Comp Physiol. 2013;304(2):R6972.CrossRefGoogle ScholarPubMed
Conrad, K. P. , Petersen, J. W., Chi, Y. Y., Zhai, X., Li, M., Chiu, K.-H., et al. Maternal cardiovascular dysregulation during early pregnancy after in vitro fertilization cycles in the absence of a corpus luteum. Hypertension. 2019;74(3):705–15.CrossRefGoogle ScholarPubMed
Conrad, K. P., Graham, G. M., Chi, Y. Y., Zhai, X., Li, M., Williams, R. S., et al. Potential influence of the corpus luteum on circulating reproductive and volume regulatory hormones, angiogenic and immunoregulatory factors in pregnant women. Am J Physiol Endocrinol Metab. 2019;317(4):E677–85.CrossRefGoogle ScholarPubMed
von Versen-Höynck, F., Schaub, A. M., Chi, Y. Y., Chiu, K.-H., Liu, J., Lingis, M., et al. Increased preeclampsia risk and reduced aortic compliance with in vitro fertilization cycles in the absence of a corpus luteum. Hypertension. 2019;73(3):640–69.CrossRefGoogle ScholarPubMed
von Versen-Höynck, F., Strauch, N. K., Liu, J., Chi, Y.-Y., Keller-Woods, M., Conrad, K. P., et al. Effect of mode of conception on maternal serum relaxin, creatinine, and sodium concentrations in an infertile population. Reprod Sci. 2019;26(3):412–19.CrossRefGoogle Scholar
von Versen-Höynck, F., Narasimhan, P., Selamet Tierney, E. S., Martinez, N., Conrad, K. P., Baker, V. L., et al. Absent or excessive corpus luteum number is associated with altered maternal vascular health in early pregnancy. Hypertension. 2019;73(3):680–90.CrossRefGoogle ScholarPubMed
von Versen-Höynck, F., Häckl, S., Selamet Tierney, E. S., Conrad, K. P., Baker, V. L., Winn, V. D.. Maternal vascular health in pregnancy and postpartum after assisted reproduction. Hypertension. 2020;75(2):549–60.CrossRefGoogle ScholarPubMed
Ginström Ernstad, E., Wennerholm, U. B., Khatibi, A., Petzold, M., Bergh, C.. Neonatal and maternal outcome after frozen embryo transfer: increased risks in programmed cycles. Am J Obstet Gynecol. 2019;221(2):126.e118.CrossRefGoogle ScholarPubMed
Jing, S., Li, X. F., Zhang, S., Gong, F., Lu, G., Lin, G.. Increased pregnancy complications following frozen-thawed embryo transfer during an artificial cycle. J Assist Reprod Genet. 2019;36(5):925–33.CrossRefGoogle ScholarPubMed
Makhijani, R., Bartels, C., Godiwala, P., Bartolucci, A., Nulsen, J., Grow, D., et al. Maternal and perinatal outcomes in programmed versus natural vitrified–warmed blastocyst transfer cycles. Reprod Biomed Online. 2020;41(2):300308.CrossRefGoogle ScholarPubMed
Saito, K., Kuwahara, A., Ishikawa, T., Morisaki, N., Miyado, M., Miyado, K., et al. Endometrial preparation methods for frozen-thawed embryo transfer are associated with altered risks of hypertensive disorders of pregnancy, placenta accreta, and gestational diabetes mellitus. Hum Reprod. 2019;34(8):1567–75.CrossRefGoogle ScholarPubMed
Saito, K., Miyado, M., Yamatoya, K., Kuwahara, A., Inoue, E., Miyado, M., et al. Increased incidence of post-term delivery and Cesarean section after frozen-thawed embryo transfer during a hormone replacement cycle. J Assist Reprod Genet. 2017;34(4):465–70.CrossRefGoogle ScholarPubMed
Asserhøj, L. L., Spangmose, A. L., Aaris Henningsen, A. K., Dalsgaard Clausen, T., Ziebie, S., Beck Jensen, R., et al. Adverse obstetric and perinatal outcomes in 1,136 singleton pregnancies conceived after programmed frozen embryo transfer (FET) compared with natural cycle FET. Fertil Steril. 2021;115(4):947–56.CrossRefGoogle ScholarPubMed
Wang, Z., Liu, H., Song, H., Li, X., Jiang, L., Sheng, Y., et al. Increased risk of pre-eclampsia after frozen-thawed embryo transfer in programming cycles. Front Med (Lausanne). 2020;7:104.CrossRefGoogle ScholarPubMed
Wang, B., Zhang, J., Zhu, Q., Wang, X., Wang, Y.. Effects of different cycle regimens for frozen embryo transfer on perinatal outcomes of singletons. Hum Reprod. 2020;35(7):1612–22.CrossRefGoogle ScholarPubMed
Zhou, R., Zhang, X., Huang, L., Wang, S., Li, L., Dong, M., et al. The impact of different cycle regimens on birthweight of singletons in frozen-thawed embryo transfer cycles of ovulatory women. Fertil Steril. 2022;117(3):573–82.CrossRefGoogle ScholarPubMed
Hu, K. L., Zhang, D., Li, R.. Endometrium preparation and perinatal outcomes in women undergoing single-blastocyst transfer in frozen cycles. Fertil Steril. 2021;115(6):1487–94.CrossRefGoogle ScholarPubMed
Zaat, T. R., Kostova, E. B., Korsen, P., Showell, M. G., Mol, F., van Wely, M.. Obstetric and neonatal outcomes after natural versus artificial cycle frozen embryo transfer and the role of luteal phase support: a systematic review and meta-analysis. Hum Reprod Update. 2023;29(5):634–54.CrossRefGoogle ScholarPubMed
Berntsen, S., Larsen, E. C., la Cour Freiesleben, N., Pinborg, A.. Pregnancy outcomes following oocyte donation. Best Pract Res Clin Obstet Gynaecol. 2021;70:8191.CrossRefGoogle ScholarPubMed
Rafael, F., Robles, G. M., Navarro, A. T., Garrido, N., Garcia-Velasco, J. A., et al. Perinatal outcomes in children born after fresh or frozen embryo transfer using donated oocytes. Hum Reprod. 2022;37(7):1642–51.CrossRefGoogle ScholarPubMed
Glujovsky, D., Quinteiro Retamar, A. M., Alvarez Sedo, C. R., Ciapponi, A., Cornelisse, S., Blake, D.. Cleavage-stage versus blastocyst-stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev. 2022;2022(5):CD002118.Google Scholar
Eftekhar, M., Mohammadi, B., Tabibnejad, N., Mortazavi Lahijani, M.. Frozen-thawed cleavage stage versus blastocyst stage embryo transfer in high responder patients. Zygote. 2020;28(6):511–15.CrossRefGoogle ScholarPubMed
Schwärzler, P., Zech, H., Auer, M., Pfau, K., Göbel, G., Vanderzwalmen, P., et al. Pregnancy outcome after blastocyst transfer as compared to early cleavage stage embryo transfer. Hum Reprod. 2004;19(9):2097–102.CrossRefGoogle ScholarPubMed
Langley, M. T., Marek, D. M., Gardner, D. K., Doody, K. M.. Extended embryo culture in human assisted reproduction treatments. Hum Reprod. 2001;16(5):902–8.CrossRefGoogle Scholar
Spangmose, A. L., Ginström Ernstad, E., Malchau, S., Forman, J., Tiitinen, A., Gissler, M., et al. Obstetric and perinatal risks in 4601 singletons and 884 twins conceived after fresh blastocyst transfers: a Nordic study from the CoNARTaS group. Hum Reprod. 2020;35(4):805–15.CrossRefGoogle ScholarPubMed
Marconi, N., Allen, C. P., Bhattacharya, S., Mahesgwari, A.. Obstetric and perinatal outcomes of singleton pregnancies after blastocyst-stage embryo transfer compared with those after cleavage-stage embryo transfer: A systematic review and cumulative meta-analysis. Hum Reprod Update. 2022;28(2):255–81.CrossRefGoogle ScholarPubMed
Barberet, J., Barry, F., Choux, C., Guilleman, M., Karoui, S., Simonot, R., et al. What impact does oocyte vitrification have on epigenetics and gene expression? Clin Epigenetics. 2020;12(1):121.CrossRefGoogle ScholarPubMed
Sciorio, R., Campos, G., Tramontano, L., Bulletti, F. M., Baldini, G. M., Vinciguerra, M.. Exploring the effect of cryopreservation in assisted reproductive technology and potential epigenetic risk. Zygote. 2023;31(5):420–32.CrossRefGoogle ScholarPubMed
Cortessis, V. K., Azadian, M., Buxbaum, J., Sanogo, F., Song, A. Y., Sriprasert, I., et al. Comprehensive meta-analysis reveals association between multiple imprinting disorders and conception by assisted reproductive technology. J Assist Reprod Genet. 2018;35(6):943–52.CrossRefGoogle ScholarPubMed
Henningsen, A. A., Gissler, M., Rasmussen, S., Opdahl, S., Wennerholm, U. B., Spangsmose, A. L., et al. Imprinting disorders in children born after ART: a Nordic study from the CoNARTaS group. Hum Reprod. 2020;35(5):1178–84.CrossRefGoogle ScholarPubMed
Hattori, H., Hiura, H., Kitamura, A., Miyauchi, N., Kobayashi, N., Takahashi, S., et al. Association of four imprinting disorders and ART. Clin Epigenetics. 2019;11(1):21.CrossRefGoogle ScholarPubMed
Mani, S., Ghosh, J., Rhon-Calderon, E. A., Lan, Y., Ord, T., Kalliora, C., et al. Embryo cryopreservation leads to sex-specific DNA methylation perturbations in both human and mouse placentas. Hum Mol Genet. 2022;31(22):3855–72.CrossRefGoogle ScholarPubMed
Barberet, J., Romain, G., Binquet, C., Guilleman, M., Bruno, C., Ginod, P., et al. Do frozen embryo transfers modify the epigenetic control of imprinted genes and transposable elements in newborns compared with fresh embryo transfers and natural conceptions? Fertil Steril. 2021;116(6):1468–80.CrossRefGoogle ScholarPubMed
Litzky, J. F., Deyssenroth, M. A., Everson, T. M., Armstrong, D. A., Lambertini, L., Chen, J., et al. Placental imprinting variation associated with assisted reproductive technologies and subfertility. Epigenetics. 2017;12(8):653–61.CrossRefGoogle ScholarPubMed
Håberg, S. E., Page, C. M., Lee, Y., Nustad, H. E., Magnus, M. C., Haftorn, K. L., et al. DNA methylation in newborns conceived by assisted reproductive technology. Nat Commun. 2022;13(1):1896.CrossRefGoogle ScholarPubMed
Barberet, J., Ducreux, B., Guilleman, M., Simon, E., Bruno, C., Fauque, P.. DNA methylation profiles after ART during human lifespan: a systematic review and meta-analysis. Hum Reprod Update. 2022;28(5):629–55.CrossRefGoogle ScholarPubMed
Novakovic, B., Lewis, S., Halliday, J., Kennedy, J., Burgner, D. P., Czajko, A., et al. Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nat Commun. 2019;10(1).CrossRefGoogle ScholarPubMed
Penova-Veselinovic, B., Melton, P. E., Huang, R. C., Yovich, J. L., Burton, P., Wijs, L. A., et al. DNA methylation patterns within whole blood of adolescents born from assisted reproductive technology are not different from adolescents born from natural conception. Hum Reprod. 2021;36(7):2035–49.CrossRefGoogle Scholar
Young, L.. Large offspring syndrome in cattle and sheep. Rev Reprod. 1998;3(3):155–63.CrossRefGoogle ScholarPubMed
Mol, B. W. J., Roberts, C. T., Thangaratinam, S., Magee, L. A., de Groot, C. J. M., Hofmeys, G. J.. Pre-eclampsia. Lancet. 2016;387(10022):9991011.CrossRefGoogle ScholarPubMed
Wang, S.-F., Shu, L., Sheng, J., Mu, M., Wang, S., Tao, X. Y., et al. Birth weight and risk of coronary heart disease in adults: a meta-analysis of prospective cohort studies. J Dev Orig Health Dis. 2014;5(6):408–19.CrossRefGoogle ScholarPubMed
Zhang, B., Wei, D., Legro, R. S., Shi, Y., Li, J., Zhang, L., et al. Obstetric complications after frozen versus fresh embryo transfer in women with polycystic ovary syndrome: results from a randomized trial. Fertil Steril. 2018;109(2):324–39.CrossRefGoogle ScholarPubMed
Huang, P., Wei, L., Li, X., Lin, Z.. Modified hMG stimulated: an effective option in endometrial preparation for frozen-thawed embryo transfer in patients with normal menstrual cycles. Gynecol Endocrinol. 2018;34(9):772–74.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×