Skip to main content Accessibility help
×

Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.

Hostname: page-component-669899f699-qzcqf Total loading time: 0 Render date: 2025-04-25T17:59:21.706Z Has data issue: false hasContentIssue false

Chapter 6 - Early Placental Development and Disorders

Published online by Cambridge University Press:  16 April 2025

Roy G. Farquharson
Affiliation:
Liverpool Women’s Hospital
Mary D. Stephenson
Affiliation:
University of Illinois, Chicago
Mariëtte Goddijn
Affiliation:
Amsterdam University Medical Centers
Get access

Summary

Although many of the most vexing complications of human pregnancy, including sporadic and recurrent early pregnancy loss, preeclampsia, intrauterine growth restriction, molar pregnancies, and placenta accreta/increta/percreta likely have their origins in very early placental developmental abnormalities, our understanding of these abnormalities remains frustratingly limited. This deficit is inherent to the placenta because access to primary early human gestational tissues is very limited, for ethical and logistical reasons. Comparative placentation among mammalian species reveals the human placenta to be quite unique and limits the utility of animal modelling. In vitro models of human trophoblast differentiation are likewise limited by tissue access, spontaneous differentiation of primary trophoblast cells in culture and the transformation process or neoplastic processes that make stable cell lines immortal. Notable differences in placental development and function among racial groups highlight the need to address social determinants of health when studying early placental development and related pregnancy outcomes. Stem cell-derived models of in vitro trophoblast differentiation, including human embryonic stem cell (hESC)-- and induced pluripotent stem cell (iPSC)-technologies, may provide unique systems in which to reliably study the earliest events in normal and abnormal human placental development.

Type
Chapter
Information
Early Pregnancy , pp. 43 - 56
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Seller, M. J.. Some aspects of placental function. Postgrad Med J. 1965;41(481):680–86.Google ScholarPubMed
Cross, J. C., Baczyk, D., Dobric, N., Hemberger, M., Hughes, M., Simmons, D. G., et al. Genes, development and evolution of the placenta. Placenta. 2003;24(2–3):123–30.CrossRefGoogle ScholarPubMed
Huang, C.-C., Hsueh, Y.-W., Chang, C.-W., Hsu, H.-C., Yang, T.-C., Lin, W.-C., et al. Establishment of the fetal-maternal interface: developmental events in human implantation and placentation. Front Cell Dev Biol. 2023;11:1200330.CrossRefGoogle Scholar
Jaffe, R., Jauniaux, E., Hustin, J.. Maternal circulation in the first-trimester human placenta – myth or reality? Am J Obstet Gynecol. 1997;176(3):695705.CrossRefGoogle ScholarPubMed
Pijnenborg, R., Vercruysse, L.. Shifting concepts of the fetal-maternal interface: a historical perspective. Placenta. 2008;29(Suppl A):S2025.CrossRefGoogle ScholarPubMed
Pijnenborg, R., Vercruysse, L.. Erasmus Darwin’s enlightened views on placental function. Placenta. 2007;28(8–9):775–78.CrossRefGoogle ScholarPubMed
Boyd, J. D., Hamilton, W. J.. The human placenta. Heffer; 1970.CrossRefGoogle Scholar
Burton, G. J., Jauniaux, E., Watson, A. L.. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd collection revisited. Am J Obstet Gynecol. 1999;181(3):718–24.CrossRefGoogle Scholar
Selwood, L., Johnson, M. H.. Trophoblast and hypoblast in the monotreme, marsupial and eutherian mammal: evolution and origins. Bioessays. 2006;28(2):128–45.CrossRefGoogle ScholarPubMed
Schier, A. F.. The maternal-zygotic transition: death and birth of RNAs. Science. 2007;316(5823):406–7.CrossRefGoogle ScholarPubMed
Telford, N. A., Watson, A. J., Schultz, G. A.. Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev. 1990;26(1):90100.CrossRefGoogle ScholarPubMed
Chazaud, C., Yamanaka, Y.. Lineage specification in the mouse preimplantation embryo. Development. 2016;143(7):1063–74.CrossRefGoogle ScholarPubMed
Niakan, K. K., Eggan, K.. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol. 2013;375(1):5464.CrossRefGoogle ScholarPubMed
Moore, K. L., Persaud, T. V. N., Torchia, M. G.. The developing human: clinically oriented embryology. 9th ed.: Elsevier/Saunders; 2013.Google Scholar
Pennington, K. A., Schlitt, J. M., Jackson, D. L., Schulz, L. C., Schust, D. J.. Preeclampsia: multiple approaches for a multifactorial disease. Dis Model Mech. 2012;5(1):918.CrossRefGoogle ScholarPubMed
Burghardt, R. C., Johnson, G. A., Jaeger, L. A., Ka, H., Garlow, J. E., Spencer, T. E., et al. Integrins and extracellular matrix proteins at the maternal-fetal interface in domestic animals. Cells Tissues Organs. 2002;172(3):202–17.CrossRefGoogle ScholarPubMed
Aplin, J. D., Jones, C. J. P., Harris, L. K.. Adhesion molecules in human trophoblast – a review. I. Villous trophoblast. Placenta. 2009;30(4):293–98.CrossRefGoogle Scholar
Blomberg, L., Hashizume, K., Viebahn, C.. Blastocyst elongation, trophoblastic differentiation, and embryonic pattern formation. Reproduction. 2008;135(2):181–95.CrossRefGoogle ScholarPubMed
Bolouri, H.. Embryonic pattern formation without morphogens. Bioessays. 2008;30(5):412–17.CrossRefGoogle ScholarPubMed
Wildman, D. E.. Sources for comparative studies of placentation. II. Genomic resources. Placenta. 2008;29(2):144–47.CrossRefGoogle ScholarPubMed
Carter, A. M., Enders, A. C.. Comparative aspects of trophoblast development and placentation. Reprod Biol Endocrinol. 2004;2:46.CrossRefGoogle ScholarPubMed
Caniggia, I., Winter, J., Lye, S. J., Post, M.. Oxygen and placental development during the first trimester: implications for the pathophysiology of pre-eclampsia. Placenta. 2000;21(Suppl A):S2530.CrossRefGoogle ScholarPubMed
Simmons, D. G., Cross, J. C.. Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Dev Biol. 2005;284(1):1224.CrossRefGoogle ScholarPubMed
Whitley, G. S., Cartwright, J. E.. Cellular and molecular regulation of spiral artery remodelling: lessons from the cardiovascular field. Placenta. 2010;31(6):465–74.CrossRefGoogle ScholarPubMed
Carlisle, E., Janis, C. M., Pisani, D., Donoghue, P. C. J., Silvestro, D.. A timescale for placental mammal diversification based on Bayesian modeling of the fossil record. Curr Biol. 2023;33(15):3072–82.CrossRefGoogle ScholarPubMed
O’Leary, M. A., Bloch, J. I., Flynn, J. J., Gaudin, T. J., Giallombardo, A., Giannini, N. P., et al. The placental mammal ancestor and the post-K-Pg radiation of placentals. Science. 2013;339(6120):662–67.Google ScholarPubMed
Vogel, P. The current molecular phylogeny of Eutherian mammals challenges previous interpretations of placental evolution. Placenta. 2005;26:591–96.CrossRefGoogle ScholarPubMed
Carter, A. M., Enders, A. C., Jones, C. J. P., Mess, A., Pfarrer, C., Pijnenborg, R., et al. Comparative placentation and animal models: patterns of trophoblast invasion – a workshop report. Placenta. 2006;27(Suppl A):S3033.CrossRefGoogle ScholarPubMed
Enders, A. C., Carter, A. M.. Comparative placentation: some interesting modifications for histotrophic nutrition – a review. Placenta. 2006;27(Suppl A):S1116.CrossRefGoogle ScholarPubMed
Aubuchon, M., Schulz, L. C., Schust, D. J.. Preeclampsia: animal models for a human cure. Proc Natl Acad Sci U S A. 2011;108(4):1197–98.CrossRefGoogle ScholarPubMed
Rawn, S. M., Cross, J. C.. The evolution, regulation, and function of placenta-specific genes. Annu Rev Cell Devl Biol. 2008;24:159–81.Google ScholarPubMed
Zeh, J. A., Zeh, D. W.. Viviparity-driven conflict: more to speciation than meets the fly. Ann N Y Acad Sci. 2008;1133:126–48.CrossRefGoogle ScholarPubMed
Fowden, A. L., Moore, T.. Maternal-fetal resource allocation: co-operation and conflict. Placenta. 2012;33(Suppl 2):e1115.CrossRefGoogle ScholarPubMed
Hyde, K. J., Schust, D. J.. Genetic considerations in recurrent pregnancy loss. Cold Spring Harb Perspect Med. 2015;5(3):a023119.CrossRefGoogle ScholarPubMed
Oyelese, Y., Smulian, J. C.. Placenta previa, placenta accreta, and vasa previa. Obstet Gynecol. 2006;107(4):927–41.CrossRefGoogle ScholarPubMed
Froeling, F. E. M., Seckl, M. J.. Gestational trophoblastic tumours: an update for 2014. Curr Oncol Rep. 2014;16(11):408.CrossRefGoogle ScholarPubMed
Hefner, L. J., Schust, D. J.. The reproductive system at a glance. 3rd ed.: Wiley-Blackwell; 2010.Google Scholar
Soper, J. T.. Gestational trophoblastic disease: current evaluation and management. Obstet Gynecol. 2021;137(2):355–70.CrossRefGoogle ScholarPubMed
Seckl, M. J., Sebire, N. J., Berkowitz, R. S.. Gestational trophoblastic disease. Lancet. 2010;376(9742):717–29.CrossRefGoogle ScholarPubMed
Cunningham, F. G., Leveno, K. J., Bloom, S. L., Spong, C. Y., Dashe, J. S., Hoffman, B. L., et al. Williams obstetrics. 24th ed.: McGraw-Hill; 2014.Google Scholar
Jauniaux, E., Collins, S., Burton, G. J.. Placenta accreta spectrum: pathophysiology and evidence-based anatomy for prenatal ultrasound imaging. Am J Obstet Gynecol. 2018;218(1):7587.CrossRefGoogle ScholarPubMed
Tantbirojn, P., Crum, C. P., Parast, M. M.. Pathophysiology of placenta creta: the role of decidua and extravillous trophoblast. Placenta. 2008;29(7):639–45.CrossRefGoogle ScholarPubMed
Rao, K. P., Belogolovkin, V., Yankowitz, J., Spinnato, J. A.. Abnormal placentation: evidence-based diagnosis and management of placenta previa, placenta accreta, and vasa previa. Obstet Gynecol Surv. 2012;67(8):503–19.CrossRefGoogle ScholarPubMed
American College of Obstetricians and Gynecologists, Society for Maternal–Fetal Medicine. Obstetric care consensus no. 7: placenta accreta spectrum. Obstet Gynecol. 2018;132(6):e259–75.Google Scholar
Caniggia, I., Grisaru-Gravnosky, S., Kuliszewsky, M., Post, M., Lye, S. J.. Inhibition of TGF-β3 restores the invasive capability of extravillous trophoblasts in preeclamptic pregnancies. J Clin Invest. 1999;103(12):1641–50.CrossRefGoogle Scholar
Kifle, M. M., Dahal, P., Vatish, M., Cerdeira, A. S., Ohuma, E. O.. The prognostic utility of soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PIGF) biomarkers for predicting preeclampsia: a secondary analysis of data from the INSPIRE trial. BMC Pregnancy Childbirth. 2022;22(1):520.CrossRefGoogle ScholarPubMed
Hund, M., Allegranza, D., Schoedl, M., Dilba, P., Verhagen-Kamerbeek, W., Stepan, H.. Multicenter prospective clinical study to evaluate the prediction of short-term outcome in pregnant women with suspected preeclampsia (PROGNOSIS): study protocol. BMC Pregnancy Childbirth. 2014;14:324.CrossRefGoogle ScholarPubMed
Zeisler, H., Llurba, E., Chantraine, F., Vatish, M., Staff, A. C., Sennström, M., et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374(1):1322.CrossRefGoogle ScholarPubMed
Banadakoppa, M., Chauhan, M. S., Havemann, D., Balakrishnan, M., Dominic, J. S., Yallampalli, C.. Spontaneous abortion is associated with elevated systemic C5a and reduced mRNA of complement inhibitory proteins in placenta. Clin Exp Immunol. 2014;177(3):743–49.CrossRefGoogle ScholarPubMed
Banadakoppa, M., Balakrishnan, M., Yallampalli, C.. Upregulation and release of soluble fms-like tyrosine kinase receptor 1 (sFLT1) mediated by complement activation in human syncytiotrophoblast cells. Am J Reprod Immunol. 2018;80(5):e13033.CrossRefGoogle ScholarPubMed
Derzsy, Z., Prohászka, Z., Rigó, J., Füst, G., Molvarec, A.. Activation of the complement system in normal pregnancy and preeclampsia. Mol Immunol. 2010;47(7–8):15001506.CrossRefGoogle ScholarPubMed
Hoffman, M. C., Rumer, K. K., Kramer, A., Lynch, A. M., Winn, V. D.. Maternal and fetal alternative complement pathway activation in early severe preeclampsia. Am J Reprod Immunol. 2014;71(1):5560.CrossRefGoogle ScholarPubMed
Lynch, A. M., Murphy, J. R., Byers, T., Gibbs, R. S., Neville, M. C., Giclas, P. C, et al. Alternative complement pathway activation fragment Bb in early pregnancy as a predictor of preeclampsia. Am J Obstet Gynecol. 2008;198(4):385.e19.CrossRefGoogle ScholarPubMed
Banadakoppa, M., Pennington, K., Balakrishnan, M., Yallampalli, C.. Complement inhibitor Crry expression in mouse placenta is essential for maintaining normal blood pressure and fetal growth. PloS One. 2020;15(8):e0236968.CrossRefGoogle ScholarPubMed
Fetal growth restriction: ACOG practice bulletin summary, number 227. Obstet Gynecol. 2021;137(2):e1628.CrossRefGoogle Scholar
Zur, R. L., Kingdom, J. C., Parks, W. T., Hobson, S. R.. The placental basis of fetal growth restriction. Obstet Gynecol Clin North Am. 2020;47(1):8198.CrossRefGoogle ScholarPubMed
Sun, C., Groom, K. M., Oyston, C., Chamley, L. W., Clark, A. R., James, J. L.. The placenta in fetal growth restriction: what is going wrong? Placenta. 2020;96:1018.CrossRefGoogle ScholarPubMed
Xu, R.-H., Chen, X., Li, D. S., Li, R., Addicks, G. C., Glennon, C., et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol. 2002;20(12):1261–64.CrossRefGoogle ScholarPubMed
Das, P., Ezashi, T., Schulz, L. C., Westfall, S. D., Livingston, K. A., Roberts, R. M.. Effects of fgf2 and oxygen in the bmp4-driven differentiation of trophoblast from human embryonic stem cells. Stem Cell Res. 2007;1(1):6174.CrossRefGoogle ScholarPubMed
Yang, Y., Adachi, K., Sheridan, M. A., Alexenko, A. P., Schust, D. J., Schulz, L. C., et al. Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure. Proc Natl Acad Sci U S A. 2015;112(18):E2337–46.Google ScholarPubMed
Amita, M., Adachi, K., Alexenko, A. P., Sinha, S., Schust, D. J., Schulz, L. C., et al. Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. Proc Natl Acad Sci U S A. 2013;110(13):E1212–21.CrossRefGoogle ScholarPubMed
Okae, H., Toh, H., Sato, T., Hiura, H., Takahashi, S., Shirane, K., et al. Derivation of human trophoblast stem cells. Cell Stem Cell. 2018;22(1):5063.e6.CrossRefGoogle ScholarPubMed
Choi, S., Khan, T., Roberts, R. M., Schust, D. J.. Leveraging optimized transcriptomic and personalized stem cell technologies to better understand syncytialization defects in preeclampsia. Front Genet. 2022;13:872818.CrossRefGoogle ScholarPubMed
Dong, C., Beltcheva, M., Gontarz, P., Zhang, B., Popli, P., Fischer, L. A., et al. Derivation of trophoblast stem cells from naive human pluripotent stem cells. Elife. 2020;9:e52504.CrossRefGoogle ScholarPubMed
Soncin, F., Morey, R., Bui, T., Requena, D. F., Cheung, V. C., Kallol, S., et al. Derivation of functional trophoblast stem cells from primed human pluripotent stem cells. Stem Cell Reports. 2022;17(6):1303–17.CrossRefGoogle ScholarPubMed
Bai, T., Peng, C. Y., Aneas, I., Sakabe, N., Requena, D. F., Billstrand, C., et al. Establishment of human induced trophoblast stem-like cells from term villous cytotrophoblasts. Stem Cell Res. 2021;56:102507.CrossRefGoogle ScholarPubMed
Karvas, R. M., Khan, S. A., Verma, S., Yin, Y., Kulkarni, D., Dong, C., et al. Stem-cell-derived trophoblast organoids model human placental development and susceptibility to emerging pathogens. Cell Stem Cell. 2022;29(5):81025.e8.CrossRefGoogle ScholarPubMed
Sheridan, M. A., Fernando, R. C., Gardner, L., Hollinshead, M. S., Burton, G. J., Moffett, A., et al. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta. Nat Protoc. 2020;15(10):3441–63.CrossRefGoogle ScholarPubMed
Uruc, F., Akan, S., Aras, B., Uruc, E., Verit, A.. No-cable and smartphone/tablet: a functional laparoscopic training box “Fu-Lap T-Box.” Turk J Urol. 2018;44(5):428–31.Google Scholar
Haider, S., Meinhardt, G., Saleh, L., Kunihs, V., Gamperl, M., Kaindl, U., et al. Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta. Stem Cell Reports. 2018;11(2):537–51.CrossRefGoogle ScholarPubMed
Yang, P., Dai, A., Alexenko, A. P., Liu, Y., Stephens, A. J., Schulz, L. C., et al. Abnormal oxidative stress responses in fibroblasts from preeclampsia infants. PloS One. 2014;9(7):e103110.CrossRefGoogle ScholarPubMed
Menon, R., Merialdi, M., Lombardi, S. J., Fortunato, S. J.. Differences in the placental membrane cytokine response: a possible explanation for the racial disparity in preterm birth. Am J Reprod Immunol. 2006;56(2):112–18.CrossRefGoogle ScholarPubMed
Borders, A. E. B., Wolfe, K., Qadir, S., Kim, K.-Y., Holl, J., Grobman, W.. Racial/ethnic differences in self-reported and biologic measures of chronic stress in pregnancy. J Perinatol. 2015;35(8):580–84.CrossRefGoogle ScholarPubMed
Jones, C. W., Gambala, C., Esteves, K. C., Wallace, M., Schlesinger, R., O’Quinn, M., et al. Differences in placental telomere length suggest a link between racial disparities in birth outcomes and cellular aging. Am J Obstet Gynecol. 2017;216(3):294.e18.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×