Skip to main content Accessibility help
×
Hostname: page-component-6587cd75c8-mppm8 Total loading time: 0 Render date: 2025-04-23T19:36:17.463Z Has data issue: false hasContentIssue false

Chapter 27 - Dynamic Prediction Models for Recurrent Pregnancy Loss

Published online by Cambridge University Press:  16 April 2025

Roy G. Farquharson
Affiliation:
Liverpool Women’s Hospital
Mary D. Stephenson
Affiliation:
University of Illinois, Chicago
Mariëtte Goddijn
Affiliation:
Amsterdam University Medical Centers
Get access

Summary

In the absence of evidence-based therapeutic options for the majority of couples with recurrent pregnancy loss (RPL) it is considered significant to offer supportive care, including reliable counseling regarding the prognosis of subsequent pregnancies. Currently, various prediction models are available, with a focus on couples with unexplained RPL. All of them having drawbacks like substantial risk of bias, lack of performance measures and applicability. A new prediction model, using more predictors, such as male predictors and focusing on cumulative live birth rates over a reasonable time period is currently needed. In addition, this model should have the ability to provide reliable predictions at later time points, a so-called dynamic prediction model.

Type
Chapter
Information
Early Pregnancy , pp. 292 - 298
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

ESHRE Guideline Group on RPL, Bender Atik, R., Christiansen, O. B., Elson, J., Kolte, A. M., Lewis, S., et al. ESHRE guideline: recurrent pregnancy loss: an update in 2022. Hum Reprod Open. 2023;2023(1):hoad002.Google Scholar
Bashiri, A., Giliutin, M., Ziedenberg, H., Plakht, Y., Baumfeld, Y.. A proposed prognostic prediction tool for a live birth among women with recurrent pregnancy loss. J Matern Fetal Neonatal Med. 2022;35(19):3736–42.CrossRefGoogle ScholarPubMed
Brigham, S. A., Conlon, C., Farquharson, R. G.. A longitudinal study of pregnancy outcome following idiopathic recurrent miscarriage. Hum Reprod. 1999;14(11):2868–71.CrossRefGoogle ScholarPubMed
Cauchi, M. N., Coulam, C. B., Cowchock, S., Ho, H. N., Gatenby, P., Johnson, P. M., et al. Predictive factors in recurrent spontaneous aborters – a multicenter study. Am J Reprod Immunol. 1995;33(2):165–70.CrossRefGoogle ScholarPubMed
Lund, M., Kamper-Jørgensen, M., Nielsen, H. S., Lidegaard, Ø., Andersen, A. M., Christiansen, O. B.. Prognosis for live birth in women with recurrent miscarriage: what is the best measure of success? Obstet Gynecol. 2012;119(1):3743.CrossRefGoogle Scholar
Quenby, S. M., Farquharson, R. G.. Predicting recurring miscarriage: what is important? Obstet Gynecol. 1993;82(1):132–38.Google ScholarPubMed
Sugiura-Ogasawara, M., Ozaki, Y., Kitaori, T.. Diagnosis and treatment methods for recurrent miscarriage cases. Reprod Med Biol. 2009;8(4):141–44.CrossRefGoogle ScholarPubMed
Youssef, A., Vermeulen, N., Lashley, E. E. L. O., Goddijn, M., van der Hoorn, M. L. P.. Comparison and appraisal of (inter)national recurrent pregnancy loss guidelines. Reprod Biomed Online. 2019;39(3):497503.CrossRefGoogle ScholarPubMed
Steyerberg, E. W., Moons, K. G., van der Windt, D. A., Hayden, J. A., Perel, P., Schroter, S., et al. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med. 2013;10(2):e1001381.CrossRefGoogle ScholarPubMed
van Smeden, M., de Groot, J. A., Nikolakopoulos, S., Bertens, L. C., Moons, K. G., Reitsma, J. B.. A generic nomogram for multinomial prediction models: theory and guidance for construction. Diagn Progn Res. 2017;1:8.CrossRefGoogle ScholarPubMed
van Smeden, M., Reitsma, J. B., Riley, R. D., Collins, G. S., Moons, K. G.. Clinical prediction models: diagnosis versus prognosis. J Clin Epidemiol. 2021;132:142–45.CrossRefGoogle ScholarPubMed
Sauerbrei, W., Royston, P., Binder, H.. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med. 2007;26(30):5512–28.CrossRefGoogle ScholarPubMed
Sterne, J. A., White, I. R., Carlin, J. B., Spratt, M., Royston, P., Kenward, M. G., et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.CrossRefGoogle ScholarPubMed
Riley, R. D., Ensor, J., Snell, K. I. E., Harrell, F. E., Martin, G. P., Reitsma, J. B., et al. Calculating the sample size required for developing a clinical prediction model. BMJ. 2020;368:m441.CrossRefGoogle ScholarPubMed
Collins, G. S., Reitsma, J. B., Altman, D. G., Moons, K. G.. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD). BMC Med. 2015;13(1).CrossRefGoogle ScholarPubMed
Riley, R. D., Ensor, J., Snell, K. I., Debray, T. P., Altman, D. G., Moons, K. G., et al. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ. 2016;353:i3140.CrossRefGoogle ScholarPubMed
Moons, K. G., Royston, P., Vergouwe, Y., Grobbee, D. E., Altman, D. G.. Prognosis and prognostic research: what, why, and how? BMJ. 2009;338:b375.CrossRefGoogle Scholar
Ogasawara, M., Aoki, K., Okada, S., Suzumori, K.. Embryonic karyotype of abortuses in relation to the number of previous miscarriages. Fertil Steril. 2000;73(2):300304.CrossRefGoogle Scholar
Quenby, S., Gallos, I. D., Dhillon-Smith, R. K., Podesek, M., Stephenson, M. D., Fisher, J., et al. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss. Lancet. 2021;397(10285):1658–67.CrossRefGoogle ScholarPubMed
Youssef, A., van der Hoorn, M. L. P, Dongen, M., Visser, J., Bloemenkamp, K., van Lith, J., et al. External validation of a frequently used prediction model for ongoing pregnancy in couples with unexplained recurrent pregnancy loss. Hum Reprod. 2022;37(3):393–99.CrossRefGoogle ScholarPubMed
Kolte, A. M., Westergaard, D., Lidegaard, Ø., Brunak, S., Nielsen, H. S.. Chance of live birth: a nationwide, registry-based cohort study. Hum Reprod. 2021;36(4):1065–73.CrossRefGoogle ScholarPubMed
du Fossé, N. A., van der Hoorn, M. P., de Koning, R., Mulders, A., van Lith, J. M. M., le Cessie, S., et al. Toward more accurate prediction of future pregnancy outcome in couples with unexplained recurrent pregnancy loss: taking both partners into account. Fertil Steril. 2022;117(1):144–52.CrossRefGoogle ScholarPubMed
van der Hoorn, M. L., Lashley, L.. Value of ethnicity or race in more accurate prediction of future outcome in couples with recurrent miscarriages. Reprod Sci. 2022;29(7):2079–80.CrossRefGoogle ScholarPubMed
van Diepen, M., Ramspek, C. L., Jager, K. J., Zoccali, C., Dekker, F. W.. Prediction versus aetiology: common pitfalls and how to avoid them. Nephrol Dial Transplant. 2017;32(Suppl 2):ii15.CrossRefGoogle Scholar
du Fossé, N. A., van der Hoorn, M. P., van Lith, J. M. M, le Cessie, S., Lashley, E.. Advanced paternal age is associated with an increased risk of spontaneous miscarriage: a systematic review and meta-analysis. Hum Reprod Update. 2020;26(5):650–69.CrossRefGoogle ScholarPubMed
Youssef, A., van der Hoorn, M. L., van Eekelen, R., van Geloven, N., van Wely, M., Smits, M. A. J., et al. Development of the OPAL prediction model for prediction of live birth in couples with recurrent pregnancy loss: protocol for a prospective and retrospective cohort study in the Netherlands. BMJ Open. 2022;12(9):e062402.CrossRefGoogle ScholarPubMed
van Eekelen, R., Scholten, I., Tjon-Kon-Fat, R. I., van der Steeg, J. W., Steures, P., Hompes, P., et al. Natural conception: repeated predictions over time. Hum Reprod. 2017;32(2):346–53.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×