Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T02:30:39.190Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 February 2015

Michael I. Friswell
Affiliation:
Swansea University
John E. T. Penny
Affiliation:
Aston University
Seamus D. Garvey
Affiliation:
University of Nottingham
Arthur W. Lees
Affiliation:
Swansea University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, O. N. L., Brandon, J. A., and Cohen, A. M. (1994). Remark on the determination Remark on the determination of compliance coefficients at the crack section of a uniform beam with circular cross section, Journal of Sound and Vibration 169, 570–574.CrossRefGoogle Scholar
Adams, M. L. (2001). Rotating Machinery Vibration: From Analysis to Troubleshooting (Marcel Dekker, New York).Google Scholar
Adiletta, G., Guido, A. R., and Rossi, C. (1996). Chaotic motions of a rigid rotor in short journal bearings, Nonlinear Dynamics 10, 251–269.CrossRefGoogle Scholar
Alauze, C., der Hagopian, J., Gaudiller, L., and Voinis, P. (2001). Active balancing of turbo-machinery: Application to large shaft lines, Journal of Vibration and Control 7, 249–278.CrossRefGoogle Scholar
Al-Bedoor, B. O. (2000). Transient torsional and lateral vibrations of unbalanced rotors with rotor-to-stator rubbing, Journal ofSound and Vibration 229, 627–645.CrossRefGoogle Scholar
Al-Bedoor, B. O. (2001). Modeling the coupled torsionaland lateralvibrations ofunbalanced rotors, Computer Methods in Applied Mechanics and Engineering 190, 5999–6008.CrossRefGoogle Scholar
Alford, J. (1965). Protecting turbomachinery from self-excited rotor whirl, Journal of Engineering for Power 87, 333–344.Google Scholar
Al-Hussain, K. M. (2003). Dynamic stability of two rigid rotors connected by a flexible coupling with angular misalignment, Journal ofSound and Vibration 266, 217–234.CrossRefGoogle Scholar
Al-Hussain, K. M., and Redmond, I. (2002). Dynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment, Journal ofSound and Vibration 249, 483–498.CrossRefGoogle Scholar
Alolah, R., Badr, M. A., and Abdel-Halim, M. A. (1999). A comparative study on the starting methods of three-phase wound-rotor induction motors: Part I, IEEE Transactions on Energy Conversion 14, 918–922.Google Scholar
Ananda Rao, M., Srinivas, J., Rama Raju, V. B. V., and Kumar, K. V. S. S. (2003). Coupled torsional-lateral vibration analysis of geared shaft systems using mode synthesis, Journal of Sound and Vibration 261, 359–364.CrossRefGoogle Scholar
Arkkio, A., Antila, M., Pokki, K., Simon, A., and Lantto, E. (2000). Electromagnetic force on a whirling cage rotor, IEE Proceedings: Electric Power Applications 147, 353–360.Google Scholar
Astley, R. J. (1992). Finite Elements in Solids and Structures (Chapman and Hall, London).Google Scholar
Balbahadur, A. C., and Kirk, R. G. (2002a). Part I: Theoretical model for a synchronous thermal instability operating in overhung rotors, Sixth International Conference on Rotor Dynamics, IFToMM: Sydney, Australia.Google Scholar
Balbahadur, A. C., and Kirk, R. G. (2002b). Part II: Case studies for a synchronous thermal instability operating in overhung rotors, Sixth International Conference on Rotor Dynamics, IFToMM: Sydney, Australia.Google Scholar
Bathe, K.-J., and Wilson, E. L. (1976). Numerical Methods in Finite Element Analysis (Prentice-Hall, Englewood Cliffs, N.J.).Google Scholar
Bazoune, A., and Khulief, Y. A. (1992). A finite beam element for vibration analysis of rotating tapered Timoshenko beams, Journal ofSound and Vibration 156, 141–164.CrossRefGoogle Scholar
Bazoune, A., Khulief, Y. A., and Stephen, N. G. (1999). Furtherresults for modal characteristics of rotating papered Timoshenko beams, Journal ofSound and Vibration 219, 157–174.CrossRefGoogle Scholar
Bently, D. E. (1974). Forced subrotative speed dynamic action of rotating machinery, ASME Paper No. 74-Pet-16.Google Scholar
Bickford, W. B. (1994). A First Course in Finite Element Analysis, Second Edition (Richard D. Irwin, Burr Ridge, IL).Google Scholar
Bickford, W. B., and Nelson, H. D. (1985). A conical beam finite element for rotor dynamics analysis, Journal of Vibrations and Acoustics, Stress and Reliability in Design 107, 421–430.Google Scholar
Bigret, R. (2004). Balancing. In Encyclopedia of Vibration, S. G., Braun, editor-in-chief (Elsevier), pp. 111-124.Google Scholar
Bishop, R. E. D., and Gladwell, G. M. L. (1959). The vibration and balancing of an unbalanced flexible rotor, Journal of Mechanical Engineering Science 1, 66–77.CrossRefGoogle Scholar
Black, H. F. (1969). Effects of hydraulic forces in annular pressure seals on the vibrations of centrifugal pump rotors, Journal of Mechanical Engineering Science 11, 206–213.CrossRefGoogle Scholar
Blevins, R. D. (1979). Formulas for Natural Frequency andMode Shape (Van Nostrand Rein-hold, New York).Google Scholar
Blough, J. R. (2003). Development and analysis of time-variant discrete Fourier transform order tracking, Mechanical Systems and Signal Processing 17, 1185–1199.CrossRefGoogle Scholar
Cameron, A. (1976). Basic Lubrication Theory (Ellis Horwood, Chichester, England).Google Scholar
Cartmell, M. P. (1990). Introduction to Linear, Parameteric and Nonlinear Vibrations (Chapman and Hall, London).Google Scholar
Caughey, T. K., and O'Kelly, M. E. (1965). Classical normal modes in damped linear systems, Journal ofApplied Mechanics 32, 583–588.Google Scholar
Chatelet, E., D'Ambrosio, F., and Jacquet-Richardet, G. (2005). Toward global modeling approaches for dynamic analyses of rotating assemblies of turbo-machines, Journal ofSound and Vibration 282, 163–178.CrossRefGoogle Scholar
Childs, D. (1993). Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis (Wiley, New York).Google Scholar
Childs, D. W., Graviss, M., and Rodriguez, L. E. (2007). Influence of groove size on the static and rotordynamic characteristics of short, laminar-flow annular seals, Journal of Tribology 129, 398–406.CrossRefGoogle Scholar
Choy, F. K., and Padovan, J. (1987). Nonlinear transient analysis of rotor-casing rub events, Journal ofSound and Vibration 113, 529–545.CrossRefGoogle Scholar
Choy, F. K., Padovan, J., and Li, W. H. (1988). Rub in high-performance turbo-machinery, modeling, solution methodology, and signature analysis, Mechanical Systems and Signal Processing 2, 113–133.CrossRefGoogle Scholar
Choy, F. K., Padovan, J., and Qian, W. (1993). Effects of foundation excitation on multiple rub interactions in turbo-machinery, Journal ofSound and Vibration 164, 349–363.CrossRefGoogle Scholar
Chu, F., and Zhang, Z. (1997). Periodic, quasiperiodic, and chaotic vibrations of a rub-impact rotor system supported on oil-film bearings, International Journal of Engineering Science 5, 963–973.Google Scholar
Chu, F., and Zhang, Z. (1998). Bifurcation and chaos in a rub-impact Jeffcott rotor system, Journal ofSound and Vibration 210, 1–18.CrossRefGoogle Scholar
Chun, S.-B., and Lee, C.-W. (1996). Vibration analysis of shaft-bladed disk system by using substructure synthesis and assumed modes method, Journal ofSound and Vibration 189, 587–608.CrossRefGoogle Scholar
Chung, J., Heo, J. W., and Han, C. S. (2003). Natural frequencies of a flexible spinning disk misaligned with the axis of rotation, Journal of Sound and Vibration 260, 763–775.CrossRefGoogle Scholar
Chung, J., and Ro, D. S. (1999). Dynamic analysis of an automatic dynamic balancer for rotating mechanisms, Journal ofSound and Vibration 228, 1035–1056.CrossRefGoogle Scholar
Combescure, D., and Lazarus, A. (2008). Refined finite element modeling for the vibration analysis of large rotating machines: Application to the gas turbine modular helium reactor power conversion unit, Journal ofSound and Vibration 318, 1262–1280.CrossRefGoogle Scholar
Cook, R. D., Malkus, D. S., Plesha, M. E., and Witt, R. J. (2001). Concepts and Applications of Finite Element Analysis, Fourth Edition (John Wiley, N.Y.).Google Scholar
Cookson, R. A., and Kossa, S. S. (1979). The effectiveness of squeeze-film damper bearings supporting rigid rotors without a centralizing spring, International Journal ofMechanical Sciences 21, 639–650.Google Scholar
Cookson, R. A., and Kossa, S. S. (1980). The effectiveness of squeeze-film damper bearings supporting flexible rotors without a centralizing spring, International Journal of Mechanical Sciences 22, 313–324.CrossRefGoogle Scholar
Cooley, J. W., and Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series, Mathematics ofComputation 19, 297–301.Google Scholar
Cowper, G. R. (1966). The shear coefficient in Timoshenko's beam theory, Journal of Applied Mechanics 33, 335–340.CrossRefGoogle Scholar
Craig, R. R. (1981). Structural Dynamics: An Introduction to Computer Methods (John Wiley, New York).Google Scholar
Craig, R. R., and Bampton, M. C. C. (1968). Coupling of substructures for dynamic analysis, AIAA Journal 6, 1313–1319.Google Scholar
Darpe, A. K., Gupta, K., and Chawla, A. (2004). Coupled bending, longitudinal and torsional vibrations of a cracked rotor, Journal ofSound and Vibration 269, 33–60.CrossRefGoogle Scholar
Davies, W. G. R., and Mayes, I. W. (1984). The vibrational behavior analysis of a multi-shaft, multi-bearing system in the presence of a propagating transverse crack, Journal of Vibration, Acoustics, Stress, and Reliability in Design 106, 146–153.CrossRefGoogle Scholar
Davis, R., Henshell, R. D., and Warburton, G. B. (1972). A Timoshenko beam element, Journal ofSound and Vibration 22, 475–487.CrossRefGoogle Scholar
Dawe, D. J. (1984). Matrix and Finite Element Displacement Analysis of Structures (Oxford University Press, Oxford, England).Google Scholar
de Castro, H. F., Cavalca, K. L., and Nordmann, R. (2008). Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model, Journal ofSound and Vibration, 317, 273-293.CrossRefGoogle Scholar
Delamare, J., Rulliere, E., and Yonnet, J. P. (1995). Classification and synthesis of permanent-magnet bearing configurations, IEEE Transactions on Magnetics 31, 4190–4192.CrossRefGoogle Scholar
Dimarogonas, A. D. (1976). Vibration Engineering (West Publishers, St Paul, MN).Google Scholar
Dimarogonas, A. D. (1994). Author's reply to Abraham et al. (1994), Journal ofSound and Vibration 169, 575–576.CrossRefGoogle Scholar
Dimarogonas, A. D. (1996). Vibration of cracked structures: A State-of-the-art review, Engineering Fracture Mechanics 55, 831–857.CrossRefGoogle Scholar
Dimarogonas, A. D., and Papadopoulos, C. A. (1983). Vibration of cracked shafts in bending, Journal ofSound and Vibration 91, 583–593.CrossRefGoogle Scholar
Ding, Q., and Leung, A. Y. T. (2005). Numerical and experimental investigations on flexible multi-bearing rotor dynamics, Journal ofVibration and Acoustics 127, 408–415.Google Scholar
Ding, X. J., Yang, Y. L., Chen, W., Huang, S. H., and Zheng, C. G. (2006). Calculation method of efficiency factor in Alfords force, Journal of Power and Energy 220, 169-177.CrossRefGoogle Scholar
Dorf, R. C., and Bishop, R. H. (2008). Modern Control Systems, Eleventh Edition (Pearson Prentice Hall, Upper Saddle River, N.J.).Google Scholar
Drew, S. J., Hesterman, D. C., and Stone, B. J. (1999). The torsional excitation of variable inertia effects in a reciprocating engine. Mechanical Systems and Signal Processing 13, 125–144.CrossRefGoogle Scholar
Earnshaw, S. (1842). On the nature of the molecular forces which regulate the constitution of the luminiferous ether, Transactions ofthe Cambridge Philosophy Society 7, 97–112.Google Scholar
Eckert, L., Schmied, J., and Ziegler, A. (2006). Case history and analysis of the spiral vibration of a large turbogenerator using three different heat input models, 7th IFToMM Conference on Rotor Dynamics; Vienna, Austria; 25-28 September.Google Scholar
Edney, S. L., Fox, C. H. J., and Williams, E. J. (1990). Tapered Timoshenko finite elements for rotor dynamics analysis, Journal ofSound and Vibration 137, 463–481.CrossRefGoogle Scholar
Edwards, S., Lees, A. W., and Friswell, M. I. (1999). The influence of torsion on rotor-stator contact in rotating machinery, Journal ofSound and Vibration 225, 767–778.CrossRefGoogle Scholar
Ehrich, F. F. (1988). High-order subharmonic response of high-speed rotors in bearing clearance, Journal ofVibration Acoustics Stress and Reliability in Design 110, 9–16.Google Scholar
Ehrich, F. F. (1992). Observations of subcritical, superharmonic and chaotic response in ro-tordynamics, Journal of Vibration and Acoustics 114, 93–100.CrossRefGoogle Scholar
Ehrich, F. F. (1999). Handbook of Rotordynamics (Krieger Publishing Company, Malabar, FL).Google Scholar
Ertas, B. H., and Vance, J. M. (2002). The effect of static and dynamic misalignment on ball-bearing radial stiffness, 38th A1AAASME/SAEASEE Joint Propulsion Conference & Exhibit, 7-10 July 2002, Indianapolis, IN, AIAA 2002-4160.Google Scholar
Fagan, M. J. (1992). Finite Element Analysis: Theory and Practice (Longman Scientific and Technical, Harlow, Essex, England).Google Scholar
Fenner, R. T. (1989). Mechanics of Solids (Blackwell Scientific Publications, Oxford).Google Scholar
Foiles, W. C., and Allaire, P. E. (2006). Single-plane and multi-plane balancing using only amplitude, 7th IFToMM Conference on Rotordynamics; Vienna, Austria; Paper Number 182.Google Scholar
Foiles, W. C., Allaire, P. E., and Gunter, E. J. (1998). Review: Rotor balancing, Shock and Vibration 5, 325–336.CrossRefGoogle Scholar
Foiles, W. C., and Bently, D. E. (1998). Balancing with phase only (single-plane and multiplane), Journal ofVibration, Acoustics, Stress, and Reliability in Design 110, 151–157.Google Scholar
Friswell, M. I., Garvey, S. D., and Penny, J. E. T. (1995). Model reduction using dynamic and iterated IRS techniques, Journal ofSound and Vibration 186, 311–323.CrossRefGoogle Scholar
Friswell, M. I., Garvey, S. D., and Penny, J. E. T. (1998a). The convergence of the iterated IRS method, Journal ofSound and Vibration 211, 123–132.CrossRefGoogle Scholar
Friswell, M. I., Garvey, S. D., Penny, J. E. T., and Smart, M. G. (1998b). Computing critical speeds for rotating machines with speed-dependent bearing properties, Journal ofSound and Vibration 213, 139–158.CrossRefGoogle Scholar
Friswell, M. I., and Penny, J. E. T. (1994). The accuracy of jump frequencies in series solutions of the response of a duffing oscillator, Journal of Sound and Vibration 169, 261–269.CrossRefGoogle Scholar
Friswell, M. I., Penny, J. E. T., Garvey, S. D., and Lees, A. W. (2001). Damping ratio and natural frequency bifurcations in rotating systems, Journal ofSound and Vibration 245, 960–967.CrossRefGoogle Scholar
Friswell, M. I., and Mottershead, J. E. (1995). Finite Element Model Updating in Structural Dynamics (Kluwer Academic Publishers Dordrecht, Netherlands).CrossRefGoogle Scholar
Friichtenicht, J., Jordon, H., and Seinsch, H. O. (1982). Exzentrizitats felder als Ursache von Laufinstabilitaten bei asynchronmaschinen, Archiv fiir Elektrotechnik 65, 271–292.Google Scholar
Garvey, S. D., Friswell, M. I., Williams, E. J., Lees, A. W., and Care, I. (2002). Robust balancing for rotating machines, IMechE Journal ofEngineering Science 216, 1117–1130.Google Scholar
Garvey, S. D., Penny, J. E. T. and Friswell, M. I. (1998). The relationship between the real and imaginary parts of complex modes, Journal ofSound and Vibration 212, 75–83.CrossRefGoogle Scholar
Garvey, S. D., Williams, E. J., Cotter, G., Davies, C., and Grum, N. (2005). Reductionofnoise effects for in situ balancing of rotors, Journal ofVibration and Acoustics 127, 234–246.Google Scholar
Gasch, R. (1976). Dynamic behavior of a simple rotor with a cross-sectional crack, IMechE Conference on Vibrations in Rotating Machinery, Cambridge, UK, 1976, Paper C178/76.Google Scholar
Gasch, R. (1993). A survey of the dynamic behavior of a simple rotating shaft with a transverse crack, Journal ofSound and Vibration 160, 313–332.CrossRefGoogle Scholar
Gasch, R., Markert, R., and Pfützner, H. (1979). Acceleration of unbalanced flexible rotors through the critical speeds, Journal ofSound and Vibration 63, 393–409.CrossRefGoogle Scholar
Genta, G., and Delprete, C. (1995). Acceleration through critical speeds of an anisotropic, nonlinear, torsionally stiff rotor with many degrees of freedom, Journal of Sound and Vibration 180, 369–386.CrossRefGoogle Scholar
Genta, G., and Gugliotta, A. (1988). A conical element for finite element rotor dynamics, Journal ofSound and Vibration 120, 175–182.CrossRefGoogle Scholar
Genta, G., and Tonoli, A. (1997). A harmonic finite element for the analysis of flexural, torsional, and axial rotordynamic behavior of bladed arrays, Journal ofSound and Vibration 207, 693–720.CrossRefGoogle Scholar
Geradin, M., and Kill, N. (1984). A new approach to finite element modeling of flexible rotors, Engineering Computations 1, 52–64.CrossRefGoogle Scholar
Gibbons, C. B. (1976). Coupling misalignment forces, Proceedings ofthe Fifth Turbomachinery Symposium, College Station, TX, 111-116.Google Scholar
Glasgow, D. A., and Nelson, H. D. (1980). Stability analysis of rotor-bearing systems using component-mode synthesis, Journal ofMechanical Design 102, 352–359.Google Scholar
Goldman, P., and Muszyiiska, A. (1994a). Chaotic behavior of rotor-stator systems with rubs, Journal of Engineering for Gas Turbines and Power 116, 692–701.CrossRefGoogle Scholar
Goldman, P., and Muszynnska, A. (1994b). Dynamic effects in mechanical structures with gaps and impacting: Order and chaos, Journal of Vibration and Acoustics 116, 541–547.CrossRefGoogle Scholar
Golub, G. H., and van Loan, C. F. (1996). Matrix Computations (The Johns Hopkins University Press, Baltimore, MD).Google Scholar
Goodman, L. E., and Sutherland, J. G. (1951). Natural frequencies of continuous beams of uniform span length, Journal of Applied Mechanics 18, 217–218.Google Scholar
Goodwin, M. J. (1989). Dynamics of Rotor-Bearing Systems (Unwin Hyman, London).Google Scholar
Goodwin, M. J., Hooke, C. J., and Penny, J. E. T. (1983). Controlling the dynamic characteristics of a hydrostatic bearing by using a pocket-connected accumulator, Proceedings of the IMechE, 197 C, 255-258.Google Scholar
Goodwin, M. J., Penny, J. E. T., and Hooke, C. J. (1984). Variable impedance bearings for turbo-generator rotors, Proceedings of the Third International Conference on Vibrations in Rotating Machinery; York, England; September 1984, Paper C288/8, 535-541.Google Scholar
Gordis, J. H. (1992). An analysis of the improved reduced system (IRS) model reduction procedure, Proceedings of the 10th International Modal Analysis Conference; San Diego, CA, 471-479.Google Scholar
Green, K., Champneys, A. R., Friswell, M. I., and Munoz, A. M. (2008). Investigation of a multi-ball automatic dynamic balancing mechanism for eccentric rotors, Royal Society Philosophical Transactions A 366(1866), 705-728.CrossRefGoogle ScholarPubMed
Grieve, D. W., and McShane, I. E. (1989). Torque pulsations on inverter-fed induction motors. Proceedings of the Fourth International Conference on Electrical Machines and Drives, London, IEE Conference Publication 310, 328-333.Google Scholar
Guyan, R. J. (1965). Reduction of stiffness and mass matrices, AIAA Journal 3, 380.CrossRefGoogle Scholar
Hamrock, B. J., Schmid, S. R., and Jacobson, B. O. (2004). Fundamentals of Fluid Film Lubrication (Marcel Dekker, NJ).CrossRefGoogle Scholar
Han, D. J. (2007). Generalized modal balancing for nonisotropic rotor systems, Mechanical Systems and Signal Processing 21, 2137–2160.CrossRefGoogle Scholar
Han, S. M., Benaroya, H., and Wei, T. (1999). Dynamics oftransversely vibratingbeams using four engineering theories, Journal of Sound and Vibration 225, 935–988.CrossRefGoogle Scholar
Harris, T. A. (2001). Rolling Bearing Analysis, Fourth Edition (John Wiley and Son, New York).Google Scholar
Henry, T. A., and Okah-Avae, B. E. (1976). Vibrations in cracked shafts, IMechE Conference on Vibrations in Rotating Machinery, Cambridge, UK, 15-19.Google Scholar
Henshell, R. D., and Ong, J. H. (1975). Automatic masters for eigenvalue economisation, Earthquake Engineering and Structural Dynamics, 3, 375-383.Google Scholar
Heo, J. W., Chung, J., and Choi, K. (2003). Dynamic time responses of a flexible spinning disk misaligned with the axis of rotation, Journal ofSound and Vibration 262, 25–44.Google Scholar
Herzog, R., Buhler, P., Gahler, C., and Larsonneur, R. (1996). Unbalance compensationusing generalized notch-filters in the multivariable feedback of magnetic bearings, IEEE Transactions on Control Systems Technology 4, 580–586.CrossRefGoogle Scholar
Hoa, S. V. (1979). Vibration ofa rotating beamwith tip mass, Journal of Sound and Vibration 67, 369–381.CrossRefGoogle Scholar
Horn, R. A., and Johnson, C. R. (1985). Matrix Analysis (Cambridge University Press England).CrossRefGoogle Scholar
Hu, H. Y., Jiang, P. L., and Yu, L. (2002). Coupled axial-lateral-torsional dynamics of a rotor-bearing system geared by spur bevel gears, Journal ofSound and Vibration 254, 427–446.Google Scholar
Hutchinson, J. R. (2001). Shear coefficients for Timoshenko beam theory, Journal of Applied Mechanics 68, 87–92.Google Scholar
Inman, D. J. (2006). Vibration with Control (John Wiley and Sons, Chichester, England).CrossRefGoogle Scholar
Inman, D. J. (2008). Engineering Vibration, Third Edition (Pearson Prentice Hall, Upper Saddle River, N.J.).Google Scholar
Irons, B. M., and Ahmad, S. (1980). Techniques of Finite Elements (Ellis Horwood, Chichester, England).Google Scholar
ISO (1997). ISO 1940-2:1997, Mechanical Vibration: Balance Quality Requirements of Rigid Rotors, Part 2. Balance Errors.
ISO (1998). ISO 11342:1998, Mechanical Vibration: Balancing, Methods and Criteria for the Mechanical Balancing of Flexible Rotors.
ISO (2003). ISO 1940-1:2003, Mechanical Vibration: Balance Quality Requirements for Rigid Rotors in a Constant (Rigid) State, Part 1. Specification and Verification of Balance Tolerances.
ISO (2007). ISO 19499:2007, Mechanical Vibration: Balancing, Guidance on the Use and Application of Balancing Standards.
Jang, G. H., Lee, S. H., and Jung, M. S. (2002). Free vibration analysis of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft using finite element method and substructuring synthesis, Journal ofSound and Vibration 251, 59–78.CrossRefGoogle Scholar
Jeffcott, H. H. (1919). The lateral vibration of loaded shifts in the neighborhood of a whirling speed: The effects of want of balance, Philosophical Magazine Series 6, 37, 304-314.Google Scholar
Jei, Y. G., and Lee, C. W. (1992). Does curve veering occur in the eigenvalue problem of rotors? Journal of Vibration and Acoustics 114, 32–36.CrossRef
Jia, H. S., and Chun, S. B. (1997). Evaluation of the longitudinal coupled vibrations in rotating, flexible disks-spindle systems, Journal of Sound and Vibration 208, 175–187.CrossRefGoogle Scholar
Jordan, D. W., and smith, P. (1977). Nonlinear Ordinary Differential Equations (Oxford University Press, Oxford, England).
Jun, O. S., Eun, H. J., Earmme, Y. Y., and Lee, C.-W. (1992). Modeling and vibration analysis of a simple rotor with a breathing crack, Journal ofSound and Vibration 155, 273–290.CrossRefGoogle Scholar
Kang, Y., Shih, Y.-P., and Lee, A.-C. (1992). Investigation on the steady-state responses of asymmetric rotors, Journal ofVibration and Acoustics 114, 194–208.Google Scholar
Keiner, H., and Gadala, M. S. (1988). Comparison of different modeling techniques to simulate the vibration of a cracked rotor, Journal ofSound and Vibration 254, 1012–1024.Google Scholar
Kellenburger, W. (1980). Spiral vibrations due to seal rings in turbo-generators: Thermally induced interaction between rotor and stator. Journal of Mechanical Design 102, 177–184.Google Scholar
Kellenberger, W., and Rihak, P. (1988). Bimodal (complex) balancing of large turbogenerator rotors having large or small unbalance. IMechE Conference on Vibrations in Rotating Machinery, Edinburgh, 479-486, Paper Number C292/88.Google Scholar
Keogh, P. S., and Morton, P. G. (1993). Journal bearing differential heating evaluation with influence on rotordynamic behavior. Proceedings of the Royal Society: Mathematical and Physical Sciences 441, 527–548.CrossRefGoogle Scholar
Keogh, P. S., and Morton, P. G. (1994). The dynamic nature of rotor thermal bending due to unsteady lubricant shearing within a bearing, Proceedings of the Royal Society: Mathematical and Physical Sciences 445, 273–290.CrossRefGoogle Scholar
Kessler, C., and Kim, J. (2001). Concept of directional natural mode for vibration analysis of rotors using complex variable descriptions, Journal ofSound and Vibration 239, 545–555.CrossRefGoogle Scholar
Khulief, Y. A. (1989). Vibration frequencies of a rotating tapered beam with end mass, Journal ofSound and Vibration 134, 87–97.CrossRefGoogle Scholar
Khulief, Y. A., and Bazoune, A. (1992). Frequencies of rotating tapered Timoshenko beams with different boundary conditions, Computers and Structures 42, 781–795.CrossRefGoogle Scholar
Khulief, Y. A., and Yi, L. J. (1988). Lead lag vibrational frequencies of a rotating beam with end mass, Computers and Structures 29, 1075–1085.CrossRefGoogle Scholar
Kill, N. (2008). Application of multistage cyclic symmetry to rotordynamics, Ninth International Conference on Vibrations in Rotating Machinery, Exeter, UK, 8-10 September 2008, 267-276, IMechE Paper C663/015/08.Google Scholar
Kirk, R. G., and Guo, Z. (2005). Morton effect analysis: Theory, program and case study. 3rd International Symposium on Stability Control in Rotating Machinery, Cleveland, OH.Google Scholar
Knospe, C. R., Hope, R. W., Fedigan, S., and Williams, R. (1995). Experiments in the control of unbalance response using magnetic bearings, Mechanics 5, 385–400.Google Scholar
Knospe, C. R., Hope, R. W., Tamer, S. M., and Fedigan, S. J. (1996). Robustness of adaptive unbalance control of rotors with magnetic bearings, Journal ofVibration and Control 2, 33–52.Google Scholar
Kramer, E. (1993). Dynamics of Rotors and Foundations (Springer-Verlag, Berlin, Germany).CrossRefGoogle Scholar
Kumar, D. S., Sujatha, C., and Ganesan, N. (1997). Disc flexibility effects in rotor-bearing systems, Computers and Structures 62, 715–719.CrossRefGoogle Scholar
Lalanne, M., and Ferraris, G. (1999). Rotordynamics Prediction in Engineering, Second Edition (John Wiley and Sons, New York).Google Scholar
Laurenson, R. M. (1976). Modal analysis of rotating flexible structures, AIAA Journal 14, 1444–1450.Google Scholar
Lee, C.-W. (1993). Vibration Analysis ofRotors (Kluwer Academic Publishers, Dordrecht, Netherlands).CrossRefGoogle Scholar
Lee, A. S., Ha, J. W., and Choi, D. H. (2003). Coupled lateral and torsional vibration characteristics of a speed increasing geared rotor system, Journal ofSound and Vibration 263, 725–742.CrossRefGoogle Scholar
Lee, C.-W., and Chun, S.-B. (1998). Vibration analysis of a rotor with multiple flexible disks using assumed-modes method, Journal ofVibration and Acoustics 120, 87–94.Google Scholar
Lee, C.-W., Joh, Y.-D., and Kim, Y.-D. (1990). Automatic modal balancing of flexible rotors during operation: Computer-controlled balancing head, Journal ofMechanical Engineering Science 204, 19–28.Google Scholar
Lees, A. W., and Friswell, M. I. (2001). The vibration signature of chordal cracks in asymmetric rotors, 19th International Modal Analysis Conference, Orlando, FL, 124-129.Google Scholar
Lewis, F. M. (1932). Vibration during acceleration through a critical speed, Transactions of the American Society of Mechanical Engineers 54, 253–261.Google Scholar
Li, G. X., Lin, Z. L., and Allaire, P. E. (2008). Robust optimal balancing of high-speed machinery using convex optimization, Journal ofVibration and Acoustics 130, Article Number 031008.Google Scholar
Li, M., and Yu, L. (2001). Analysis of the coupled lateral torsional vibration of a rotor-bearing system with a misaligned gear coupling, Journal of Sound and Vibration 243, 283–300.CrossRefGoogle Scholar
Likins, P. W., Barbera, F. J., and Baddeley, V. (1973). Mathematical modeling of spinning elastic bodies for modal analysis, AIAA Journal 11, 1251–1258.Google Scholar
Lim, T. C., and Singh, R. (1990). Vibration transmission through rolling-element bearings, Part 1: Bearing stiffness formulation, Journal of Sound and Vibration 139, 179–199.Google Scholar
Lim, T. C., and Singh, R. (1994). Vibration transmission through rolling-element bearings, Part V: Effect of distributed contact load in roller-bearing stiffness matrix, Journal of Sound and Vibration 169, 547–553.CrossRefGoogle Scholar
Lindfield, G. R., and Penny, J. E. T. (2000). Numerical Methods Using MATLAB (Prentice Hall Upper Saddle River, New Jersey).Google Scholar
Lum, K. Y., Coppola, V. T., and Bernstein, D. (1996). Adaptive autocentering control for an active magnetic bearing supporting a rotor with unknown mass imbalance, IEEE Transactions on Control Systems Technology, 4, 587-597.Google Scholar
Luo, Z., Sun, X., and Fawcett, J. N. (1996). Coupled torsional-lateral-axial vibration analysis of geared shaft systems using substructure synthesis, Mechanism and Machine Theory 31, 345–352.CrossRefGoogle Scholar
Matsukura, Y., Kiso, M., Inoue, T., and Tomisawa, M. (1979). On the balancing convergence of flexible rotors, with special reference to asymmetric rotors, Journal of Sound and Vibration 63, 419–428.CrossRefGoogle Scholar
Mayes, I. W., and Davies, W. G. R. (1976). The vibrational behavior ofa rotating shaft system containing a transverse crack, IMechE Conference on Vibrations in Rotating Machinery, Cambridge, UK, 53-64.Google Scholar
Mayes, I. W., and Davies, W. G. R. (1984). Analysis of the response of a multirotor-bearing system containing a transverse crack, Journal of Vibration, Acoustics, Stress, and Reliability in Design 106, 139–145.CrossRefGoogle Scholar
Meirovitch, L. (1967). Analytical Methods in Vibrations (Macmillan, New York).Google Scholar
Meirovitch, L. (1986). Elements ofVibration Analysis, Second Edition (McGraw-Hill, New York).Google Scholar
Merrill, E. F. (1994). Dynamics of AC electrical machines. IEEE Transactions on Industry Applications 30, 277–285.CrossRefGoogle Scholar
Mohan, S., and Hahn, E. J. (1974). Design of squeeze-film damper supports for rigid rotors, Journal ofEngineering for Industry 96, 976–982.Google Scholar
Moon, F. C. (2004). Chaotic Vibrations, Second Edition (John Wiley and Sons, N.Y.).CrossRefGoogle Scholar
Morton, P. G. (2008). Unstable shaft vibrations arising from thermal effects due to oil shearing between stationary and rotating elements, Ninth International Conference on Vibrations in Rotating Machinery, Exeter, England, 383-392.Google Scholar
Muszynnska, A. (1984). Partial lateral rotor to stator rubs, 3rd International Conference on Vibrations in Rotating Machinery; York, UK; Paper C281/84, 327-335.Google Scholar
Muszynnska, A. (1989). Rotor to stationary element rub-related vibration phenomena in rotating machinery: Literature survey, Shock and Vibration Digest 21, 3–11.CrossRefGoogle Scholar
Muszynnska, A. (2005). Rotordynamics (CRC Press, Taylor and Francis, Boca Raton, FL).CrossRefGoogle Scholar
NAFEMS (1986). A Finite Element Primer (NAFEM, East Kilbride, Glasgow, U.K.).
Nandi, A., and Neogy, S. (2001). Modeling of rotors with three-dimensional solid finite elements, Journal ofStrain Analysis for Engineering Design 36, 359–371.Google Scholar
Nelson, H. D. (1980). A finite rotating shaft element using Timoshenko beam theory, Journal ofMechanical Design 102, 793–803.Google Scholar
Nelson, H. D., and McVaugh, J. M. (1976). The dynamics of rotor-bearing systems using finite elements, Journal of Engineering for Industry 98, 593–599.CrossRefGoogle Scholar
Newkirk, B. L. (1926). Shaft rubbing: Relative freedom of rotor shafts from sensitiveness to rubbing contact when running above their critical speeds. Mechanical Engineering 48, 830–832.Google Scholar
Newkirk, B. L., and Taylor, H. D. (1925). Shaft-whipping due to oil action in journal bearings, General Electric Review 28, 559–568.Google Scholar
Newland, D. E. (1984). An Introduction to Random Vibrations and Spectral Analysis, Second Edition (Longman Scientific and Technical, Harlow England).Google Scholar
Newland, D. E. (1989). Mechanical Vibration Analysis and Computation (Longman Scientific and Technical, Harlow England).Google Scholar
Newmark, N. M. (1959). A method of computation for structural dynamics, ASCE Journal of Engineering Mechanics 85, 67–94.Google Scholar
O'Callahan, J. C. (1989). A procedure for an improved reduced system (IRS) model, Proceedings of the 7th International Modal Analysis Conference; Las Vegas, NV; 1721.Google Scholar
O'Callahan, J. C., Avitabile, P., and Riemer, R. (1989). System equivalent reduction expansion process (SEREP), Proceedings ofthe 7th International Modal Analysis Conference; Las Vegas, NV, 29-37.Google Scholar
Ostachowicz, W. M., and Krawczuk, M. (1992). Coupled torsional and bending vibrations of a rotor with an open crack, Archive ofApplied Mechanics 62, 191–201.Google Scholar
Papadopoulos, C. A. (2004). Some comments on the calculation of the local flexibility of cracked shafts, Journal of Sound and Vibration 278, 1205–1211.CrossRefGoogle Scholar
Papadopoulos, C. A., and Dimarogonas, A. D. (1987). Coupled longitudinal and bending vibrations of a rotating shaft with an open crack, Journal ofSound and Vibration 117, 81–93.CrossRefGoogle Scholar
Parkinson, A. G. (1965). The vibrationand balancingofshaftrotatinginasymmetricbearings, Journal ofSound and Vibration 2, 477–501.Google Scholar
Parkinson, A. G. (1966). On balancing of shafts with axial asymmetry, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences 294(1436), 66–79.Google Scholar
Parkinson, A. G. (1967). An introduction to the vibration of rotating flexible shafts, Bulletin ofMechanical Engineering Education 6, 47–62.Google Scholar
Parkinson, A. G. (1991). Balancing of rotating machinery, Proceedings of the Institution of Mechanical Engineers, Part C, Journal ofMechanical Engineering Science 205, 53–66.Google Scholar
Parkinson, A. G., Darlow, M. S., and Smalley, A. J. (1980). A theoretical introduction to the development of a unified approach to flexible rotor balancing, Journal of Sound and Vibration 68, 489–506.CrossRefGoogle Scholar
Pasricha, M. S., and Carnegie, W. D. (1976). Effects of variable inertia on the damped torsional vibrations of diesel-engine systems, Journal of Sound and Vibration 46, 339–345.CrossRefGoogle Scholar
Pasricha, M. S., and Carnegie, W. D. (1979). Formulation of the equations ofdynamic motion including the effects of variable inertia on the torsional vibrations in reciprocating engines, Journal ofSound and Vibration 66, 181–186.CrossRefGoogle Scholar
Pasricha, M. S., and Hassan, A. Y. (1997). Effects of dampingon secondary resonances in torsional vibrations of a two degree of freedom system - a variable inertia aspect in reciprocating engines, Sixth International Conference on Recent Advances in Structural Dynamics, Southampton, UK, 693-707.Google Scholar
Paz, M. (1984). Dynamic condensation, AIAA Journal 22, 724–727.CrossRefGoogle Scholar
Penny, J. E. T., and Friswell, M. I. (2002). Simplified modeling of rotor cracks, ISMA 27; Leuven, Belgium; 607-615.Google Scholar
Perkins, N. C., and Mote, C. D. (1986). Comments on curve veering in eigenvalue problems, Journal ofSound and Vibration 106, 451–463.CrossRefGoogle Scholar
Petyt, M. (1990). Introduction to Finite Element Vibration Analysis (Cambridge University Press).CrossRefGoogle Scholar
Pilkey, W. D. (2005). Formulas for Stress, Strain, and Structural Matrices, Second Edition (John Wiley & Sons, Inc., Hoboken, NJ).Google Scholar
Porter, B. (1965). Nonlinear torsional vibration of a two-degree-of-freedom system having variable inertia, Journal ofMechanical Engineering Science 7, 101–113.Google Scholar
Proctor, M. P., and Gunter, E. J. (2005). Nonlinear whirl response of a high-speed seal test rotor with marginal and extended squeeze-film dampers, NASA Report, TM-2005-213808, August 2005, ISCORMA-3; Cleveland, OH; 19-23 September 2005.Google Scholar
Qu, Z.-Q. (2004). Model Order Reduction Techniques: With Applications in Finite Element Analysis (Springer-Verlag, UK).CrossRefGoogle Scholar
Rades, M. (1998). Rotor-bearing model order reduction, 5thIFToMM, Darmstadt, Germany, 148-159.Google Scholar
Rao, S. S. (1990). Mechanical Vibrations, Second Edition (Addison-Wesley, Reading, MA).Google Scholar
Rao, J. S., Shiau, T. N., and Chang, J. R. (1998). Theoretical analysis of lateral response due to torsional excitation of geared rotors, Mechanism and Machine Theory 33, 761–783.CrossRefGoogle Scholar
Rieger, N. F. (1986). Balancing of Rigid and Flexible Rotors, The Shock and Vibration Information Center, Washington, DC.Google Scholar
Saavedra, P. N., and Cuitino, L. A. (2002). Vibration analysis of rotor for crack identification, Journal ofVibration and Control 8, 51–67.Google Scholar
Saito, S., and Azuma, T. (1983). Balancing of flexible rotors by the complex modal method, Journal ofVibrations, Acoustics, Stress, and Reliability in Design 15, 94–100.Google Scholar
Sawicki, J. T., Montilla-Bravo, A., and Gosiewski, Z. (2003). Thermo-mechanical behavior of rotor with rubbing, International Journal ofRotating Machinery 9, 41–47.Google Scholar
Schneider, H. (2000). Exchangeability of rotor modules: A new balancing procedure for rotors in a flexible state, Seventh International Conference on Vibrations in Rotating Machinery; Nottingham, UK; Paper Number C576/018/2000, 101-108.Google Scholar
Sekhar, A. S. (2004). Crack identification in a rotor system: A model-based approach, Journal ofSound and Vibration 270, 887–902.CrossRefGoogle Scholar
Sekhar, A. S., and Prabhu, B. S. (1995). Effects of coupling misalignment on vibrations of rotating machinery, Journal ofSound and Vibration 185, 655–671.CrossRefGoogle Scholar
Sinha, J. K., Friswell, M. I., and Lees, A. W. (2002). The identification of the unbalance and the foundation model of a flexible rotating machine from a single rundown, Mechanical Systems and Signal Processing 16, 255–271.CrossRefGoogle Scholar
Sinha, J. K., Lees, A. W., and Friswell, M. I. (2004). Estimating unbalance and misalignment of a flexible rotating machine from a single rundown, Journal of Sound and Vibration 272, 967–989.CrossRefGoogle Scholar
Sinou, J. J., and Lees, A. W. (2005). The influence of cracks in rotating shafts, Journal of Sound and Vibration 285, 1015–1037.CrossRefGoogle Scholar
Smith, D. M. (1969). Journal Bearings in Turbomachinery (Chapman and Hall, London).CrossRefGoogle Scholar
Somervaille, I. J. (1954). Balancing a rotating disk: Simple graphical construction, Engineering 177, 241–242.Google Scholar
Stephenson, R. W., Rouch, K. E., and Arora, R. (1989). Modeling rotors with axisymmetric solid harmonic elements, Journal ofSound and Vibration 131, 431–443.CrossRefGoogle Scholar
Tenhunen, A., Holopainen, T. P., and Arkkio, A. (2003). Impulse method to calculate the frequency response of the electromagnetic forces on whirling-cage rotors. IEE Proceedings: Electric Power Applications 150, 752–756.
Thomas, D. L., Wilson, J. M., and Wilson, R. R. (1973). Timoshenko beam finite elements, Journal ofSound and Vibration 31, 315–330.CrossRefGoogle Scholar
Thomas, H. J., Urlichs, K., and Wohlrab, R. (1976). Rotor instability in thermal turbomachines as a result of gap excitation, VGB Kraftwerkstechnik 56, 345–352.Google Scholar
Thompson, J. M. T., and Stewart, H. B. (1986). Nonlinear Dynamics and Chaos (John Wiley and SonsChichester, England).Google Scholar
Thompson, W. T. (1993). Theory ofVibration with Applications, Fourth Edition (Prentice Hall, Englewood Cliffs, NJ).CrossRefGoogle Scholar
Thomsen, J. J. (1997). Vibrations and Stability: Order and Chaos (McGraw-Hill, Maidenhead England).Google Scholar
Tondl, A. (1965). Some Problems of Rotor Dynamics (Chapman and Hall, London).Google Scholar
Tondl, A., Ruijgrok, T., Verhulst, F., and Nabergoj, R. (2000). Autoparametric Resonances in Mechanical Systems (Cambridge University Press, England).Google Scholar
Turhan, O., and Bulut, G. (2006). Linearly coupled shaft-torsional and blade-bending vibrations in multistage rotor-blade systems, Journal ofSound and Vibration 296, 292–318.CrossRefGoogle Scholar
Untaroiu, C. D., Allaire, P. E., and Foiles, W. C. (2008). Balancing of flexible rotors using convex optimization techniques: Optimum min-max LMI influence coefficient balancing, Journal of Vibration and Acoustics 130, Article Number 021006.CrossRefGoogle Scholar
Van de Vegte, J. (1981). Balancing of flexible rotors during operation, Journal of Mechanical Engineering Science 23, 257–261.CrossRefGoogle Scholar
Van de Vegte, J., and Lake, R. T. (1978). Balancing of rotating systems during operation, Journal ofSound and Vibration 57, 225–235.CrossRefGoogle Scholar
Verstege, S. (1998). Oil whip in transient operating conditions conditions: Case history, analysis, and remedial action, Fifth International Conference on Rotor Dynamics; Darmstadt, Germany; 525-535.Google Scholar
Vold, H., and Leuridan, J. (1995). High-resolution order tracking at extreme slew rates using Kalman tracking filters, Shock and Vibration 2, 507–515.CrossRefGoogle Scholar
von Groll, G., and Ewins, D. J. (2001). The harmonic balance method with arc-length continuation in rotor-stator contact problems, Journal of Sound and Vibration 241, 223–233.CrossRefGoogle Scholar
von Groll, G., and Ewins, D. J. (2002). A mechanism of low subharmonic response in rotor-stator contact: Measurements and simulations, Journal of Vibration and Acoustics 124, 350–358.CrossRefGoogle Scholar
Wauer, J., and Suherman, S. (1998). Vibration suppression of rotating shafts passing through resonances by switching shaft stiffness, Journal of Vibration and Acoustics 120, 170–180.CrossRefGoogle Scholar
Wilkinson, J. H. (1965). The Algebraic Eigenvalue Problem (Clarendon Press, Oxford).Google Scholar
White, M. F. (1979). Rolling-element bearing vibration transfer characteristics: Effect of stiffness, Journal ofApplied Mechanics 46, 677–684.Google Scholar
Wolff, F. H., and Molnar, A. J. (1985). Variable frequency drives multiply torsional vibration problems, Power 129, 83–85.Google Scholar
Wu, J.-S., and Yang, I.-H. (1995). Computer method for torsion-and-flexure-coupled forced vibration of shafting system with damping, Journal ofSound and Vibration 180, 417–435.CrossRefGoogle Scholar
Xu, M., and Marangoni, R. D. (1994a). Vibration analysis of a motor flexible coupling rotor system subject to misalignment and unbalance. 1. Theoretical-model and analysis, Journal of Sound and Vibration 176, 663–679.Google Scholar
Xu, M., and Marangoni, R. D. (1994b). Vibration analysis of a motor flexible coupling rotor system subject to misalignment and unbalance. 2. Experimental validation, Journal of Sound and Vibration 176, 681–691.Google Scholar
Yokoyama, T. (1988). Free vibration characteristics of rotating Timoshenko beams, International Journal ofMechanical Sciences 30, 743–755.Google Scholar
Zhou, S., and Shi, J. (2001). Active balancing and vibration control of rotating machinery: A survey, Shock and Vibration Digest 33, 361–371.Google Scholar
Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. Z. (2005). The Finite Element Method, Sixth Edition (Elsevier Butterworth-Heinemann, Oxford).Google Scholar
Zorzi, E. S., and Nelson, H. D. (1980). The dynamics of rotor-bearing systems with axial torque: A finite element approach, Journal of Mechanical Design 102, 158-161.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×