Book contents
- Frontmatter
- Contents
- Preface
- Names and addresses of participants
- Conference photograph
- Spiral waves in Saturn's rings
- Structure of the Uranian rings
- Planetary rings: theory
- Simulations of light scattering in planetary rings
- Accretion discs around young stellar objects and the proto-Sun
- The β Pictoris disc: a planetary rather than a protoplanetary one
- Optical polarimetry and thermal imaging of the disc around β Pictoris
- Observations of discs around protostars and young stars
- VLA observations of ammonia toward molecular outflow sources
- Derivation of the physical properties of molecular discs by an MEM method
- Masers associated with discs around young stars
- The nature of polarisation discs around young stars
- The correlation between the main parameters of the interstellar gas (including Salpeter's spectrum of masses) as a result of the development of turbulent Rossby waves
- Discs in cataclysmic variables and X-ray binaries
- A disc instability model for soft X-ray transients containing black holes
- X-ray variability from the accretion disc of NGC 5548
- Viscously heated coronae and winds around accretion discs
- Optical emission line profiles of symbiotic stars
- The effect of formation of Fell in winds confined to discs for luminous stars
- Observational evidence for accretion discs in active galactic nuclei
- The fuelling of active galactic nuclei by non-axisymmetric instabilities
- The circum-nuclear disc in the Galactic centre
- Non-axisymmetric instabilities in thin self-gravitating differentially rotating gaseous discs
- Non-linear evolution of non-axisymmetric perturbations in thin self-gravitating gaseous discs
- Eccentric gravitational instabilities in nearly Keplerian discs
- Gravity mode instabilities in accretion tori
- The stability of viscous supersonic shear flows – critical Reynolds numbers and their implications for accretion discs
- Asymptotic analysis of overstable convective modes of uniformly rotating stars
- Polytropic models in very rapid rotation
- Distribution and kinematics of gas in galaxy discs
- Are the smallest galaxies optically invisible?
- Can we understand the constancy of rotation curves?
- How well do we know the surface density of the Galactic disc?
- On the heating of the Galactic disc
- The bulge-disc interaction in galactic centres
- Dynamics of the large-scale disc in NGC 1068
- The flow of gas in barred galaxies
- The warped dust lane in A1029-459
- Structure and evolution of dissipative non-planar galactic discs
- Non-axisymmetric magnetic fields in turbulent gas discs
- Non-axisymmetric disturbances in galactic discs
- Spiral instabilities in N-body simulations
- Long-lived spiral waves in N-body simulations
- Overstable modes in stellar disc systems
- Galactic seismological approach to the spiral galaxy NGC 3198
- Characteristics of bars from 3-D simulations
- Spirals and bars in linear theory
- Stellar hydrodynamical solutions for Eddington discs
- Theory of gradient instabilities of the gaseous Galactic disc and rotating shallow water
- Stability criteria for gravitating discs
- Stability of two-component galactic discs
- The smoothed particle hydrodynamics of galactic discs
- Tidal triggering of active disc galaxies by rich clusters
- The formation of spiral arms in early stages of galaxy interaction
- Formation of leading spiral arms in retrograde galaxy encounters
- The influence of galaxy interactions on stellar bars
- Disc galaxies – work in progress in Gothenburg
- Motion of a satellite in a disc potential
- Observer's summary
- Common processes and problems in disc dynamics
- Citation index
- Index of authors
- Subject index
Simulations of light scattering in planetary rings
Published online by Cambridge University Press: 06 July 2010
- Frontmatter
- Contents
- Preface
- Names and addresses of participants
- Conference photograph
- Spiral waves in Saturn's rings
- Structure of the Uranian rings
- Planetary rings: theory
- Simulations of light scattering in planetary rings
- Accretion discs around young stellar objects and the proto-Sun
- The β Pictoris disc: a planetary rather than a protoplanetary one
- Optical polarimetry and thermal imaging of the disc around β Pictoris
- Observations of discs around protostars and young stars
- VLA observations of ammonia toward molecular outflow sources
- Derivation of the physical properties of molecular discs by an MEM method
- Masers associated with discs around young stars
- The nature of polarisation discs around young stars
- The correlation between the main parameters of the interstellar gas (including Salpeter's spectrum of masses) as a result of the development of turbulent Rossby waves
- Discs in cataclysmic variables and X-ray binaries
- A disc instability model for soft X-ray transients containing black holes
- X-ray variability from the accretion disc of NGC 5548
- Viscously heated coronae and winds around accretion discs
- Optical emission line profiles of symbiotic stars
- The effect of formation of Fell in winds confined to discs for luminous stars
- Observational evidence for accretion discs in active galactic nuclei
- The fuelling of active galactic nuclei by non-axisymmetric instabilities
- The circum-nuclear disc in the Galactic centre
- Non-axisymmetric instabilities in thin self-gravitating differentially rotating gaseous discs
- Non-linear evolution of non-axisymmetric perturbations in thin self-gravitating gaseous discs
- Eccentric gravitational instabilities in nearly Keplerian discs
- Gravity mode instabilities in accretion tori
- The stability of viscous supersonic shear flows – critical Reynolds numbers and their implications for accretion discs
- Asymptotic analysis of overstable convective modes of uniformly rotating stars
- Polytropic models in very rapid rotation
- Distribution and kinematics of gas in galaxy discs
- Are the smallest galaxies optically invisible?
- Can we understand the constancy of rotation curves?
- How well do we know the surface density of the Galactic disc?
- On the heating of the Galactic disc
- The bulge-disc interaction in galactic centres
- Dynamics of the large-scale disc in NGC 1068
- The flow of gas in barred galaxies
- The warped dust lane in A1029-459
- Structure and evolution of dissipative non-planar galactic discs
- Non-axisymmetric magnetic fields in turbulent gas discs
- Non-axisymmetric disturbances in galactic discs
- Spiral instabilities in N-body simulations
- Long-lived spiral waves in N-body simulations
- Overstable modes in stellar disc systems
- Galactic seismological approach to the spiral galaxy NGC 3198
- Characteristics of bars from 3-D simulations
- Spirals and bars in linear theory
- Stellar hydrodynamical solutions for Eddington discs
- Theory of gradient instabilities of the gaseous Galactic disc and rotating shallow water
- Stability criteria for gravitating discs
- Stability of two-component galactic discs
- The smoothed particle hydrodynamics of galactic discs
- Tidal triggering of active disc galaxies by rich clusters
- The formation of spiral arms in early stages of galaxy interaction
- Formation of leading spiral arms in retrograde galaxy encounters
- The influence of galaxy interactions on stellar bars
- Disc galaxies – work in progress in Gothenburg
- Motion of a satellite in a disc potential
- Observer's summary
- Common processes and problems in disc dynamics
- Citation index
- Index of authors
- Subject index
Summary
Statement of the problem
Most studies of light scattering in planetary rings have assumed layers which are many particles thick, plane parallel, and homogeneous. However, real rings may be thin, vertically warped, and clumpy. We have developed a ray tracing code which calculates the light scattered by an arbitrary distribution of particles. This approach promises to clarify a number of puzzling observations of the Saturnian and Uranian rings.
(1) Many studies have concluded that Saturn's rings are many particles thick (e.g. Lumme et al. 1983), whereas dynamical calculations predict that optically thick rings should be physically thin (Wisdom & Tremaine 1988 and references therein). Lumme et al. argue that the particles in Saturn's B Ring fill only 2% of the volume of the ring, while Wisdom and Tremaine predict a filling factor of 20% or more.
The claim that Saturn's rings are thick is based on their observed opposition surge, a rapid brightening (0.3 mag in the V band) which occurs at phase angles below about 1.5°. The surge is attributed to particles covering their own shadows near opposition. Shadowing can occur either between discrete particles, or within the surface structure of a particle. The range in phase angle over which the brightening takes place is proportional to the volume filling factor of the ring or surface. Thus the very narrow opposition effect of Saturn's rings implies a very porous ring, unless individual particles backscatter extremely strongly.
- Type
- Chapter
- Information
- Dynamics of Astrophysical Discs , pp. 25 - 26Publisher: Cambridge University PressPrint publication year: 1989
- 2
- Cited by