Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T10:06:55.413Z Has data issue: false hasContentIssue false

6 - The conjugative transposons: Integrative gene transfer elements

Published online by Cambridge University Press:  06 August 2009

Adam P. Roberts
Affiliation:
Division of Microbial Diseases, Eastman Dental Institute for Oral Health Care Sciences, University College London (UCL), University of London
Peter Mullany
Affiliation:
Division of Microbial Diseases, Eastman Dental Institute for Oral Health Care Sciences, University College, London (UCL), University of London
Peter Mullany
Affiliation:
University College London
Get access

Summary

Until the late 1970s, it was believed that the majority of gene transfer events in bacteria were mediated by plasmids. However, at that time, Don Clewell and co-workers isolated a strain of Enterococcus faecalis that could transfer tetracycline resistance in the absence of plasmid DNA (Tomich et al., 1979). The element responsible was an 18-kb segment of DNA that was integrated into the bacterial chromosome. As well as being capable of conjugative transfer to a new host, this element was also capable of intercellular transposition, so the term conjugative transposon was coined and this particular element was designated Tn916 (Franke and Clewell, 1981). Subsequently, it has become apparent that conjugative transposons are probably ubiquitous and are highly heterogeneous. This heterogeneity in form and function has led to some confusion and controversy about what a conjugative transposon actually is and how these elements should be named. This issue has more recently been addressed in a number of review articles (Burrus et al., 2002; Mullany et al., 2002; Osborn and Boltner, 2002). Therefore, for the purposes of this chapter, we define conjugative transposons in the loosest possible terms, as discrete DNA elements, usually integrated into the bacterial genome, which can transfer from a donor to a recipient cell by conjugation.

Because conjugative transposons have such a broad host range, they are very important in bacterial evolution (i.e., in disseminating genes between distantly related organisms, induction of deletion, rearrangements) and as a substrate for recombination events (Beaber et al., 2002; Mahairas and Minion, 1989; O'Keefe et al., 1999; Swartley et al., 1993).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

No author. (1993) Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae O139 synonym Bengal. Cholera Working Group, International Centre for Diarrhoeal Diseases Research, BangladeshLancet 342: 387–390CrossRef
Ayoubi, P., Kilic, A. O., and Vijayakumar, M. N. (1991) Tn5253, the pneumococcal omega (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tn5251 and Tn5252. J. Bacteriol. 173: 1617–1622CrossRefGoogle ScholarPubMed
Bahl, M. I., Sorensen, S. J., Hansen, L. H., and Licht, T. R. (2004) Effect of tetracycline on transfer and establishment of the tetracycline-inducible conjugative transposon Tn916 in the guts of gnotobiotic rats. Appl. Environ. Microbiol. 70: 758–764CrossRefGoogle ScholarPubMed
Beaber, J. W., Hochhut, B., and Waldor, M. K. (2002) Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J. Bacteriol. 184: 4259–4269CrossRefGoogle Scholar
Beaber, J. W., Hochhut, B., and Waldor, M. K. (2004) SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427: 72–74CrossRefGoogle ScholarPubMed
Bertram, J., Stratz, M., and Durre, P. (1991) Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria. J. Bacteriol. 173: 443–448CrossRefGoogle ScholarPubMed
Boltner, D., MacMahon, C., Pembroke, J. T., Strike, P., and Osborn, A. M. (2002) R391: A conjugative integrating mosaic comprised of phage, plasmid, and transposon elements. J. Bacteriol. 184: 5158–5169CrossRefGoogle ScholarPubMed
Bonheyo, G., Graham, D., Shoemaker, N. B., and Salyers, A. A. (2001) Transfer region of a Bacteroides conjugative transposon, CTnDOT. Plasmid 45: 41–51CrossRefGoogle ScholarPubMed
Bringel, F., Alstine, G. L., and Scott, J. R. (1991) A host factor absent from Lactococcus lactis subspecies lactis MG1363 is required for conjugative transposition. Mol. Microbiol. 5: 2983–2993CrossRefGoogle ScholarPubMed
Burrus, V., Pavlovic, G., Decaris, B., and Guedon, G. (2002) Conjugative transposons: The tip of the iceberg. Mol. Microbiol. 46: 601–610CrossRefGoogle ScholarPubMed
Celli, J., and Trieu-Cuot, P. (1998) Circularization of Tn916 is required for expression of the transposon-encoded transfer functions: Characterization of long tetracycline-inducible transcripts reading through the attachment site. Mol. Microbiol. 28: 103–117CrossRefGoogle ScholarPubMed
Cheng, Q., Paszkiet, B. J., Shoemaker, N. B., Gardner, J. F., and Salyers, A. A. (2000) Integration and excision of a Bacteroides conjugative transposon, CTnDOT. J. Bacteriol. 182: 4035–4043CrossRefGoogle ScholarPubMed
Cheng, Q., Sutanto, Y., Shoemaker, N. B., Gardner, J. F., and Salyers, A. A. (2001) Identification of genes required for excision of CTnDOT, a Bacteroides conjugative transposon. Mol. Microbiol. 41: 625–632CrossRefGoogle ScholarPubMed
Chung, W. O., Young, K., Leng, Z., and Roberts, M. C. (1999) Mobile elements carrying ermF and tetQ genes in gram-positive and gram-negative bacteria. J. Antimicrob. Chemother. 44: 329–335CrossRefGoogle ScholarPubMed
Coetzee, J. N., Datta, N., and Hedges, R. W. (1972) R factors from Proteus rettgeri. J. Gen. Microbiol. 72: 543–552CrossRefGoogle ScholarPubMed
Connolly, K. M., Iwahara, M., and Clubb, R. T. (2002) Xis protein binding to the left arm stimulates excision of conjugative transposon Tn916. J. Bacteriol. 184: 2088–2099CrossRefGoogle ScholarPubMed
Franke, A. E., and Clewell, D. B. (1981) Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J. Bacteriol. 145: 494–502Google ScholarPubMed
Garnier, F., Taourit, S., Glaser, P., Courvalin, P., and Galimand, M. (2000) Characterization of transposon Tn1549, conferring VanB-type resistance in Enterococcus spp. Microbiology 146 (Pt 6): 1481–1489CrossRefGoogle ScholarPubMed
Geist, R. T., Okada, N., and Caparon, M. G. (1993) Analysis of Streptococcus pyogenes promoters by using novel Tn916-based shuttle vectors for the construction of transcriptional fusions to chloramphenicol acetyltransferase. J. Bacteriol. 175: 7561–7570CrossRefGoogle ScholarPubMed
Gupta, A., Vlamakis, H., Shoemaker, N., and Salyers, A. A. (2003) A new Bacteroides conjugative transposon that carries an ermB gene. Appl. Environ. Microbiol. 69: 6455–6463CrossRefGoogle ScholarPubMed
Hachler, H., Kayser, F. H., and Berger-Bachi, B. (1987) Homology of a transferable tetracycline resistance determinant of Clostridium difficile with Streptococcus (Enterococcus) faecalis transposon Tn916. Antimicrob. Agents Chemother. 31: 1033–1038CrossRefGoogle ScholarPubMed
Halula, M., and Macrina, F. L. (1990) Tn5030: A conjugative transposon conferring clindamycin resistance in Bacteroides species. Rev. Infect. Dis. 12 (Suppl 2): S235–S242CrossRefGoogle ScholarPubMed
Hinerfeld, D., and Churchward, G. (2001a) Specific binding of integrase to the origin of transfer (oriT) of the conjugative transposon Tn916. J. Bacteriol. 183: 2947–2951CrossRefGoogle Scholar
Hinerfeld, D., and Churchward, G. (2001b) Xis protein of the conjugative transposon Tn916 plays dual opposing roles in transposon excision. Mol. Microbiol. 41: 1459–1467CrossRefGoogle Scholar
Hochhut, B., Beaber, J. W., Woodgate, R., and Waldor, M. K. (2001) Formation of chromosomal tandem arrays of the SXT element and R391, two conjugative chromosomally integrating elements that share an attachment site. J. Bacteriol. 183: 1124–1132CrossRefGoogle ScholarPubMed
Hochhut, B., Jahreis, K., Lengeler, J. W., and Schmid, K. (1997) CTnscr94, a conjugative transposon found in enterobacteria. J. Bacteriol. 179: 2097–2102CrossRefGoogle ScholarPubMed
Hussain, H., Roberts, A. P., and Mullany, , (2005). Generation of an erythromycin sensitive derivative of Clostridium difficile strain 630 (630Δerm) and demonstration that the conjugative transposon Tn916ΔE enters the genome of this strain at multiple sites. J. Med. Micro. 52(pts): 137–141CrossRefGoogle Scholar
Jaworski, D. D., and Clewell, D. B. (1995) A functional origin of transfer (oriT) on the conjugative transposon Tn916. J. Bacteriol. 177: 6644–6651CrossRefGoogle ScholarPubMed
Leffers, G. G. Jr., and Gottesman, S. (1998) Lambda Xis degradation in vivo by Lon and FtsH. J. Bacteriol. 180: 1573–1577Google ScholarPubMed
Li, L. Y., Shoemaker, N. B., and Salyers, A. A. (1995) Location and characteristics of the transfer region of a Bacteroides conjugative transposon and regulation of transfer genes. J. Bacteriol. 177: 4992–4999CrossRefGoogle ScholarPubMed
Lu, F., and Churchward, G. (1994) Conjugative transposition: Tn916 integrase contains two independent DNA binding domains that recognize different DNA sequencesEMBO J. 13: 1541–1548Google ScholarPubMed
Lu, F., and Churchward, G. (1995) Tn916 target DNA sequences bind the C-terminal domain of integrase protein with different affinities that correlate with transposon insertion frequency. J. Bacteriol. 177: 1938–1946CrossRefGoogle Scholar
Mahairas, G. G., and Minion, F. C. (1989) Transformation of Mycoplasma pulmonis: Demonstration of homologous recombination, introduction of cloned genes, and preliminary description of an integrating shuttle system. J. Bacteriol. 171: 1775–1780CrossRefGoogle ScholarPubMed
Manganelli, R., Provvedi, R., Berneri, C., Oggioni, M. R., and Pozzi, G. (1998) Insertion vectors for construction of recombinant conjugative transposons in Bacillus subtilis and Enterococcus faecalis. FEMS Microbiol. Lett. 168: 259–268CrossRefGoogle ScholarPubMed
Marra, D., and Scott, J. R. (1999) Regulation of excision of the conjugative transposon Tn916. Mol. Microbiol. 31: 609–621CrossRefGoogle ScholarPubMed
Moitoso, D., and Landy, A. (1991) A switch in the formation of alternative DNA loops modulates lambda site-specific recombination. Proc. Natl. Acad. Sci. U S A 88: 588–592CrossRefGoogle Scholar
Mullany, P., Pallen, M., Wilks, M., Stephen, J. R., and Tabaqchali, S. (1996) A group II intron in a conjugative transposon from the gram-positive bacterium, Clostridium difficile. Gene 174: 145–150CrossRefGoogle Scholar
Mullany, P., Roberts, A. P., and Wang, H. (2002) Mechanism of integration and excision in conjugative transposons. Cell Mol. Life Sci. 59: 2017–2022CrossRefGoogle ScholarPubMed
Mullany, P., Wilks, M., Lamb, I., Clayton, C., Wren, B., and Tabaqchali, S. (1990) Genetic analysis of a tetracycline resistance element from Clostridium difficile and its conjugal transfer to and from Bacillus subtilis. J. Gen. Microbiol. 136 (Pt 7): 1343–1349CrossRefGoogle ScholarPubMed
Mullany, P., Wilks, M., and Tabaqchali, S. (1991) Transfer of Tn916 and Tn916 delta E into Clostridium difficile: Demonstration of a hot-spot for these elements in the C. difficile genome. FEMS Microbiol. Lett. 63: 191–194Google Scholar
Natarajan, M. R., and Oriel, P. (1991) Conjugal transfer of recombinant transposon Tn916 from Escherichia coli to Bacillus stearothermophilus. Plasmid 26: 67–73CrossRefGoogle ScholarPubMed
Norgren, M., Caparon, M. G., and Scott, J. R. (1989) A method for allelic replacement that uses the conjugative transposon Tn916: Deletion of the emm6.1 allele in Streptococcus pyogenes JRS4. Infect. Immun. 57: 3846–3850Google ScholarPubMed
O'Keeffe, T., Hill, C., and Ross, R. P. (1999) In situ inversion of the conjugative transposon Tn916 in Enterococcus faecium DPC3675. FEMS Microbiol. Lett. 173: 265–271CrossRefGoogle ScholarPubMed
Osborn, A. M., and Boltner, D. (2002) When phage, plasmids, and transposons collide: Genomic islands, and conjugative- and mobilizable-transposons as a mosaic continuum. Plasmid 48: 202–212CrossRefGoogle ScholarPubMed
Pembroke, J. T., MacMahon, C., and McGrath, B. (2002) The role of conjugative transposons in the Enterobacteriaceae. Cell Mol. Life Sci. 59: 2055–2064CrossRefGoogle ScholarPubMed
Pembroke, J. T., and Murphy, D. B. (2000) Isolation and analysis of a circular form of the IncJ conjugative transposon-like elements, R391 and R997: Implications for IncJ incompatibility. FEMS Microbiol. Lett. 187: 133–138CrossRefGoogle ScholarPubMed
Rauch, P. J., and Vos, W. M. (1992a) Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J. Bacteriol. 174: 1280–1287CrossRefGoogle Scholar
Rauch, P. J., and Vos, W. M. (1992b) Transcriptional regulation of the Tn5276-located Lactococcus lactis sucrose operon and characterization of the sacA gene encoding sucrose-6-phosphate hydrolase. Gene 121: 55–61CrossRefGoogle Scholar
Rauch, P. J., and Vos, W. M. (1994) Identification and characterization of genes involved in excision of the Lactococcus lactis conjugative transposon Tn5276. J. Bacteriol. 176: 2165–2171CrossRefGoogle ScholarPubMed
Roberts, A. P., Cheah, G., Ready, D., Pratten, J., Wilson, M., and Mullany, P. (2001a) Transfer of Tn916-like elements in microcosm dental plaques. Antimicrob. Agents Chemother. 45: 2943–2946CrossRefGoogle Scholar
Roberts, A. P., Hennequin, C., Elmore, M., Collignon, A., Karjalainen, T., Minton, N., and Mullany, P. (2003) Development of an integrative vector for the expression of antisense RNA in Clostridium difficile. J. Microbiol. Methods 55: 617–624CrossRefGoogle ScholarPubMed
Roberts, A. P., Johanesen, P. A., Lyras, D., Mullany, P., and Rood, J. I. (2001b) Comparison of Tn5397 from Clostridium difficile, Tn916 from Enterococcus faecalis and the CW459tet(M) element from Clostridium perfringens shows that they have similar conjugation regions but different insertion and excision modules. Microbiology 147: 1243–1251CrossRefGoogle Scholar
Roberts, A. P., Mullany, P. (2002) Unpublished data
Roberts, M. C., and Kenny, G. E. (1987) Conjugal transfer of transposon Tn916 from Streptococcus faecalis to Mycoplasma hominis. J. Bacteriol. 169: 3836–3839CrossRefGoogle ScholarPubMed
Rudy, C. K., Scott, J. R., and Churchward, G. (1997) DNA binding by the Xis protein of the conjugative transposon Tn916. J. Bacteriol. 179: 2567–2572CrossRefGoogle ScholarPubMed
Salyers, A. A., Shoemaker, N. B., and Li, L. Y. (1995) In the driver's seat: The Bacteroides conjugative transposons and the elements they mobilize. J. Bacteriol. 177: 5727–5731CrossRefGoogle ScholarPubMed
Scott, J. R. (1992) Sex and the single circle: Conjugative transposition. J. Bacteriol. 174: 6005–6010CrossRefGoogle ScholarPubMed
Scott, J. R., Bringel, F., Marra, D., Alstine, G., and Rudy, C. K. (1994) Conjugative transposition of Tn916: Preferred targets and evidence for conjugative transfer of a single strand and for a double-stranded circular intermediate. Mol. Microbiol. 11: 1099–1108CrossRefGoogle Scholar
Scott, J. R., and Churchward, G. G. (1995) Conjugative transposition. Annu. Rev. Microbiol. 49: 367–397CrossRefGoogle ScholarPubMed
Scott, J. R., Kirchman, P. A., and Caparon, M. G. (1988) An intermediate in transposition of the conjugative transposon Tn916. Proc. Natl. Acad. Sci. U S A 85: 4809–4813CrossRefGoogle ScholarPubMed
Sen, S., and Oriel, P. (1990) Transfer of transposon Tn916 from Bacillus subtilis to Thermus aquaticus. FEMS Microbiol. Lett. 55: 131–134CrossRefGoogle ScholarPubMed
Showsh, S. A., and Andrews, R. E. Jr. (1996) Functional comparison of conjugative transposons Tn916 and Tn925. Plasmid 35: 164–173CrossRefGoogle ScholarPubMed
Smith, M. C., and Thorpe, H. M. (2002) Diversity in the serine recombinasesMol. Microbiol. 44(2): 299–307CrossRefGoogle ScholarPubMed
Storrs, M. J., Poyart-Salmeron, C., Trieu-Cuot, P., and Courvalin, P. (1991) Conjugative transposition of Tn916 requires the excisive and integrative activities of the transposon-encoded integrase. J. Bacteriol. 173: 4347–4352CrossRefGoogle ScholarPubMed
Su, Y. A., He, P., and Clewell, D. B. (1992) Characterization of the tet(M) determinant of Tn916: Evidence for regulation by transcription attenuation. Antimicrob. Agents Chemother. 36: 769–778CrossRefGoogle ScholarPubMed
Swartley, J. S., McAllister, C. F., Hajjeh, R. A., Heinrich, D. W., and Stephens, D. S. (1993) Deletions of Tn916-like transposons are implicated in tetM-mediated resistance in pathogenic Neisseria. Mol. Microbiol. 10: 299–310CrossRefGoogle ScholarPubMed
Taylor, K. L., and Churchward, G. (1997) Specific DNA cleavage mediated by the integrase of conjugative transposon Tn916. J. Bacteriol. 179: 1117–1125CrossRefGoogle ScholarPubMed
Tomich, P. K., An, F. Y., Damle, S. P., and Clewell, D. B. (1979) Plasmid-related transmissibility and multiple drug resistance in Streptococcus faecalis subsp. zymogenes strain DS16. Antimicrob. Agents Chemother. 15: 828–830CrossRefGoogle Scholar
Toussaint, A., and Merlin, C. (2002) Mobile elements as a combination of functional modules. Plasmid 47: 26–35CrossRefGoogle Scholar
Vijayakumar, M. N., Priebe, S. D., Pozzi, G., Hageman, J. M., and Guild, W. R. (1986) Cloning and physical characterization of chromosomal conjugative elements in streptococci. J. Bacteriol. 166: 972–977CrossRefGoogle ScholarPubMed
Waldor, M. K., Tschape, H., and Mekalanos, J. J. (1996) A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J. Bacteriol. 178: 4157–4165CrossRefGoogle Scholar
Wang, H., Roberts, A. P., Lyras, D., Rood, J. I., Wilks, M., and Mullany, P. (2000a) Characterization of the ends and target sites of the novel conjugative transposon Tn5397 from Clostridium difficile: Excision and circularization is mediated by the large resolvase, TndX. J. Bacteriol. 182: 3775–3783CrossRefGoogle Scholar
Wang, H., Roberts, A. P., and Mullany, P. (2000b) DNA sequence of the insertional hot spot of Tn916 in the Clostridium difficile genome and discovery of a Tn916-like element in an environmental isolate integrated in the same hot spot. FEMS Microbiol. Lett. 192: 15–20CrossRefGoogle Scholar
Whittle, G., Hund, B. D., Shoemaker, N. B., and Salyers, A. A. (2001) Characterization of the 13-kilobase ermF region of the Bacteroides conjugative transposon CTnDOT. Appl. Environ. Microbiol. 67: 3488–3495CrossRefGoogle ScholarPubMed
Whittle, G., Shoemaker, N. B., and Salyers, A. A. (2002a) Characterization of genes involved in modulation of conjugal transfer of the Bacteroides conjugative transposon CTnDOT 21. J. Bacteriol. 184: 3839–3847CrossRefGoogle Scholar
Whittle, G., Shoemaker, N. B., and Salyers, A. A. (2002b) The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell Mol. Life Sci. 59: 2044–2054CrossRefGoogle Scholar
Wojciak, J. M., Connolly, K. M., and Clubb, R. T. (1999) NMR structure of the Tn916 integrase–DNA complex. Nat. Struct. Biol. 6: 366–373Google ScholarPubMed
Woolley, R. C., Pennock, A., Ashton, R. J., Davies, A., and Young, M. (1989) Transfer of Tn1545 and Tn916 to Clostridium acetobutylicum. Plasmid 22: 169–174CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The conjugative transposons: Integrative gene transfer elements
    • By Adam P. Roberts, Division of Microbial Diseases, Eastman Dental Institute for Oral Health Care Sciences, University College London (UCL), University of London, Peter Mullany, Division of Microbial Diseases, Eastman Dental Institute for Oral Health Care Sciences, University College, London (UCL), University of London
  • Edited by Peter Mullany, University College London
  • Book: The Dynamic Bacterial Genome
  • Online publication: 06 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541544.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The conjugative transposons: Integrative gene transfer elements
    • By Adam P. Roberts, Division of Microbial Diseases, Eastman Dental Institute for Oral Health Care Sciences, University College London (UCL), University of London, Peter Mullany, Division of Microbial Diseases, Eastman Dental Institute for Oral Health Care Sciences, University College, London (UCL), University of London
  • Edited by Peter Mullany, University College London
  • Book: The Dynamic Bacterial Genome
  • Online publication: 06 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541544.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The conjugative transposons: Integrative gene transfer elements
    • By Adam P. Roberts, Division of Microbial Diseases, Eastman Dental Institute for Oral Health Care Sciences, University College London (UCL), University of London, Peter Mullany, Division of Microbial Diseases, Eastman Dental Institute for Oral Health Care Sciences, University College, London (UCL), University of London
  • Edited by Peter Mullany, University College London
  • Book: The Dynamic Bacterial Genome
  • Online publication: 06 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541544.006
Available formats
×