Published online by Cambridge University Press: 11 May 2021
This chapter describes the basic analytic concepts and operations which are invoked throughout the book. Mathematical models of sound wave motion in ducts come from the solutions of the linearized forms of the basic fluid dynamic equations of unsteady fluid flow in frequency and wavenumber domains. The process of linearization is discussed in depth and the frequency and wavenumber transformations are defined rigorously. A quantity that is often of interest in duct acoustics is the acoustic power transmitted in a duct. Calculation of time-averaged acoustic power transmitted in ducts is described a unified manner. Finally, we describe the mathematical link with the analyses presented in the book and linear system dynamics. These topics are collected in this preliminary chapter as primer and also to avoid interruption of the continuity of discussions on the principal subjects.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.