Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T18:43:41.467Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  27 October 2016

Jan-Hendrik Evertse
Affiliation:
Universiteit Leiden
Kálmán Győry
Affiliation:
Debreceni Egyetem, Hungary
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhtari, S. (2012), Representation of unity by binary forms, Trans. Amer. Math. Soc. 364, 2129–2155.Google Scholar
Akhtari, S. and Vaaler, J. (2015), Heights, regulators and Schinzel's determinantinequality, arXiv:1508.01969v2.
Akiyama, S., Brunotte, H. and Pethő, A. (2003), Cubic CNS polynomials, notes on aconjecture of W.J. Gilbert, J. Math. Anal. Appl. 281, 402–415.Google Scholar
Akiyama, S., Borbely, T., Brunotte, H., Pethő, A. and Thuswaldner, J.M. (2005), Generalized radix representations and dynamical systems I, Acta Math. Hungar. 108, 207–238.Google Scholar
Akizuki, S. and Ota, K. (2013), On power bases for rings of integers of relative Galoisextensions, Bull. London Math. Soc. 45, 447–452.Google Scholar
Amoroso, F. and Viada, E. (2009), Small points on subvarieties of a torus, Duke Math. J. 150, 407–442.Google Scholar
Archinard, G. (1974), Extensions cubiques cycliques de Q dont l'anneau des entiers estmonogène, Enseign. Math. 20, 179–203.Google Scholar
Artin, E. (1950), Questions de la base minimal dans la théorie des nombresalgébriques, Colloques Internat du Centre National Recherche Scientifique, No. 24, CNRS, Paris, pp. 19–20. Collected papers of Emil Artin, Reading (Mass.), 1965, 229–231.Google Scholar
Aschenbrenner, M. (2004), Ideal membership in polynomial rings over the integers, J. Amer. Math. Soc. 17, 407–442.Google Scholar
Baker, A. (1966), Linear forms in the logarithms of algebraic numbers, I, Mathematik. 13, 204–216.Google Scholar
Baker, A. (1967a), Linear forms in the logarithms of algebraic numbers, II, Mathematika 14, 102–107.Google Scholar
Baker, A. (1967b), Linear forms in the logarithms of algebraic numbers, III, Mathematik. 14, 220–228.Google Scholar
Baker, A. and Wustholz, G. (1993), Logarithmic forms and group varieties, J. Reine Angew. Math. 442, 19–62.Google Scholar
Barat, G., Berthe, V., Liardet, P. and Thuswaldner, J.M. (2006), Dynamical directionsin numeration, Numeration, pavages, substitutions, Ann. Inst. Fourier (Grenoble). 56, 1987–2092.Google Scholar
Bardestani, M. (2012), The density of a family of monogenic number fields, arXiv:1202.2047v1.
Bell, J.P. and Hare, K.G. (2009), On Z-modules of algebraic integers, Canad. J. Math. 61, 264–281.Google Scholar
Bell, J.P. and Hare, K.G. (2012), Corrigendum to “On Z-modules of algebraic integers,” Canad. J. Math. 64, 254–256.Google Scholar
Bell, J.P. and Nguyen, K.D. (2015), Some finiteness results on monogenic orders inpositive characteristic, arXiv:1508.07624v1.
Berczes, A. (2000), On the number of solutions of index form equations, Publ. Math. Debrece. 56, 251–262.Google Scholar
Berczes, A., Evertse, J.-H. and Győry, K. (2004), On the number of equivalence classesof binary forms of given degree and given discriminant, Acta Arith. 113, 363–399.Google Scholar
Berczes, A., Evertse, J.-H. and Győry, K. (2009), Effective results for linear equationsin two unknowns from a multiplicative division group, Acta Arith. 136, 331–349.Google Scholar
Berczes, A., Evertse, J.-H. and Győry, K. (2013), Multiply monogenic orders, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5). 12, 467–497.Google Scholar
Berczes, A., Evertse, J.-H. and Győry, K. (2014), Effective results for Diophantine equationsover finitely generated domains, Acta Arith. 163, 71–100.Google Scholar
Beresnevich, V., Bernik, V. and Gotze, F. (2010), The distribution of close conjugatealgebraic numbers, Compos. Math. 146, 1165–1179.Google Scholar
Beresnevich, V., Bernik, V. and Gotze, F. (2015), Integral polynomials with smalldiscriminants and resultants, arXiv:1501.05767v1.
Bernik, V., Gotze, F. and Kukso, O. (2008), Lower bounds for the number of integralpolynomials with given order of discriminant, Acta Arit. 133, 375–390.Google Scholar
Beukers, F. and Schlickewei, H.P. (1996), The equation x + y = 1 in finitely generatedgroups, Acta. Arith. 78, 189–199.Google Scholar
Bilu, Yu.F., Gaal, I. and Győry, K. (2004), Index form equations in sextic fields: a hardcomputation, Acta Arith. 115, 85–96.Google Scholar
Bilu, Yu.F. and Hanrot, G. (1996), Solving Thue equations of high degree, J. Number Theory. 60, 373–392.Google Scholar
Bilu, Yu.F. and Hanrot, G. (1999), Thue equations with composite fields, Acta Arith.. 88, 311–326.Google Scholar
Birch, B.J. and Merriman, J.R. (1972), Finiteness theorems for binary forms with givendiscriminant, Proc. London Math. Soc. 24, 385–394.Google Scholar
Bombieri, E. and Gubler, W. (2006), Heights in Diophantine Geometry, Cambridge University Press.
Bombieri, E. and Vaaler, J. (1983), On Siegel's/lemma, Invent. Math. 73, 11–32.Google Scholar
Borevich, Z.I. and Shafarevich, I.R. (1967), Number Theory, 2nd ed., Academic Press.
Borosh, I., Flahive, M., Rubin, D. and Treybig, B. (1989), A sharp bound for solutionsof linear Diophantine equations, Proc. Amer. Math. Soc. 105, 844–846.Google Scholar
Bosma, W., Cannon, J. and Playoust, C. (1997), The Magma algebra system, I. The userlanguage, J. Symbolic Comput. 24, 235–265.Google Scholar
Bourbaki, N. (1981), Éléments de Mathématiques: Algèbre, Masson.
Bourbaki, N. (1989), Elements of Mathematics: Commutative Algebra, Chapters 1–7, Springer Verlag.
Brauer, A., Brauer, R. and Hopf, H. (1926), Über die Irreduzibilität einiger speziellerKlassen von Polynomen, Jber. Deutsch. Math. Verein. 35, 99–112.Google Scholar
Bremner, A. (1988), On power bases in cyclotomic number fields, J. Number Theor. 28, 288–298.Google Scholar
Brindza, B. (1996), On large values of binary forms, Rocky Mountain J.Math. 26, 839–845.Google Scholar
Brindza, B., Evertse, J.-H. and Győry, K. (1991), Bounds for the solutions of some diophantineequations in terms of discriminants, J. Austral. Math. Soc. Ser.. 51, 8–26.Google Scholar
Brunotte, H. (2001), On trinomial bases of radix representations of algebraic integers, Acta Sci. Math. 67, 521–527.Google Scholar
Brunotte, H., Huszti, A. and Pethő, A. (2006), Bases of canonical number systems inquartic algebraic number fields, J. Theor. Nombres Bordeau. 18, 537–557.Google Scholar
Buchmann, J. and Ford, D. (1989), On the computation of totally real quartic fields ofsmall discriminant, Math. Comp.. 52, 161–174.Google Scholar
Bugeaud, Y. and Dujella, A. (2011), Root separation for irreducible integer polynomials, Bull. London Math. Soc. 43, 1239–1244.Google Scholar
Bugeaud, Y. and Dujella, A. (2014), Root separation for reducible integer polynomials, Acta Arith. 162, 393–403.Google Scholar
Bugeaud, Y. and Mignotte, M. (2004), On the distance between roots of integer polynomials, Proc. Edinb. Math. Soc. 47, 553–556.Google Scholar
Bugeaud, Y. and Mignotte, M. (2010), Polynomial root separation, Intern. J. Number Theor. 6, 587–602.Google Scholar
Cassels, J.W.S. (1959), An Introduction to the Geometry of Numbers, Springer Verlag.
Char, B.W., Geddes, K.O., Gonnet, G.H., Monagan, M.B., Watt, S.M. (eds.) (1988), MAPLE, Reference Manual, Watcom Publications, Waterloo, Canada.
Coates, J. (1969/1970), An effective p-adic analogue of a theorem of Thue III. Thediophantine equation y 2 = x 3 + k , Acta Arith.. 16, 425–435.
Cohen, H. (1993), A Course in Computational Algebraic Number Theory, Springer Verlag.
Cohen, H. (2000), Advanced Topics in Computational Number Theory, Springer Verlag.
del Corso, I., Dvornicich, R. and Simon, D. (2005), Decomposition of primes innon-maximal orders, Acta Arith. 120, 231–244.Google Scholar
Cougnard, J. (1988), Conditions nécessaires de monogénéité. Applications auxextensions cycliques de degré premier l ≥ 5 d'un corps quadratique imaginaire, J. London Math. Soc. 37, 73–87.Google Scholar
Cougnard, J. and Fleckinger, V. (1990), Modèle de Legendre d'une courbe elliptiqueà multiplication complexe et monogénéité d'anneaux d'entiers II. Acta Arith. 55, 75–81.Google Scholar
Cremona, J. (1999), Reduction of binary cubic and quartic forms, London Math. Soc. ISSN, 1461–1570.
Daberkow, M., Fieker, C., Kluners, J., Pohst, M., Roegner, K. and Wildanger, K. (1997), KANT V4, J. Symbolic Comput. 24, 267–283.Google Scholar
Dedekind, R. (1878), Über die Zusammenhang zwischen der Theorie der Ideale undder Theorie der höheren Kongruenzen, Abh. Konig. Ges. Wissen. Gottinge. 23, 1–23.Google Scholar
Delone, B.N. (Delaunay) (1930), Über die Darstellung der Zahlen durch die binärenkubischen Formen von negativer Diskriminante, Math. Z. 31, 1–26.Google Scholar
Delone, B.N. and Faddeev, D.K. (1940), The theory of irrationalities of the third degree(Russian), Inst. Math. Steklo. 11, Acad. Sci. USSR, Moscow-Leningrad. English translation, Amer. Math. Soc., 1964.Google Scholar
Derksen, H. and Masser, D.W. (2012), Linear equations over multiplicative groups,recurrences, and mixing I, Proc. Lond. Math. Soc. 104, 1045–1083.Google Scholar
Dujella, A. and Pejković, T. (2011), Root separation for reducible monic quartics, Rend. Semin. Mat. Univ. Padov. 126 (2011), 63–72.Google Scholar
Dummit, D.S. and Kisilevsky, H. (1977), Indices in cyclic cubic fields, in: NumberTheory and Algebra, Academic Press, 29–42.
Eisenbud, D. (1994), Commutative Algebra with a View Toward Algebraic Geometry, Springer Verlag.
Evertse, J.-H. (1984a), On equations in S-units and the Thue-Mahler equation, Invent. Math. 75, 561–584.Google Scholar
Evertse, J.-H. (1984b), On sums of S-units and linear recurrences, Compos. Math. 53, 225–244.Google Scholar
Evertse, J.-H. (1992), Reduced bases of lattices over number fields, Indag. Math. N.S. 3, 153–168.Google Scholar
Evertse, J.-H. (1993), Estimates for reduced binary forms, J. Reine Angew. Math. 434, 159–190.Google Scholar
Evertse, J.-H. (1996), An improvement of the quantitative subspace theorem, Compos. Math. 101, 225–311.Google Scholar
Evertse, J.-H. (2004), Distances between the conjugates of an algebraic number, Publ. Math. Debrece. 65, 323–340.Google Scholar
Evertse, J.-H. and Győry, K. (1985), On unit equations and decomposable form equations, J. Reine Angew. Math. 358, 6–19.Google Scholar
Evertse, J.-H. and Győry, K. (1988a), On the number of polynomials and integralelements of given discriminant, Acta. Math. Hung. 51, 341–362.Google Scholar
Evertse, J.-H. and Győry, K. (1988b), Decomposable form equations, in: New Advancesin Transcendence Theory, Proc. conf. Durham 1986, A., Baker, ed., Cambridge University Press pp. 175–202.
Evertse, J.-H. and Győry, K. (1991a), Effective finiteness results for binary forms withgiven discriminant, Compositio Math.. 79, 169–204.Google Scholar
Evertse, J.-H. and Győry, K. (1991b), Thue inequalities with a small number of solutions, in: The Mathematical Heritage of, C. F.Gauss, World Scientific Publ. Comp., pp. 204–224.
Evertse, J.-H. and Győry, K. (1992a), Effective finiteness theorems for decomposableforms of given discriminant, Acta. Arith. 60, 233–277.Google Scholar
Evertse, J.-H. and Győry, K. (1992b), Discriminants of decomposable forms, in: New Trends in Probability. and Statistics., F., Schweiger and, E., Manstavičius (Eds.), Int. Science Publ. pp. 39–56.
Evertse, J.-H. and Győry, K. (1993), Lower bounds for resultants, I, Compositio Math. 88, 1–23.Google Scholar
Evertse, J.-H. and Győry, K. (1997), The number of families of solutions of decomposableform equations, Acta. Arith. 80, 367–394.Google Scholar
Evertse, J.-H. and Győry, K. (2013), Effective results for unit equations over finitelygenerated domains, Math. Proc. Cambridge Phil. Soc. 154, 351–380.Google Scholar
Evertse, J.-H. and Győry, K. (2015), Unit Equations in Diophantine Number Theory, Camb. Stud. Adv. Math. 146, Cambridge University Press.
Evertse, J.-H. and Győry, K. (2016), Effective results for discriminant equations overfinitely generated domains, arXiv 31602.04730.
Evertse, J.-H., Győry, K., Stewart, C.L. and Tijdeman, R. (1988) On S-unit equations intwo unknowns, Invent. math. 92, 461–477.Google Scholar
Evertse, J.-H. and Schlickewei, H.P. (2002), A quantitative version of the Absolute Subspace Theorem, J. Reine Angew. Math. 548, 21–127.Google Scholar
Evertse, J.-H., Schlickewei, H.P. and Schmidt, W.M. (2002), Linear equations invariables which lie in a multiplicative group, Ann. Math. 155, 807–836.Google Scholar
Faltings, G. (1983), Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73, 349–366.Google Scholar
Fincke, V. and Pohst, M. (1983), A procedure for determining algebraic integers ofgiven norm, in: Computer Algebra, Lecture Notes in Computer Sci.. 162, Springer Verlag, 194–202.
Friedman, E. (1989), Analytic formulas for regulators of number fields, Invent. Math. 98, 599–622.Google Scholar
Frohlich, A. and Shepherdson, J.C. (1956), Effective procedures in field theory, Philos. Trans. Roy. Soc. London, Ser.. 248, 407–432.Google Scholar
Fuchs, C., von Kanel, R. and Wustholz, G. (2011), An effective Shafarevich theorem forelliptic curves, Acta Arith. 148, 189–203.Google Scholar
Funakura, T. (1984), On integral bases of pure quartic fields, Math. J. Okayama Univ. 26, 27–41.Google Scholar
Gaal, I. (1986), In homogeneous discriminant form and index form equations and their applications, Publ. Math. Debrece. 33, 1–12.Google Scholar
Gaal, I. (1988), Integral elements with given discriminant over function fields, Acta. Math. Hung. 52, 133–146.Google Scholar
Gaal, I. (2001), Power integral bases in cubic relative extensions, Experimental Math. 10, 133–139.Google Scholar
Gaal, I. (2002), Diophantine equations and power integral bases, Birkhauser.
Gaal, I. and Győry, K. (1999), Index form equations in quintic fields, Acta Arith. 89, 379–396.Google Scholar
Gaal, I. and Nyul, G. (2006), Index form equations in biquadratic fields: the p-adic case, Publ. Math. Debrece. 68, 225–242.Google Scholar
Gaal, I., Pethő, A. and Pohst, M. (1991a), On the resolution of index form equations inbiquadratic number fields, I. J. Number Theory 38, 18–34.Google Scholar
Gaal, I., Pethő, A. and Pohst, M. (1991b), On the resolution of index form equations inbiquadratic number fields, II. J. Number Theory 38, 35–51.Google Scholar
Gaal, I., Pethő, A. and Pohst, M. (1991c), On the resolution of index form equations, in: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, ACM Press, pp. 185–186.
Gaal, I., Pethő, A. and Pohst, M. (1993), On the resolution of index form equations inquartic number fields, J. Symbolic Computatio. 16, 563–584.Google Scholar
Gaal, I., Pethő, A. and Pohst, M. (1995), On the resolution of index form equations inbiquadratic number fields, III. The bicyclic biquadratic case, J. Number Theor. 53, 100–114.Google Scholar
Gaal, I., Pethő, A. and Pohst, M. (1996), Simultaneous representation of integers by apair of ternary quadratic forms – with an application to index form equations inquartic number fields, J. Number Theor. 57, 90–104.Google Scholar
Gaal, I. and Pohst, M. (2000), On the resolution of index form equations in relativequartic extensions, J. Number Theory. 85, 201–219.Google Scholar
Gaal, I. and Pohst, M. (2002), On the resolution of relative Thue equations, Math. Comput. 71, 429–440.Google Scholar
Gaal, I. and Schulte, N. (1989), Computing all power integral bases of cubic numberfields, Math. Comput. 53, 689–696.Google Scholar
Gan, W.T., Gross, B. and Savin, G. (2002), Fourier coefficients of modular forms on G2, Duke Math. J. 115, 105–169.Google Scholar
Gauss, C.F. (1801), Disquisitiones Arithmeticae (English translation by A.A., Clarke, Yale University Press, 1965).
Gilbert, W.J. (1981), Radix representations of quadratic fields, J. Math. Anal. Appl. 83, 264–274.Google Scholar
Gras, M.N. (1973), Sur les corps cubiques cycliques dont l'anneau des entiers estmonogène, Ann. Sci. Univ. Besancon, Fasc. 6.Google Scholar
Gras, M.N. (1980), Z-bases d'entiers 1, θ, θ 2 , θ 3 dans les extensions cycliques de degré 4 deQ, Publ.Math. Fac. Sci. Besancon, Theorie des Nombres, 1979/1980 et 1980/81.
Gras, M.N. (1983–1984), Non monogénéité de l'anneau des entiers de certaines extensionsabéliennes de Q, Publ. Math. Sci. Besancon, Theorie des Nombres, 1983–1984.
Gras, M.N. (1986), Non monogénéité de l'anneau des entiers des extensions cycliquesde Q de degré premier l ≥ 5, J. Number Theory, 23, 347–353.Google Scholar
Gras, M.N. and Tanoe, F. (1995), Corps biquadratiques monogènes, Manuscripta Math. 86, 63–79.Google Scholar
Grunwald, V. (1885), Intorno all'aritmetica dei sistemi numerici a base negativa conparticolare riguardo al sistema numerico a base negativo-decimale per lo studiodelle sue analogie coll'aritmetica ordinaria (decimale), Giornale di Matematiche di Battaglini. 23, 203–221, 367.Google Scholar
Győry, K. (1972), Sur l'irréductibilité d'une classe des polynômes, II, Publ. Math. Debrece. 19, 293–326.Google Scholar
Győry, K. (1973), Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith. 23, 419–426.Google Scholar
Győry, K. (1974), Sur les polynômes à coefficients entiers et de discriminant donné II, Publ. Math. Debrece. 21, 125–144.Google Scholar
Győry, K. (1976), Sur les polynômes à coefficients entiers et de discriminant donné III, Publ. Math. Debrece. 23, 141–165.Google Scholar
Győry, K. (1978a), On polynomials with integer coefficients and given discriminant IV, Publ. Math. Debrece. 25, 155–167.Google Scholar
Győry, K. (1978b), On polynomials with integer coefficients and given discriminant V, p-adic generalizations , Acta Math. Acad. Sci. Hung. 32, 175–190.Google Scholar
Győry, K. (1979), On the number of solutions of linear equations in units of an algebraicnumber field, Comment. Math. Helv. 54, 583–600.Google Scholar
Győry, K. (1979/1980), On the solutions of linear diophantine equations in algebraicintegers of bounded norm, Ann. Univ. Sci. Budapest. Eotvos, Sect. Math. 22–23, 225–233.Google Scholar
Győry, K. (1980a), Explicit upper bounds for the solutions of some diophantine equations, Ann. Acad. Sci. Fenn., Ser A I, Math. 5, 3–12.Google Scholar
Győry, K. (1980b), Résultats effectifs sur la représentation des entiers par des formesdésomposables, Queen's Papers in Pure and Applied Math., No. 56, Kingston, Canada.
Győry, K. (1980c), On certain graphs composed of algebraic integers of a number fieldand their applications I, Publ. Math. Debrece. 27, 229–242.Google Scholar
Győry, K. (1980d), Corps de nombres algébriques d'anneau d'entiers monogènes, Seminaire Delange-Pisot-Poitou (Theorie des nombres), 20e annee, 1978/1979, No. 26, 1–7.Google Scholar
Győry, K. (1981a), On the representation of integers by decomposable forms in severalvariables, Publ. Math. Debrece. 28, 89–98.Google Scholar
Győry, K. (1981b), On S-integral solutions of norm form, discriminant form and indexform equations, Studia Sci. Math. Hung. 16, 149–161.Google Scholar
Győry, K. (1981c), On discriminants and indices of integers of an algebraic numberfield, J. Reine Angew. Math. 324, 114–126.Google Scholar
Győry, K. (1982), On certain graphs associated with an integral domain and their applicationsto Diophantine problems, Publ. Math. Debrece. 29, 79–94.Google Scholar
Győry, K. (1983), Bounds for the solutions of norm form, discriminant form andindex form equations in finitely generated integral domains, Acta Math. Hung. 42, 45–80.Google Scholar
Győry, K. (1984), Effective finiteness theorems for polynomials with given discriminantand integral elements with given discriminant over finitely generated domains, J. Reine Angew. Math. 346, 54–100.Google Scholar
Győry, K. (1992), Upper bounds for the numbers of solutions of unit equations in twounknowns, Lithuanian Math. J. 32, 40–44.Google Scholar
Győry, K. (1994), Upper bounds for the degrees of decomposable forms of given discriminant, Acta. Arith. 66, 261–268.Google Scholar
Győry, K. (1998), Bounds for the solutions of decomposable form equations, Publ.Math. Debrece. 52, 1–31.Google Scholar
Győry, K. (2000), Discriminant form and index form equations, in: Algebraic NumberTheory and Diophantine Analysis . Walter de Gruyter, pp. 191–214.
Győry, K. (2001), Thue inequalities with a small number of primitive solutions, Periodica Math. Hung. 42, 199–209.Google Scholar
Győry, K. (2006), Polynomials and binary forms with given discriminant, Publ. Math. Debrece. 69, 473–499.Google Scholar
Győry, K. (2008a), On the abc-conjecture in algebraic number fields, Acta Arith. 133, 281–295.Google Scholar
Győry, K. (2008b), On certain arithmetic graphs and their applications to diophantineproblems, Funct. Approx. Comment. Math.. 39, 289–314.Google Scholar
Győry, K. and Papp, Z.Z. (1977), On discriminant form and index form equations, Studia Sci. Math. Hung. 12, 47–60.Google Scholar
Győry, K. and Papp, Z.Z. (1978), Effective estimates for the integer solutions ofnorm form and discriminant form equations, Publ. Math. Debrece. 25, 311–325.Google Scholar
Győry, K., Pink, I. and Pinter, A. (2004), Power values of polynomials and binomialThue-Mahler equations, Publ. Math. Debrece. 65, 341–362.Google Scholar
Győry, K. and Pinter, A. (2008), Polynomial powers and a common generalization ofbinomial Thue-Mahler equations and S-unit equations, in: Diophantine Equations, N., Saradha, Ed. Narosa Publ. House, New Delhi, pp. 103–119.
Győry, K. and Yu, Kunrui (2006), Bounds for the solutions of S-unit equations anddecomposable form equations, Acta Arith. 123, 9–41.Google Scholar
Hall, M. (1937), Indices in cubic fields, Bull. Amer. Math. Soc. 43, 104–108.Google Scholar
Hanrot, G. (1997), Solving Thue equations without the full unit group, Math. Comp. 69, 395–405.Google Scholar
Haristoy, J. (2003), Équations diophantiennes exponentielles, These de docteur, Strasbourg.
Hasse, H. (1980), Number Theory (English translation), Springer Verlag.
Hensel, K. (1908), Theorie der algebraischen Zahlen, Teubner Verlag, Leipzig-Berlin, 1908.
Hermann, G. (1926), Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann. 95, 736–788.Google Scholar
Hermite, C. (1851), Sur l'introduction des variables continues dans la théorie desnombres, J. Reine Angew. Math. 41, 191–216.Google Scholar
Hermite, C. (1854), Sur la théorie des formes quadratiques I, J. Reine Angew. Math. 47, 313–342.Google Scholar
Hermite, C. (1857), Sur le nombre limité d'irrationalités auxquelles se réduisent lesracines des équations à coefficients entriers complexe d'un degré et d'un discriminantdonnés, J. Reine Angew. Math. 53, 182–192.Google Scholar
Hindry, M. and Silverman, J.H. (2000), Diophantine Geometry, An Introduction, Springer Verlag.
Huard, J.G. (1979), Cyclic cubic fields that contain an integer of given index, Lecture Notes in Math. 751, Springer Verlag, Berlin, 195–199.
Humbert, P. (1940), Théorie de la réduction des formes quadratiques définies positivesdans un corps algébrique K fini, Comm. Math. Helv. 12, 263–306.Google Scholar
Humbert, P. (1949), Réduction des formes quadratiques dans un corps algébrique fini, Comm. Math. Helv. 23, 50–63.Google Scholar
Jadrijević, B. (2009a), Establishing the minimal index in a parametric family of bicyclicbiquadratic fields, Periodica Math. Hung. 58, 155–180.Google Scholar
Jadrijević, B. (2009b), Solving index form equations in two parametric families ofbiquadratic fields, Math. Commun. 14, 341–363.Google Scholar
Javanpeykar, A. (2013), Arakelov invariants of Belyi curves, PhD thesis, Universiteit Leiden and l'Universite Paris Sud 11.
Javanpeykar, A. and von Kanel, R. (2014), Szpiro's small points conjecture for cycliccovers, Doc. Math. 19, 1085–1103.Google Scholar
Javanpeykar, A. and Loughran, D. (2015), Good reduction of algebraic groups and flagvarieties, Arch. Math. 104, 133–143.Google Scholar
de Jong, R. and Remond, G. (2011), Conjecture de Shafarevich effective pour les revêtementscycliques, Algebra and Number Theor. 5, 1133–1143.Google Scholar
de Jong, T. (1998), An algorithm for computing the integral closure, J. Symbolic Computatio. 26, 273–277.Google Scholar
Julia, G. (1917), Étude sur les formes binaires non-quadratiques à indéterminées réellesou complexes, Mem. Acad. Sci. l'Inst. Franc. 55, 1–296; see also Julia's Oeuvres, vol. 5.Google Scholar
Jung, H.Y., Koo, J.K. and Shin, D.H. (2014), Application of Weierstrass units to relativepower integral bases, Rev. Mat. Iberoam. 30, 1489–1498.Google Scholar
von Kanel, R. (2011), An effective proof of the hyperelliptic Shafarevich conjecture andapplications, PhD dissertation, ETH Zurich, 54 pp.
von Kanel, R. (2013), On Szpiro's discriminant conjecture, Internat. Math. Res. Notices 1–35. Published online:: doi:10.193/imrn/vnt079.
von Kanel, R. (2014a), An effective proof of the hyperelliptic Shafarevich conjecture, J. Theor. Nombres Bordeau. 26, 507–530.Google Scholar
von Kanel, R. (2014b), Modularity and integral points on moduli schemes. arXiv;1310.7263v2.
Kappe, L.C., and Warren, B. (1989), An elementary test for the Galois group of a quarticpolynomial, Amer. Math. Monthl. 96, 133–137.Google Scholar
Katai, I. and Kovacs, B. (1980), Kanonische Zahlensysteme in der Theorie derquadratischen algebraischen Zahlen, Acta Sci. Math. 42, 99–107.Google Scholar
Katai, I. and Kovacs, B. (1981), Canonical number systems in imaginary quadratic fields, Acta Math. Acad. Sci. Hung. 37, 159–164.Google Scholar
Katai, I. and Szabo, J. (1975), Canonical number systems for complex integers, Acta Sci. Math. 37, 255–260.Google Scholar
Kedlaya, K.S. (2012), A construction of polynomials with squarefree discriminants, Proc. Amer. Math. Soc. 140, 3025–3033.Google Scholar
Kirschenhofer, P. and Thuswaldner, J.M. (2014), Shift radix systems - a survey, Numeration and Substitutio. 2012, 1–59.Google Scholar
Knuth, D.E. (1960), An imaginary number system, Comm. ACM. 3, 245–247.Google Scholar
Knuth, D.E. (1998), The Art of Computer Programming, Vol. 2, Semi-numerical Algorithms, Addison Wesley, 3rd edition.
Korkine, A. and Zolotareff, G. (1873), Sur les formes quadratiques, Math. Ann. 6, 366–389.Google Scholar
Kormendi, S. (1986), Canonical number systems in Q, Acta Sci. Math. 50, 351–357.Google Scholar
Kovacs, B. (1981), Canonical number systems in algebraic number fields, Acta Math. Acad. Sci. Hung. 37, 405–407.Google Scholar
Kovacs, B. (1989), Integral domains with canonical number systems, Publ.Math. Debrece. 36, 153–156.Google Scholar
Kovacs, B. and Pethő, A. (1991), Number systems in integral domains, especially inorders of algebraic number fields, Acta Sci. Math. 55, 287–299.Google Scholar
Kravchenko, R.V., Mazur, M. and Petrenko, B.V. (2012), On the smallest number of generatorsand the probability of generating an algebra, Algebra and Number Theor. 6, 243–291.Google Scholar
Kronecker, L. (1882), Grundzüge einer arithmetischen Theorie der algebraischenGrössen, J. Reine Angew. Math. 92, 1–122.Google Scholar
Lagrange, J.L. (1773), Recherches d'arithmétiques, Nouv. Mem. Acad. Berlin, 265–312; Oeuvres III, 693–758.
Landau, E. (1918), Verallgemeinerung eines Pólyaschen Satzes auf algebraischeZahlkörper, Nachr. Ges. Wiss. Gottingen, 478–488.
Lang, S. (1960), Integral points on curves, Inst. Hautes Etudes Sci. Publ.Math. 6, 27–43.Google Scholar
Lang, S. (1970), Algebraic Number Theory, Addison-Wesley.
Lenstra, A.K., Lenstra, H.W. Jr. and Lovasz, L. (1982), Factoring polynomials withrational coefficients, Math. Ann. 261, 515–534.Google Scholar
Lenstra, H.W. Jr. (2001), Topics in Algebra, Lecture notes. Online available at http://websites.math.leidenuniv.nl/algebra/topics.pdf
Lercier, R. and Ritzenthaler, C. (2012), Hyperelliptic curves and their invariants: geometric,arithmetic and algorithmic aspects, J. Algebr. 372, 595–636.Google Scholar
Levin, A. (2012), Siegel's theorem and the Shafarevich conjecture, J. Theor. Nombres Bordeau. 24, 705–727.Google Scholar
Liang, J. (1976), On the integral basis of the maximal real subfield of a cyclotomic field, J. Reine Angew. Math. 286–287, 223–226.Google Scholar
Liu, Q. (1996), Modèles entiers des courbes hyperelliptiques sur un corps de valuationdiscrète, Trans. Amer. Math. Soc. 348, 4577–4610.Google Scholar
Lockhart, P. (1994), On the discriminant of a hyperelliptic curve, Trans. Amer. Math. Soc. 342, 729–752.Google Scholar
Louboutin, S. (2000), Explicit bounds for residues of Dedekind zeta functions, values of L-functions at s = 1, and relative class numbers, J. Number Theor. 85, 263–282.Google Scholar
Mahler, K. (1933), Zur Approximation algebraischer Zahlen I: Über den grösstenPrimteiler binärer Formen, Math. Ann. 107, 691–730.Google Scholar
Mahler, K. (1937), Über die Annäherung algebraischer Zahlen durch periodische Algorithmen, Acta Math. 68, 109–144.Google Scholar
Mahler, K. (1964a), Inequalities for ideal bases in algebraic number fields, J. Austral. Math. Soc. 4, 425–428.Google Scholar
Mahler, K. (1964b), An inequality for the discriminant of a polynomial, Michigan Math. J. 11, 257–262.Google Scholar
Markoff, A. (1879), Sur les formes quadratiques binaires indéfinies, Math. Ann. 15, 381–406.Google Scholar
Mason, R.C. (1983), The hyperelliptic equation over function fields, Math. Proc. Camb. Phil. Soc. 99, 219–230.Google Scholar
Mason, R.C. (1984), Diophantine equations over function fields, Cambridge University Press.
Matsumoto, R. (2000), On computing the integral closure, Comm. Algebr. 28, 401–405.Google Scholar
Matsumura, H. (1986), Commutative Ring Theory, Cambridge University Press.
Matveev, E.M. (2000), An explicit lower bound for a homogeneous rational linear formin logarithms of algebraic numbers, II. Izvestiya: Mathematics 64, 1217–1269.Google Scholar
McFeat, R.B. (1971), Geometry of numbers in adéle spaces, Dissertationes Math. 88, Warszawa.
Merriman, J.R. and Smart, N.P. (1993a), The calculation of all algebraic integers ofdegree 3 with discriminant a product of powers of 2 and 3 only, Publ.Math. Debrece. 43, 105–205.Google Scholar
Merriman, J.R. and Smart, N.P. (1993b), Curves of genus 2 with good reduction awayfrom 2 with a rational Weierstrass point , Math. Proc. Cambridge Philos. Soc. 114, 203–214. Corrigenda: ibid. 118 (1995), 189.Google Scholar
Mignotte, M. and Payafar, M. (1978), Distance entre les racines d'un polynôme, RAIRO Anal. Numer. 13, 181–192.Google Scholar
Mordell, L.J. (1945), On numbers represented by binary cubic forms, Proc. London Math. Soc. 48, 198–228.Google Scholar
Mordell, L.J. (1969), Diophantine Equations, Academic Press, New York, London.
Motoda, Y. and Nakahara, T. (2004), Power integral bases in algebraic number fieldswhose Galois groups are 2-elementary abelian , Arch. Math. 83, 309–316.Google Scholar
Nagata, M. (1956), A general theory of algebraic geometry over Dedekind domains I, Amer. J. Math. 78, 78–116.Google Scholar
Nagell, T. (1930), Zur Theorie der kubischen Irrationalitäten, Acta Math. 55, 33–65.Google Scholar
Nagell, T. (1965), Contributions à la théorie des modules et des anneaux algébriques, Arkiv for Mat.. 6, 161–178.Google Scholar
Nagell, T. (1967), Sur les discriminants des nombres algébriques, Arkiv for Mat. 7, 265–282.Google Scholar
Nagell, T. (1968), Quelques propriétés des nombres algébriques du quatrième degré, Arkiv for Mat. 7, 517–525.Google Scholar
Nakagawa, J. (1989), Binary forms and orders of algebraic number fields, Invent. Math. 97, 219–235.Google Scholar
Nakahara, T. (1982), On cyclic biquadratic fields related to a problem of Hasse, Monatsh. Math. 94, 125–132.Google Scholar
Nakahara, T. (1983), On the indices and integral bases of non-cyclic but abelianbiquadratic fields, Archiv der Math. 41, 504–508.Google Scholar
Nakahara, T. (1987), On the minimum index of a cyclic quartic field, Archiv derMath. 48, 322–325.Google Scholar
Narkiewicz, W. (1974), Elementary and analytic theory of algebraic numbers, Springer Verlag/PWN-Polish Scientific Publishers; 2nd ed. (1990).
Neukirch, J. (1999), Algebraic Number Theory, transl. from German by, N., Schappacher, Springer Verlag.
Nguyen, K.D. (2014), On modules of integral elements over finitely generated domains, arXiv:1412.2868v3, Trans. Amer. Math. Math. Soc.
O'Leary, R. and Vaaler, J.D. (1993), Small solutions to inhomogeneous linear equationsover number fields, Trans. Amer. Math. Soc. 326, 915–931.Google Scholar
Oort, F. (1974), Hyperelliptic curves over number fields, in: Classification of Algebraic Varieties and Compact Complex Manifolds, Lecture Notes Math. 412, Springer Verlag, pp. 211–218.
Parry, C.J. (1950), The p-adic generalization of the Thue-Siegel theorem , Acta Math. 83, 1–100.Google Scholar
Parshin, A.N. (1968), Algebraic curves over function fields I, Izv. Akad. Nauk. SSSR Ser. Mat. 32, 1191–1219; English transl. in Math. USSR Izv. 2, 1145–1170.Google Scholar
Parshin, A.N. (1972), Minimal models of curves of genus 2 and homomorphisms of abelian varieties defined over a field of finite characteristic, Izv. Akad. Nauk. SSSR Ser. Mat. 36, 67–109; English transl. in Math. USSR Izv. 6, 65–108.Google Scholar
Penney, W. (1965), A “binary” system for complex numbers, J. ACM. 12, 247–248.Google Scholar
Peruginelli, G. (2014), Integral-valued polynomials over the set of algebraic integers of bounded degree, J. Number Theor. 137, 241–255.Google Scholar
Pethő, A. (1991), On a polynomial transformation and its application to the constructionof a public key cryptosystem, in:, A., Pethő, M., Pohst, H.G., Zimmer and H.C., Williams (eds.), pp. 31–44.
Pethő, A. (2004), Connections between power integral bases and radix representationsin algebraic number fields, in: Yokoi-Chowla Conjecture and Related Problems, Furukawa Total Printing Co. LTD, Saga, Japan. pp. 115–125.
Pethő, A. and Pohst, M. (2012), On the indices of multiquadratic number fields, Acta Arith. 153, 393–414.Google Scholar
Pethő, A. and Schulenberg, R. (1987), Effektives Lösen von Thue Gleichungen, Publ. Math. Debrece. 34, 189–196.Google Scholar
Pethő, A. and Ziegler, V. (2011), On biquadratic fields that admit unit power integralbasis, Acta Math. Hung. 133, 221–241.Google Scholar
Petsche, C. (2012), Crirically separable rational maps in families, Compositio Math. 148, 1880–1896.Google Scholar
Pinter, A. (1995), On the magnitude of integer points on elliptic curves, Bull. Austral. Math. Soc. 52, 195–199.Google Scholar
Pleasants, P.A.B. (1974), The number of generators of the integers of a number field, Mathematik. 21, 160–167.Google Scholar
Pohst, M.E. (1982), On the computation of number fields of small discriminants includingthe minimum discriminant of sixth degree fields, Math. Proc. Camb. Philos. Soc. 114, 203–214.Google Scholar
Pohst, M.E. (1993), Computational Algebraic Number Theory, Birkhauser.
Pohst, M.E. and Zassenhaus, H. (1989), Algorithmic algebraic number theory, Cambridge University Press.
van der Poorten, A.J. and Schlickewei, H.P. (1982), The growth condition for recurrencesequences, Macquarie Univ. Math. Rep. 82–0041, North Ryde, Australia.
Rabin, M.O. (1960), Computable Algebra, General Theory and Theory of ComputableFields, Trans. Am.Math. Soc. 95, 341–360.Google Scholar
Ranieri, G. (2010), Power bases for rings of integers of abelian imaginary fields, J. London Math. Soc. (2). 82, 144–160.Google Scholar
Ribenboim, P. (2001), Classical theory of algebraic numbers, Springer Verlag.
Ribenboim, P. (2006), Finite sets of binary forms, Publ. Math. Debrecen. 68, 261–282.Google Scholar
Roberts, D.P. (2015), Polynomials with prescribed bad primes, Intern. J. Number Theor. 11, 1115–1148.Google Scholar
Robertson, L. (1998), Power bases for cyclotomic integer rings, J. Number Theor. 69, 98–118.Google Scholar
Robertson, L. (2001), Power bases for 2-power cyclotomic fields , J. Number Theor. 88, 196–209.Google Scholar
Robertson, L. (2010), Monogeneity in cyclotomic fields, Int. J. Number Theor. 6, 1589–1607.Google Scholar
Robertson, L. and Russel, R. (2015), A hybrid Gröbner bases approach to computingpower integral bases, Acta Math. Hung. 147, 427–437.Google Scholar
Roquette, P. (1957), Einheiten und Divisorenklassen in endlich erzeugbaren Körpern, J be. Deutsch. Math. Verei. 60, 1–21.Google Scholar
Rosser, J.B. and Schoenfeld, L. (1962), Approximate formulas for some functions ofprime numbers, Illinois J. Math. 6, 64–94.Google Scholar
Schertz, R. (1989), Konstruktion von Potenzganzheitsbasen in Strahlklassenkörpernüber imaginär-quadratischen Zahlkörpern, J. Reine Angew. Math. 398, 105–129.Google Scholar
Schlickewei, H.P. (1977), The p-adic Thue-Siegel-Roth-Schmidt theorem , Arch. Math. (Basel). 29, 267–270.Google Scholar
Schmidt, W.M. (1972), Norm form equations, Ann. Math. 96, 526–551.Google Scholar
Schmidt, W.M. (1980), Diophantine approximation, Lecture Notes Math. 785, Springer Verlag.
Schmidt, W.M. (1991), Diophantine approximations and diophantine equations, Lecture Notes Math. 1467, Springer Verlag.
Schmidt, W.M. (1996), Heights of points on subvarieties of G nm, in: Number Theory 1993–94, London Math. Soc. Lecture Note Ser. 235, S., David, ed., Cambridge University Press. 157–187.
Schonhage, A. (2006), Polynomial root separation examples, J. Symbolic Comput. 41 (2006), 1080–1090.Google Scholar
Schulte, N. (1989), Indexgleichungen in kubischen Zahlkörpern, Diplomarbeit, Dusseldorf.
Schulte, N. (1991), Index form equations in cubic number fields, in: Computational Number Theory, de Gruyter, pp. 281–287.
Seidenberg, A. (1974), Constructions in algebra, Trans. Amer. Math. Soc. 197, 273–313.Google Scholar
Serra, M. (2013), Smooth models of curves, Master thesis, Erasmus Mundus Algant, Universiteit Leiden.
Shafarevich, I.R. (1963), Algebraic number fields, in: Proc. Intern. Congr.Math. (Stockholm, 1962), Inst. Mittag-Leffler,Djursholm, pp. 163–176; English transl. in Amer. Math. Soc. Trans. 31 (1963), 25–39.Google Scholar
Shlapentokh, A. (1996), Polynomials with a given discriminant over fields of algebraicfunctions of positive characteristic, Pacific J. Math. 173, 533–555.Google Scholar
Siegel, C.L. (1921), Approximation algebraischer Zahlen, Math., Z. 10, 173–213.Google Scholar
Silverman, J.H. (2009), The arithmetic of elliptic curves, 2nd ed., Springer Verlag.
Simmons, H. (1970), The solution of a decision problem for several classes of rings, Pacific J. Math. 34, 547–557.Google Scholar
Simon, D. (2001), The index of nonmonic polynomials, Indag. Math. (N.S). 12, 505–517.Google Scholar
Simon, D. (2003), La classe invariante d'une forme binaire, C.R. Math. Acad. Sci. Pari. 336, 7–10.Google Scholar
Smart, N. (1993), Solving a quartic discriminant form equation, Publ. Math. Debrece. 43, 29–39.Google Scholar
Smart, N. (1995), The solution of triangularly connected decomposable form equations, Math. Comp. 64, 819–840.Google Scholar
Smart, N.P. (1996), Solving discriminant form equations via unit equations, J. Symbolic Comp. 21, 367–374.Google Scholar
Smart, N.P. (1997), S-unit equations, binary forms and curves of genus 2, Proc. London Math. Soc. (3) 75, 271–307.Google Scholar
Smart, N.P. (1998), The Algorithmic Resolution of Diophantine Equations, Cambridge University Press.
Spearman, B.K. and Williams, K.S. (2001), Cubic fields with a power basis, Rocky Mountain J. Math. 31, 1103–1109.Google Scholar
Stark, H.M. (1974), Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23, 135–152.Google Scholar
Stewart, C.L. (1991), On the number of solutions of polynomial congruences and Thueequations, J. Amer.Math. Soc. 4, 793–835.Google Scholar
Stothers, W.W. (1981), Polynomial identities and Hauptmoduln, Quart. J.Math. Oxford Ser. (2. 32, 349–370.Google Scholar
Stout, B.J. (2014), A dynamical Shafarevich theorem for twists of rational morphisms, Acta Arith. 166, 69–80.Google Scholar
Szpiro, L. and Tucker, T.J. (2008), A Shafarevich-Faltings theorem for rational functions, Pure Appl. Math. Quartel. 4, 1–14. The PARI Group (2004), Bordeaux, PARI/GP, version 2.1.5, available from http://pari.math.u-bordeaux.fr/.Google Scholar
Therond, J.D. (1995), Extensions cycliques cubiques monogènes de l'anneau des entiersd'un corps quadratique, Archiv der Math. 64, 216–229.Google Scholar
Thunder, J.L. (1995), On Thue ineqalities and a conjecture of Schmidt, J. Number Theor. 52, 319–328.Google Scholar
Thunder, J.L. and Wolfskill, J. (1996), Algebraic integers of small discriminant, Acta Arith. 75, 375–382.Google Scholar
Trelina, L.A. (1977a), On algebraic integers with discriminants having fixed primedivisors, Mat. Zametk. 21, 289–296 (Russian).Google Scholar
Trelina, L.A. (1977b), On the greatest prime factor of an index form, Dokl. Akad. Nauk BSS. 21, 975–976 (Russian).Google Scholar
Trelina, L.A. (1985), Representation of powers by polynomials in algebraic numberfields, Dokl. Akad. Nauk BSSR. 29, 5–8 (Russian).Google Scholar
Tzanakis, N. and de Weger, B.M.M. (1989), On the practical solution of the Thue equation, J. Number Theor. 31, 99–132.Google Scholar
Vaaler, J.D. (2014), Heights on groups and small multiplicative dependencies, Trans. Amer. Math. Soc. 366, 3295–3323.Google Scholar
Voloch, J.F. (1998), The equation ax + by = 1 in characteristic p , J. Number Theor. 73, 195–200.Google Scholar
van der Waerden, B.L. (1930), Moderne Algebra I (1st ed.), Julius Springer.
Waldschmidt, M. (2000), Diophantine approximation on linear algebraic groups, Springer Verlag.
Wildanger, K. (1997), Über das Lösen von Einheiten- und Index formgleichungen inalgebraischen Zahlkörpern mit einer Anwendung auf die Bestimmung aller ganzenPunkte einer Mordellschen Kurve, Dissertation, Technical University, Berlin.
Wildanger, K. (2000), Über das Lösen von Einheiten- und Indexformgleichungen in algebraischen Zahlkörpern, J. Number Theor. 82, 188–224.Google Scholar
Wood, M.M. (2011), Rings and ideals parameterized by binary n-ic forms, J. London Math. Soc. 83, 208–231.Google Scholar
Yingst, A.Q. (2006), A characterization of homeomorphic Bernoulli trialmeasures, PhD dissertation, Univ. North Texas.
Yu, K. (2007), P-adic logarithmic forms and group varieties III, Forum Mathematicu. 19, 187–280.Google Scholar
Zhuang, W. (2015), Symmetric Diophantine approximation over function fields, PhD dissertation, Universiteit Leiden.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jan-Hendrik Evertse, Universiteit Leiden, Kálmán Győry, Debreceni Egyetem, Hungary
  • Book: Discriminant Equations in Diophantine Number Theory
  • Online publication: 27 October 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316160763.022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jan-Hendrik Evertse, Universiteit Leiden, Kálmán Győry, Debreceni Egyetem, Hungary
  • Book: Discriminant Equations in Diophantine Number Theory
  • Online publication: 27 October 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316160763.022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jan-Hendrik Evertse, Universiteit Leiden, Kálmán Győry, Debreceni Egyetem, Hungary
  • Book: Discriminant Equations in Diophantine Number Theory
  • Online publication: 27 October 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316160763.022
Available formats
×