Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T19:12:47.404Z Has data issue: false hasContentIssue false

3 - Diatoms as indicators of hydrologic and climatic change in saline lakes

Published online by Cambridge University Press:  16 January 2010

E. F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
John P. Smol
Affiliation:
Queen's University, Ontario
Get access

Summary

Introduction

Lakes are intricately tied to the climate system in that their water level and chemistry are a manifestation of the balance between inputs (precipitation, stream inflow, surface runoff, groundwater inflow) and outputs (evaporation, stream outflow, groundwater recharge) (Mason et al., 1994). Hence, changes in the hydrologic budget, caused by either climatic change or human activity, have the potential to alter lake level and lake chemistry. These, in turn, may affect the physiological responses and species composition of the lake's biota, including those of diatoms. Here, we review the use of diatoms as indicators of hydrologic and climatic change, with an emphasis on environmental reconstruction in arid and semi-arid regions. First we discuss linkages among climate, hydrology, lake hydrochemistry, and diatoms that form the foundation for environmental reconstruction and then review selected examples of diatom-based studies.

LAKE HYDROLOGY AND HYDROCHEMISTRY

Lakes vary in their hydrologic sensitivity to climatic change (Winter, 1990). In basins with a surface outlet, lake-level increase is constrained by topography, and any change in input is usually balanced by outflow. Thus, in open basins, lake level fluctuates relatively little, unless hydrologic change is sufficiently large to drop water level below the outlet level. In contrast, closed-basin lakes, that is lakes without surface outflow, often show changes in level associated with changes in the balance between precipitation and evaporation (PE). The magnitude of response to fluctuations in PE depends on the relative contribution of groundwater inflow and outflow to the hydrologic budget; lake-level change is greatest in terminal basins, which have neither surface nor groundwater outflow.

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 41 - 72
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×